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Abstract: Breast cancer was the most diagnosed cancer in 2020. Several thousand women continue
to die from this disease. A better and earlier diagnosis may be of great importance to improving
prognosis, and that is where Artificial Intelligence (AI) could play a major role. This paper surveys
different applications of AI in Breast Imaging. First, traditional Machine Learning and Deep Learning
methods that can detect the presence of a lesion and classify it into benign/malignant—which
could be important to diminish reading time and improve accuracy—are analyzed. Following that,
researches in the field of breast cancer risk prediction using mammograms—which may be able
to allow screening programs customization both on periodicity and modality—are reviewed. The
subsequent section analyzes different applications of augmentation techniques that allow to surpass
the lack of labeled data. Finally, still concerning the absence of big datasets with labeled data, the
last section studies Self-Supervised learning, where AI models are able to learn a representation of
the input by themselves. This review gives a general view of what AI can give in the field of Breast
Imaging, discussing not only its potential but also the challenges that still have to be overcome.

Keywords: breast cancer; machine learning; deep learning; self-supervised learning; data augmenta-
tion; automatic detection; risk prediction

1. Introduction
1.1. Breast Cancer: Statistics and Risk Factors

Breast cancer(BC) surpassed lung cancer as the most commonly diagnosed cancer,
with approximately three million cases diagnosed in 2020 and nearly seven hundred
thousand deaths [1]. The incidence of BC has been increasing yearly since the mid-2000s [2].
Nonetheless, in terms of mortality, a decreasing trend has been observed in recent years.
However, this trend did not affect every ethnicity in the same fashion. For example, while
the incidence of BC remained higher for Non-Hispanic White (NHW) people than for
Non-Hispanic Black (NHB) people across the years, the death rate decreased much more
for NHW than for NHB. There is such a great difference in these decreases that while the
incidence remains higher for NHW, the death rates are higher for NHB [3].

Although age is the most studied risk factor for the development of BC—so much so
that screening programs are based upon it—there are several elements that contribute to the
emergence of this disease. High Body Mass Index, prior history of neoplastic/hyperplastic
breast disease, and the existence of BC family history are important risk factors [4]. Pro-
longed lifetime exposure to estrogen—early menarche and/or late menopause—is also a
risk factor to consider [5]. Given that, the use of oral contraceptives can also increase the risk
of developing BC [6]. In addition to that, genetic mutations such as in the BRCA1/2 gene
put women at higher risk of developing this disease. Among several texture characteristics
that are related to risk, percent of mammographic density (%PMD) presents itself as one
of the most studied. Actually, women with dense breasts (60–70%PMD) are at four to five
times higher risk than women with fatty breasts [7–9].
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1.2. Screening and Commonly Found Lesions

Mammography is the most used imaging technique in screening programs. This
imaging technique helped to detect life-threatening cancers earlier, improving prognosis,
and decreasing mortality rates up to 50%. Consequently, the fact that cancer is detected
earlier leads to less aggressive treatment and fewer money losses from the patients [10,11].
Despite its positive impacts, mammography has some flaws. For example, in the United
States of America, all screened women will experience at least one false positive in their
life. Actually, an overview of the benefits and harms of mammography showed that
in 1000 women that have biennial mammography, 200 of them will have a false positive,
15 will be overdiagnosed—meaning that cancer that could not harm the women during their
lifetime will be diagnosed—and 3 will have interval cancers—a lesion developed between
sequential screenings. While a false positive negatively impacts women’s mental health,
resulting in unnecessary anxiety, interval cancers have a direct influence on physical health.
Diagnosis timing is of extreme importance when it comes to cancer, so it is important
to understand if the interval cancer was in fact developed between screenings, or if it
was missed during the last screening assessment due to mammography flaws [12]. The
fact that mammography is a 2D image leads to tissue overlap, which can result in both
lesion masking, or fake lesion creation—hence resulting in false positive and false negative
results. In addition to that, mammography is known to diminish its sensitivity for dense
breasts (30–64%) in comparison with fatty breasts (76–98%)—which is a problem, since it is
established that women with dense breasts are at higher risk of developing BC [10].

The use of other imaging techniques along with mammography can help to overcome
some of its problems. Ultrasound combined with mammography can increase cancer
detection, with the upside that ultrasound works slightly better for dense breasts [10,13].
Tomosynthesis, which is acquired with a moving X-ray machine, allows overcoming the
problem of overlapping tissue. In addition to that, when combining tomosynthesis and
mammography, cancer detection can increase by 30–35%, with the advantage that tomosyn-
thesis is better in lesion characterization and tumor staging [10]. Magnetic Resonance
Imaging (MRI) can be used instead of mammography for women with a higher risk of
developing the disease and has higher sensitivity as it is not affected by breast density [14].
Limited capacity to find certain types of lesions, higher acquisition and reading time,
and higher costs are some of the limitations of ultrasound, tomosynthesis, and magnetic
resonance, respectively [10,13,15].

There are two main findings in terms of breast lesions, especially in what concerns
computer vision applications: masses and microcalcifications. Masses are defined as
space-occupying lesions and are assessed with regard to their shape, margins, and den-
sity. Concerning shape, masses can be round, oval, or irregular, with the probability of
malignancy increasing as the shape becomes irregular. The margins can be classified as
circumscribed, obscured, microlobulated, indistinct, or spiculated, with the latter represent-
ing the highest probability of malignancy. In terms of density, the higher it is, the higher
the likelihood of malignancy. Microcalcifications, on the other hand, are small deposits of
calcium that are assessed in terms of distribution on the breast and morphology. The mor-
phology can be: round and punctuate, which is typically benign; amorphous or coarsely
heterogeneous, which is an intermediate state between being benign and malignant; or
fine pleomorphic/fine linear, which indicates a higher probability of malignancy. As for
distribution, a higher probability of malignancy occurs when the calcifications are arranged
in lines [16,17].

1.3. The Role of Artificial Intelligence in Medical Imaging

Artificial Intelligence (AI) can play a major role in improving image interpretation and
diagnostic outcomes [18]. There are two sub-fields of AI that need to be addressed in order
to fully grasp medical applications: Machine Learning and Deep Learning.

Machine Learning (ML) was defined as the field that gives computers the ability to
learn without being expressly programmed. Hence, ML can build models from input data
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and make data-oriented predictions. In addition to making predictions, ML can be used to
find important structural information in data and unveil hidden patterns.

Deep Learning (DL) is itself a sub-field of ML that is focused on data representation
in the most optimized fashion possible in order to simplify the learning task. One of the
main differences between DL and ML is that while DL can learn using raw data as input, in
ML the learning process needs handcrafted features that represent the input data to learn.
Thus, learning in DL is more automatic [19,20].

The potential of AI in the medical imaging field covers several applications. For exam-
ple, imaging systems could be improved with AI systems, not only optimizing acquisition
timing but also improving position and helping to characterize the findings. At the same
time, automatic detection of lesions has been studied in different medical fields such as
breast conditions, pulmonary and thyroid nodules, and prostate cancer. Furthermore,
these AI detection systems have been tested with several different imaging techniques
such as ultrasound, MRI, and tomosynthesis. In addition to automatic detection, lesion
interpretation can also be performed with AI systems. Computer-Aided Diagnosis (CAD)
systems are able to serve as a second opinion to radiologists/image interpreters, improving
the diagnosis and prognosis of the found lesions. This interpretation is usually in nor-
mal/abnormal cases but can be extended to more complex functions, saving precious time
for image analysts while improving their performance. Finally, AI has its role in image
post-processing and quality analysis such as, for instance, in image registration and volume
segmentation in several imaging modalities [18,21].

1.4. Related Work

In order to produce the scoping review presented in this paper, a background literature
review was performed. The presented review is innovative as it presents a generalized
overview of various applications of AI in breast imaging. In addition to the common
approaches of lesion detection in mammograms, works in alternative imaging modalities
are explored. Research in the field of risk prediction—in line with the current medicine
paradigm—is also included in the paper. In addition to that, data augmentation approaches
that help to overcome some of the usual obstacles in the development of AI solutions with
medical images were also reviewed. Finally, the innovatory use of self-supervised learning
was deeply reviewed as well. Since this paper aims to review different applications of AI
in breast imaging, it was decided that, instead of having extensive subsections, articles
that gave a general view of the methodologies usually used should be reviewed. For
Section 2.3.1, concerning the works that used mammograms, the goal was to give a general
view of how AI can be applied to lesion classification. Hence, it was our target to show not
only the use of different algorithms and evaluation metrics but also different dataset con-
struction. Given that, a search in Google Scholar with the terms “texture”, “mammogram”,
and “classification” led to the screening of several articles that were screened based on their
good readability, methodology, results, and data used. The inclusion of the keyword “sup-
port vector machine” was inputted later in order to include studies that used this approach.
Considering these criteria, two studies were included since they present a general view of
Machine Learning applications in lesion classification through well-known datasets (DDSM
and MIAS), while using different methods for dataset construction, algorithm application,
and model evaluation. For Section 2.3.2, the goal was to show that similar methodologies
can be applied to different imaging modalities. Therefore, the use of the keywords “breast
tumor”, “ultrasound”, “texture”, “classification”, and “automatic detection” were used for
ultrasound. For MRI, the keywords were “breast mri”, “lesion classification”, and “texture”.
Among the several articles that came out, they were screened in order to verify if the
methodologies applied were similar to what was conducted in Section 2.3.1. The reviewed
papers were the ones that matched the said methodologies. For Section 2.3.3, different
combinations of the following keywords were used: “breast cancer risk”, “mammography”,
“machine/deep learning”, “parenchyma/texture”, and “patterns/features”. The articles
were included with the rationale of showing the different methodologies (differentiating
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risk groups, directly assessing risk in a mammogram, using a single ROI vs. the entire
mammogram, etc.) that both Machine Learning and Deep Learning can have in the field of
risk prediction.

The article search process for the “AI and Data Augmentation” section worked simi-
larly to a “FOAF” (friend-of-a-friend) search, where in most cases multiple articles that were
referenced from the current analyzed article were analyzed. The Google Scholar tool was
used to search for key terms such as “Generative Adversarial Networks Medical Imaging”,
“Generative Adversarial Networks Breast Cancer”, “Image Generation Medical Imaging”,
“Image Generation Breast Cancer”, “Single Image Generation Medical Imaging”, and “Sin-
gle Image Generation Breast Cancer”. For each search term, the results were ordered by
date and relevance and analyzed based on the work abstract. If the abstract was convinc-
ing, the team would perform a more in-depth analysis of the paper, otherwise, the team
would skip it. Each analyzed paper, as well as the papers referenced by them, were added
considering various aspects that were defined to mark a paper as more adequate to the
study. These aspects were: the ease of reading of the paper as well as understanding how
the project worked; the definition of a dataset and how they acquired it and pre-processed
it; a good definition of a methodology of work; if it made significant improvements to some
other base work or developed something completely new; a robust definition of the project
implementation; well-presented metrics and good results for those metrics; the presence
of limitations and future improvements; and amount of impact that the work made for
the presented specific problem. Similarly, for Section 4 on Self-Supervised Learning, the
search included the terms “Self supervised learning” combined with “breast cancer” and
“mammography“. We identified the most recent papers, published in known venues, and
used the platform feature that shows similar papers to these in order to identify other
possible candidates.

The organization of the remainder of this paper is as follows: Section 2 describes AI general
methods in the interpretation of lesions in different imaging modalities. Sections 2.1 and 2.2
analyze commonly used features in Machine Learning research. Section 2.3 reviews
works in lesion interpretation—usually categorization of images into benign or malig-
nant categories—for different imaging modalities and extends this review to tissue analysis
in the field of breast cancer risk prediction. Section 3 is concerned with different work
related to augmenting data availability, while Section 4 with recent advances in the field
of Self-Supervised Learning. Sections 4 and 5 correspond to a discussion of the presented
results and a conclusion about the work conducted, respectively.

2. Traditional AI in Lesion Detection and Tissue Interpretation

Lesion detection and interpretation are often found together: from studies that differ-
entiate healthy tissue from cancer lesions to investigations that aim to distinguish benign
from malignant lesions, there are several fields where AI plays a part. Since mammography
is the most commonly used imaging technique, it is expected that most of the research is
focused on it.

2.1. Texture Features

As it was already discussed, handcrafted features are important for ML applications,
and the field of lesion interpretation is no different. Most of the works use different texture
features that represent the variation among pixel intensities, denoting the architecture of
the analyzed object [22]. The relationship between breast tissue texture and breast cancer
was first described by Wolfe [23], where he defined four different breast texture patterns:

• N1—Lowest Risk, parenchyma is mainly composed by fatty tissue without visible ducts.
• P1—Low Risk, ducts may occupy as far as a quadrant of the breast.
• P2—High Risk, there is a “severe involvement” of ducts that occupy more than 25% of

the breast.
• DY—Highest Risk, the severe involvement seen in P2 is accompanied by dysplasia.
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The categorization of a breast to each specific category is not objective once it depends
on the interpretation of the healthcare professional that is doing the assessment [24]. In ad-
dition to the studies provided by Wolfe, other researchers [25] have also linked parenchyma
texture pattern features with the risk of developing breast cancer. Because of the fact that
there are relationships between fatty and glandular tissue that are described by texture
and that can be associated either with a healthy or a disease condition, several texture
descriptors were studied and developed. These descriptors can be divided into different
subgroups that are described further on.

2.1.1. Co-Occurrence Features

Co-occurrence features were first described by Haralick, Shanmugam, and Dinstein
with the goal of classifying pictorial data. The idea was to create features that could
describe the relationship between neighbor pixels and, from that, the concept of the gray-
level co-occurrence matrix (GLCM) was developed. Given an image with N gray levels,
the corresponding GLCM will have size (N,N). Then, the entry (i,j) of the GLCM represents
how many times a pixel of intensity i appears near a pixel of intensity j in the original
image, in a given direction. For instance, in Figure 1, it is possible to verify that, in the
original image, the pair (4,1) occurs twice in the 0 direction and, for that reason, the entry
(4,1) of the GLCM is 2. For the same reason, the entry (5,2) of the GLCM has the value
1. The same rationale can be applied to other directions, creating different GLCMs. It
is the mathematical manipulation of the GLCM—through specific formulas described in
Haralick’s research—that allows the extraction of several texture features [26,27].

Figure 1. Construction of the GLCM for the 0◦ direction.

2.1.2. Run-Length Features

Opposite to what happens in co-occurrence features, here, pixel pairing is not used
for feature calculation but rather sequences of pixels with the same intensity, hence, run
length. Once again, feature extraction is dependent on a previous matrix construction, in
this case, a Run-Length Matrix (RLM). Here, the entry (i,j) of the RLM will represent the
number of times that a run length of size j for the pixel intensity i occurs. For example,
when analyzing Figure 2, it is possible to see that, in the 0 direction, the intensity 3 appears
alone three times. Therefore, the entry (3,1) of the RLM has the value 3. On the other hand,
intensity 3 appears one time in a sequence of three pixels. For that reason, the entry (3,3) of
the RLM has 1 as its value. As for the GLCM, not only the same rationale can be applied
for other directions, as it is the manipulation of the RLM that allows feature extraction [28].
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Figure 2. Construction of the RLM for the 0◦ direction.

2.2. Additional Features

The previously addressed groups are the two most widely used in ML studies con-
cerning BC detection, however, there are other groups of texture features that can be used.
Characteristics computed through the power spectrum such as its First Moment or its Root
Mean Square are described in the literature as feature descriptors [29]. The relationship
between a pixel and its neighborhood can be well-described through a Local Binary Pattern
(LBP), which explains why LBP is used in texture analysis. This is how the definition of
an LBP works: Given a specific neighborhood, the region around the central pixel will be
analyzed in a pixel-by-pixel basis. If a pixel has a higher value than the central pixel, then
it will be assigned the value 1, otherwise it will receive 0 as its value. After that processing
is completed, the resulting pixel values will be concatenated in an anti-clockwise direction
into one binary identifier that can afterward be converted to a decimal [30].

Morphological features are often used to assess tumor characteristics, as they occur
in a work proposed by Chen et al. [31]. Benign tumors often have a different morphology
in comparison with malignant tumors—especially, the borders of the lesion tend to be
smoother and more regular. Therefore, the authors develop and explain several features:
area—typically malignant tumors have larger areas; circularity—the closer this value is
to one, the more regular the shape of the tumor; compactness—looks for an overlap ratio
between the tumor area and a circle positioned at the center of the tumor; eccentricity,
the common mathematical metric and some variations of this metric (elliptic-normalized
circumference; and elliptic–area ratio); and some metrics whose names are self explanatory
(and deeply described in the paper): roundness; number of substantial protuberances and
depressions; lobulation index; and aspect ratio.

2.3. AI in Breast Imaging Analysis
2.3.1. Machine Learning in Mammography Lesion Interpretation

Most works in this area of lesion classification/interpretation aim for a benign/malignant
classification. Given that, a group of researchers [32] aimed to classify mammograms into
three groups: normal, benign, and malignant. In order to achieve that, they used a database
which is composed of 322 mammograms (126 normal, 60 benign, and 48 malignant). For
the test set, 37 normal, 23 benign, and 18 malignant mammograms were used, while the
remaining composed the training set. In order to improve image quality, the authors used
a technique called Contrast-Limited Adaptive Histogram Equalization. For simplicity of
analysis, a Region of Interest (ROI) was defined and separated from the original image. In
order to characterize the mammograms, GLCM texture features were extracted. It should
be noted that different GLCM were constructed in four directions (0◦, 45◦, 90◦, and 135◦)
and using two neighborhood distances 1 and 2. Once descriptors were extracted, the
authors aimed to classify the mammograms. Since the available software only allowed a
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binary classification, they aimed for a two-way classifier, which was chosen to be a Support
Vector Machine (SVM). So, what these two-way classifiers mean is that the SVM was trained
twice: once for differentiating between normal and abnormal tissue and another time for
differentiating between benign and malignant tissues among the images that were classified
as abnormal. In order to diminish the dimensionality of the problem, the authors computed
the average of each feature across different directions and distances. This process resulted
in fifteen different features. When wanting to evaluate a mammogram, the image is given
to the classifier and it is classified as normal or abnormal. If it is normal the system stops,
however, if it is classified as abnormal, then the image being analyzed will be fed to the
second SVM in order to be allocated into one of the remaining two classes: benign or
malignant. They tested the SVM for both the first and the second stages of classification.
While for the differentiation between normal/abnormal tissue the classifier achieved an
accuracy of 100%; the sensitivity and specificity of the malignant/benign classification
were 94.4% and 91.3%, respectively. Despite its positive results, there are some limitations
concerning this research: in addition to the limited size of the test set used to evaluate
performance, the fact that the test set comes from the same distribution as the training does
not allow to understand how good the generalization capacity of the developed model is.

The differentiation between malignant and benign lesions was also the aim of the work
of Mohanty et al. [33]. The authors used a dataset from the University of Florida, which
consists of digitized mammograms with the positions of the masses annotated by an expert
radiologist. These annotations served as guides for ROI extraction. In order to improve
image quality, a low-pass filter that preserved important structures while suppressing
irrelevant information was applied. Here, while the training set is composed of normal and
cancer images (88 of each), the testing set is composed of malignant and benign images
(23 and 55, respectively). Nineteen features were extracted from the previously defined
ROI and were divided between two groups: GLCM and RLM. After feature extraction,
the Decision Tree algorithm was used for ML model construction. In order to reduce
the possibility of overfitting and to increase the model generalization capacity, boosting,
winnowing, and pruning were used. Their results in classifying benign and malignant
lesions using 8 GLCM features and 11 RLM features were very positive, with accuracy
achieving a value up to 96.7%. In addition to that, the Area Under the Curve (AUC)
retrieved from the Receiver Operating Characteristic (ROC) curve was 0.995. These results
show that not only is the use of texture features important for lesion interpretation, but
the use of a Decision Tree allows the development of systems that can correctly classify
mammograms based on explainable features. On the downside, in order to apply this
approach, laborious ROI definition and pre-processing techniques must be applied, which
is a problem when translating these solutions into clinical practice: although providing
positive results, it increases the workload of healthcare professionals that are already
burdened with loads of work.

2.3.2. Lesion Interpretation with Alternative Imaging Modalities

Ultrasound has also made its way into AI applications. A group of researchers also
aimed to differentiate malignant from benign tumors in ultrasound images, using ML [34].
They used 1061 images, where 589 had malignant lesions and 472 presented benign tumors.
The first step of their work consisted of ROI definition, which was performed manually
when images came from different machinery. Since one of the characteristics of this imaging
modality is low contrast, imaging enhancement was aimed before feature extraction. In
this work, in addition to texture features, morphological features were also extracted.
Compactness, which takes into account the area and the perimeter of the lesions, is a
measure that can describe how smooth or complex a structure is—which is an important
attribute to quantify when assessing malignancy. Radial Range Spectrum, which is able
to assess the edges of a lesion, can also be useful when differentiating malignant (rough
edges) and benign (smooth boundary) lesions. In terms of texture features, GLCM (0, 45,
90, and 135 degrees) and LBP descriptors were extracted along with histogram measures.
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The images that constituted the dataset were divided into training and testing, features
were extracted and then normalized. The features retrieved from the training set were used
to train an SVM classifier. After that, the trained classifier aimed to classify the instances
present in the testing set. Several metrics were used to assess classifier’s performance when
using both morphological and texture features: sensitivity (87.04%); specificity (87.62%);
precision (87.85%); accuracy (87.32%); and AUC (0.9342). The positive results provided
by this paper not only allow to understand that morphological features might be useful
when trying to differentiate different types of lesions but also unveil the good capability
that AI has when used with images that have lower quality. Once again, the translation
into clinical practice is difficult because ultrasound is not a standard imaging technique
for breast cancer diagnosis. In addition to that, the need for an ROI definition might also
compromise the use of these solutions in healthcare centers. Nonetheless, it should be
interesting to verify if the obtained results stand when using ultrasounds from different
distributions and from women of diverse ethnicities.

Magnetic Resonance Imaging (MRI) can also play a role in the field of AI medical
solutions. Just as an example, a group of researchers [35] aimed to use both morphology
and texture features to correctly diagnose lesions—between malignant and benign—in
breast MRI. The authors used 28 images with benign lesions and 43 images with malignant
lesions. Lesion segmentation was performed first by an operator that defined an ROI
where the lesion was located, then, lesions were enhanced using a filtering routine. Finally,
fuzzy c-means was used to outline the lesions that were present inside each defined ROI.
Morphology features, such as the previously explained compactness and texture features
(GLCM), were extracted from the pre-processed images. In total, eight morphological and
ten GLCM features were extracted. The chosen classifier was an artificial neural network,
which was also used for choosing the best set of parameters among the extracted features.
The artificial neural network architecture had one input layer with three nodes, one hidden
layer with two nodes, and one output node that ranged from 0 to 1. A value of 0 means
“absolutely benign”, while a value of 1 means “absolutely malignant”. The performance
of the classifier was evaluated using ROC analysis. The authors trained two different
classifiers: one using the entire dataset and another using only half of the dataset (14 benign
and 22 malignant) and compared them in terms of performance. For the first one, the
performance was evaluated through leave-one-out cross-validation, while for the second,
the other half of the dataset was used for validation. When trying to develop the classifier,
using the entire dataset, only with morphological features (8), three of them were chosen as
relevant, and the achieved AUC was 0.8. When doing the same but only for the texture
features (10), three of them were chosen as relevant, and the obtained AUC was 0.78. When
combining the three selected features from each feature class, the AUC increased to 0.86.
Then, when training the classifier with only half of the dataset and considering all the
extracted features, five were chosen (2 morphological and 3 GLCM). An AUC of 0.93 was
achieved with the training set. When considering the other half that was not used for
training, the AUC decreased to 0.82. It is important to note that the 5 selected features,
when using half of the dataset, were among the 6 selected features in the previous approach.
This fact, allied to the good results that were obtained, shows not only the impact that AI
can have in diagnosis with MRI but also the robustness of this approach. Nonetheless,
the authors point out some limitations of this study: malignancy is usually related to
speculation, which should be assessed with different groups of features (Fourier analysis,
for instance); while here the lesions were assessed slice by slice and then averaged, other
researchers reconstruct the volume and make a 3D analysis, which might be more accurate.

While the analyzed research presents several limitations—limited dataset size; test
and training sets coming from the same distribution; laborious ROI definition; or the use of
modalities that are not widely used in screening—they serve as proof of concept of how
AI can impact the diagnosis of BC across different modalities. The incorporation of these
solutions in clinical practice could not only positively affect the detection rate of BC while
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decreasing reading time, it could also allow the use of less expensive modalities without
compromising diagnosis.

2.3.3. AI in Breast Cancer Risk Prediction

Being able to predict the risk of developing BC would be an important step to dimin-
ishing the nefarious effects of this disease, along with its mortality rate. Several works
aimed to do that, and some of them are deeply described in [36]. Here, a brief summary of
several applications of ML and Deep Learning (DL) is carried out.

The concept of risk is most of the time associated with genetic or environmental risk
factors. It was with that state of mind that a group of researchers [8] aimed to differentiate
mammograms into high-risk (15 instances) and low-risk (143 instances) women, based on
their BRCA1/BRCA2 mutation status. As it can be perceived, women with a mutation
in these genes were associated with the high-risk group, while the low-risk group was
composed of women that had a lifetime risk (through Gail’s model) lower than 10% and
had no family history. The differentiation between these two groups was performed in
a fashion similar to what was observed for lesion classification. First, there is a manual
ROI definition—here, once no lesion exists, usually the area immediately before the nipple
is chosen—then, feature extraction can be performed. Not only GLCM but also features
directly related to pixel intensity were retrieved from the defined ROI. The feature selection
procedure resulted in four significant features—two based on intensity and two GLCM.
These features were used in a Linear Discriminant Function approach, which yielded an
AUC of 0.91. Despite the limited size of the dataset, the authors point out that ROI size is
one of the main limitations. In addition to that, the simple definition of an ROI is itself a
major limitation. Breast parenchyma is a heterogeneous tissue, and analyzing just a specific
region does not take into account the complexity of the parenchyma, hence limiting the
obtained results and the conclusions that can be drawn.

After several years, with approaches similar to what was seen, the idea of using just
a single ROI was outdated. Apart from that, instead of looking for differentiation into
two risk groups, the ambition of predicting a near-term risk of developing BC started to
be pursued. Tan et al. [37] evaluated the probability of a woman developing BC through
the analysis of a negative mammogram. In order to do that, they gathered sequential
mammograms for a group of women and gave a label to the “prior” mammogram based
on the “current” mammogram. All the “prior” mammograms were negative, so the
women were divided into different groups according to their assessment in the most recent
evaluation. This evaluation could be: “positive” (283 women), “recalled but later proved
benign” (349 women), and “negative” (362 women). After creating the dataset, feature
extraction could be performed, and it was carried out not only across the entire breast but
also from segmented dense regions (zones in breast tissue that encompass pixel values
above the median of the entire breast). The extracted features were not simply intensity-
based and GLCM but also RLM features. Moreover, the authors extracted “histogram
cumulative projection” features, which are briefly described in said paper. Contrary to
what was conducted in previous research, features were retrieved not just from the breast
which is going to be classified but also from the contra-lateral breast. Then, using the
corresponding features from each breast, asymmetry features were calculated through
Equations (1)–(3).

FAsymmetry1−60 =
| fi − gi|

max( fi, gi)
(1)

FAsymmetry61−120 = | fi − gi| (2)

FAsymmetry121−180 = | fi − gi|3 (3)

In order to train the classifier, these 180 features plus three risk factors (age, family
history, and breast density) were passed through a feature selection routine. After that—
10 features were chosen as relevant across different groups—an SVM classifier, validated
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through 10-fold cross-validation with a Gaussian kernel was used [38]. When aiming to
differentiate the three subgroups, the classifier achieved an AUC of 0.725, which dropped to
0.716 when considering only the first and third subgroups. These results are very promising
if it is kept in mind that the images used for classification do not have any lesions. Once
some limitations are overcome, it could be possible to achieve more robust results: the use
of real-world data instead of a laboratory-curated set, the use of different data to select
features and to evaluate performance in order to avoid bias, and the use of features that not
only represent asymmetry but also the effective texture of the breast.

The idea of looking for different areas across the breast was further developed by
another research [39] that uses a lattice-based approach. A grid of structural elements is
displayed superimposed on the breast, and texture features are extracted from each of those
elements, hence describing the entire parenchyma heterogeneity. The study used 106 cases
(contra-lateral healthy breast images from women with cancer) and 318 controls. The
differentiation between these two groups was aimed at using a logistic regression model.
The authors obtained an AUC value of 0.85 for this differentiation which outperformed
the single-ROI approach. After analyzing the impact of previous mammograms for risk
prediction, the positive results obtained with this research give insights into the use of
contra-lateral unaffected breasts to assess the risk of future development of BC.

The use of contra-lateral continued to be used and motivated Tan et al. [40] to verify if
this approach also provided positive results for Asian populations. The methodology is very
similar to what was already described for past works. It should be noted that in addition to
the commonly extracted texture descriptors, new features are introduced and described
in this work. Texture features alongside %PMD were used to train a Linear Discriminant
Analysis classifier. The obtained AUC was slightly lower than for previous studies (0.68)
but gave confidence that this kind of approaches can be translated to different ethnicities.

With the advance of technology, Deep Learning can play a major role in risk prediction.
With that in mind, Qiu et al. [41] aimed to predict, based on a “prior” mammogram, the
likelihood of a woman being evaluated as positive in a “current” mammogram. In order
to create the dataset, sequential images for the same women were needed. All the “prior”
images were evaluated as negative and the division into different groups was made based
on the evaluation performed on the “current” mammogram (normal or cancer). In order to
achieve the purpose of the work, the authors propose a Convolutional Neural Network
(CNN). The CNN has 8 layers and aims for both feature learning and classification. When
it comes to feature learning, three convolutional–pooling pairs are used. The result of
passing through these pairs is a feature map of dimensions 5 × 5 × 6, which is directly
fed to the classifier—a multiple layer perceptron that was optimized with mini-batch
statistic gradient descent. It is this classifier that will generate a score of how likely it is
that the analyzed mammogram will develop cancer until the following assessment. In
terms of results, this approach had a sensitivity of 0.703 and a specificity of 0.60. The
overall accuracy was 71.4%, while the AUC value was 0.697. This approach, as others with
DL, allows overcoming problems with the laborious work of defining, computing, and
choosing handcrafted features. Of course, this work has some limitations, with the most
evident being the fact that the CNN only has 8 layers, being relatively shallow. The use of a
deeper network could allow learning more abstract features, which could better describe
and differentiate the defined groups.

A more recent study by Yala et al. [42] aimed to develop a DL model that used
both mammograms and risk factors (breast density and patient age) to predict the risk of
developing BC. In order to do this, they used 71,689 images for training (2732 positive vs.
68,957 negative), 8554 for validation (316 positive vs. 8238 negative), and 8869 for testing
(269 positive vs. 8282). Actually, the authors developed three different models. One was
a logistic regression containing only the risk factors (RF-LR), an other was an image-only
DL model—using a ResNet18 architecture—that predicted breast cancer within 5 years.
Finally, the last model was a hybrid DL model that combines information from the previous
two models. The RF-LR model had an AUC of 0.67, while the model that used only the
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mammograms had an AUC of 0.68. When combining this information, the hybrid model
achieved an AUC of 0.70. Nonetheless, all of the models outperform the Tyrer–Cruz risk
model, commonly used in clinical practice.

The higher complexity of risk assessment in comparison with lesion detection explains
the lower results obtained in this section. However, the obtained results give confidence
in pursuing these types of approaches, which can be extremely important in personal-
izing screening routines, potentially decreasing treatment aggressiveness and costs, and
ultimately decreasing BC mortality.

3. AI and Data Augmentation

Learning-based systems usually train on large amounts of data to learn every crucial
aspect of the input images and output accurate and robust responses. However, most
entities do not have access to these large and high-quality datasets, either because they are
not publicly available or they are not easy to collect. However, even those that have such
data have extreme difficulties manually labeling it all.

Regarding this necessity, there is a sector dedicated to this purpose where works
use generative adversarial networks (GANs) to generate synthetic samples to create high-
quality datasets, in this case, mammograms. These generated mammograms have to at
least match a similar texture, aspect, and styling when compared with real mammograms.

Following the explanation of Kunfeng Wang et al. [43], and the base work proposed
by Ian Goodfellow [44], as well as looking at the schema presented in Figure 3, GANs-
outline given in Figure 3 are essentially a zero-sum game between two neural networks, the
generator and the discriminator, where the goal is to estimate the potential distribution of
real images and generate new samples from that distribution. Despite the different flavors of
GANs, all of them follow the core working idea. The generator iteratively generates images
from a vector noise z, those images being referenced as G(z) on the presented schema. In
each of those iterations, the discriminator receives the original images x, outputting the
probability of the original images belonging to the original dataset (referenced as D(x))
and the probability of the generated images belonging to the original dataset (referenced as
D(G(z))). These probability values are used to update the networks accordingly as it is
possible to see in the schema, where the objective of the discriminator is to maximize the
prediction of real images being predicted as real (log(D(x))) and maximize the probability
of fake images being predicted as fake (log(1 − D(G(z)))). As for the generator, the
objective is to maximize the probability of its generated images being predicted as real by
the discriminator (log(D(G(z)))). This process goes on until convergence is achieved, that
is, the point where the probability of the discriminator predicting something correctly is
fifty percent.

Figure 3. Outline of a GAN algorithm.
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The review made by Richard Osuala et al. [45] is extraordinary since it presents many
successful cases of different GAN flavors, challenges, and future improvements, as well as
how GANs can be used in cancer imaging. Although it is not focused specifically on breast
cancer, the 163 analyzed papers can be extrapolated and adapted to mammograms.

In addition to presenting different GAN variations for different purposes, it also states
the biggest challenges in generative tasks for medical imaging, these being: the small size
and complexity of cancerous lesions that may impact the quality of the generation; the high
heterogeneity between tumors as well as between patients and cancer types; annotating,
delineating and labeling cancer images at a large scale; inputs with high imbalanced data;
and gathering large consented datasets from highly vulnerable patients.

Additionally, there are works focused on breast cancer that show the power of GANs.
For these, it is important to understand how they use GANs to solve a specific problem,
and how each approach can help create better datasets for specific tasks towards a future
with more AI-integrated services.

Dimitrios Korkinof et al. [46,47] published a paper that uses a progressive GAN
(PGGAN) for mammograms synthesis, achieving high resolutions of up to 1280 × 1024
pixels and achieving good results in five statistical moments (mean, variance, skewness,
kurtosis, and hyperskewness) when assessing the similarity between the low-level pixel
distributions of real and synthetic images. In addition to that, they also conducted a
user study to validate if the generated images could be distinguished from the original
ones, in which they observed a binomial distribution with success probability π = 0.5
(p = 0.999, Chi-square test), indicating that participants were unable to distinguish between
generated and real mammograms. The core idea behind this variant is essentially making
the generator grow throughout the training, outputting images at different scales until it
reaches the desired output scale. They used proprietary images that were down-sampled by
the largest factor to match one of the desired dimensions and padded the other dimension
with zeros. According to the authors, even though the results were good, training such
networks is difficult since it requires achieving the Nash equilibrium [48]. Not just that,
but most times the training process can be unstable and susceptible to mode collapse and
gradient saturations.

The work of Rui Man et al. [49] also focuses on generating synthetic samples, but in
this case, they generate patches of a histopathological image. This work, mostly called
AnoGAN (Anomaly Detection GAN), brings many advantages to training classification
systems for cancer imaging. They show that adding such generated samples to a classifier
dataset considerably increases metrics such as accuracy, precision, recall, and f1. The dataset
used here was the BreaKHis dataset, where they performed the stain normalization process
and then performed patch extraction and standard data augmentation. Some values of
these metrics, considering the use of Densenet121 [50] classifiers with and without the
generated samples from AnoGAN at different magnification levels, were the following:
for a magnification of forty times (40×), the values of accuracy were 94.26 ± 3.2% without
using the samples from AnoGAN and 99.13 ± 0.2% with the generated samples; for a
magnification of one hundred times (100×), the values of accuracy were 92.71 ± 0.4%
without using the samples from AnoGAN and 96.39 ± 0.7% with the generated samples;
and for higher magnifications and so on, the values follow the same idea of better results
with the addition of the generated images.

Contrary to these two works, a different research conducted by Xiangyuan Ma et al. [51]
focuses on generating samples of mammogram lesion segmentation masks. This allows
combating one of the biggest challenges when constructing a dataset, which is image
labeling. Generating segmentation masks for the respective input image facilitates this
process, and in the medical area, this is extremely important since it does not require huge
amounts of time spent by doctors to identify and segment lesions. For this work, they
collected samples from a health entity and then pre-processed them by scaling the gray-
level dynamic range and resizing them to 256 × 256 pixels. They used the Sørensen–Dice
coefficient (DSC) and the Jaccard Index (JI) to evaluate the results and showed how much
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better generating the segmentation masks with GANs surpassed well-known networks
such as U-Nets [52], where on average the DSC and JI values for this approach achieved
87.0 ± 7.0% and 77.6 ± 10.1%, respectively, whereas a Baseline U-Net model just achieved
DSC and JI values of 81.1 ± 8.7% and 69.0 ± 11.3%, and an Improved U-Net model just
achieved DSC and JI values of 85.7 ± 8.6% and 75.9 ± 11.8%. In addition to this, they also
evaluated the impact of such results on the background parenchymal enhancement.

In light of these works, there are other works such as the one conducted by Eric
Wu et al. [53] that focus on obtaining more image variation. Usually, a regular GAN
implementation may not give enough variation to what is required to create a robust
computer-aided diagnosis system. Therefore, the samples generated in this work are
manipulated to either add malign tissues to the resulting image or to remove them. This
greatly boosts variability and increases the performance of computer-aided diagnosis
systems. They used the DDSM (Digital Database for Screening Mammography) dataset,
and reduced images to a resolution of 1375 × 750 pixels. Similarly to the metrics used to
evaluate the results from [49], they used a classification network to assert the predictive
quality by using datasets with and without these new variations, the scarcity of data being
their major limiting factor. In terms of accuracy values, it was possible to see that the
non-use of these generated samples resulted in accuracy values of 0.882 for no augmented
datasets and 0.887 for traditional augmentation datasets, whereas combining traditional
augmentation and these varied samples resulted in an accuracy of 0.896.

In addition to these, there are works such as the one conducted by Caglar Senaras et al. [54],
whose modus operandi resembles an image-to-image translation. It allows the user to
give a segmentation mask as input (a histopathological image segmentation) and make the
generator output samples that match that exact mask. Even though the variability is always
conditioned by the user input, this is a great way to generate more varied samples and
increase the quality of a dataset. For this, they also collected a dataset from a health entity,
and all of the image regions of interest were divided into tiles of size 256 × 256. To evaluate
such results, the team built a hierarchical logistic regression model that indicated that the
average reader would be able to correctly classify an image as fake or real more than 50%
of the time with a probability of 44.7%, indicating clearly that overall professionals are not
able to distinguish both; thus, these are a great addition to increase the variability of any
dataset using the same image type.

Last but not least, there are many other projects, similar to the ones described above,
that focus on GANs applied to breast cancer and that achieve great results. Some of them
are “Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial
Networks” [55], “A generative adversarial network for synthetization of regions of interest
based on digital mammograms” [56], and “RDA-UNET-WGAN: An Accurate Breast Ultra-
sound Lesion Segmentation Using Wasserstein Generative Adversarial Networks” [57].

To sum up, even though the results from the papers mentioned above are remarkable,
when developing a project in the breast cancer area using GANs, the necessity to validate
the results is extreme. The synthetic images constantly need to be validated in the first
phase with a classifier and then validated afterwards by a real doctor to ensure such images
seem real and correspond to possible mammograms.

4. Self-Supervised Learning

Self-Supervised Learning (SSL) has been pushing the limits of unsupervised learning
in many domains, from natural language processing to traditional computer vision tasks.
Deep Learning usually works very well when there are large labeled datasets to train the
model, which is known to be difficult to obtain in medical imaging for many pathologies.
SSL attempts to diminish the need for large labeled datasets by learning rich representations
only from the data itself. The main idea of SSL is to learn from a designed task that can be
described as filling in the blanks, i.e., to predict any part of the input data that is hidden
from any other part. The representations learned by solving this prediction task are then
used to train, in a supervised manner, an additional network on a given task. If the SSL
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task learned good features, then the amount of labeled data used to solve the downstream
task can be reduced considerably. This can be performed in several flavors, and in this
section we mainly focus on its application to breast-related tasks.

Contrastive learning is one of the most popular SSL algorithms in natural language
processing and computer vision. The main idea is to learn representations by contrasting
positive pairs of images against negative pairs. The comparison is usually performed in the
feature space. Each image is represented by a feature vector resulting from a forward pass
through an embedding network, and then both vectors are compared using some metric or
loss. The network leans through minimizing or maximizing the chosen metric in case of
positive or negative pairs, respectively.

In Li et al. [58], the authors address the task of lesion detection using mammographies
and particularly focus on augmenting the generalization capability of the network to
different machine vendors. The goal is to learn features that are invariant to multiple styles
and views produced by different vendors, resulting in a model that generalizes across
domains. There are two main steps in this approach: the self-supervised feature learning
step and the supervised fine-tuning used to learn the lesion detection task. Most of the
learning should happen during the first step, which regards the multi-view and multi-style
generalization. This work uses CycleGAN [59] to generate multiple images from different
vendors from a single vendor. These constitute the positive pairs once they show the same
view represented by different vendors. Additionally, the CC and MLO views of the same
breast are also regarded as positive pairs. This method was trained using mammograms of
three vendors and tested on an unseen fourth vendor, as well as in the INbreast dataset.

In Gao et al. [60], the authors propose a method to enhance the contrast of areas of
potential lesions. This procedure is usually referred to as mammogram normalization
into pathology-aware style. The main goal is to facilitate downstream tasks such as lesion
classification and segmentation. One of the main challenges of this process is to adapt it to
different types of breasts in terms of density. The method consists of an encoder with two
decoder heads that produce two images: Y , the high contrast mammogram, and m, a map
to be multiplied with Y. It is possible to reconstruct the original image I using Y and m.
The difference between the reconstructed Î and the real input image I is used to train the
encoder–decoder network.

Miller et al. [61] addressed the problem of breast cancer detection using SSL, reaching
an efficiency improvement of labeled data by nearly 4-fold, while still generalizing across
datasets. This paper proposed an SSL-based pre-training to learn features to be used in
patch and whole-image classification. It also benchmarks four popular SSL methods, of
which SWaV, a clustering-based method, was the best. This may be due to the fact that it is
harder for this method to exploit shortcuts, such as background artifacts, to solve the pretext
task. This is a common problem in SSL and is highly problematic and modality-dependent.
Due to the large size of mammograms, the images were split into patches to train the
networks. The encoder networks were then applied to the whole image to produce a grid
of feature vectors, which can be aggregated with some pooling methods. The authors also
experimented with replacing global pooling with attention and self-attention mechanisms,
which also improved performance, which is consistent with results in other computer
vision tasks.

Ouyang et al. [62] address the task of detection of clustered microcalcifications in
mammograms. The identification of these structures is crucial because they are one of the
first signs of breast cancer but also very difficult due to the high variability of the clusters
in size and distribution. This paper proposes a method based on the well-known U-Net
architecture, trained end-to-end in a multi-task fashion to identify the microcalcification
clusters and simultaneously segment and classify them. The identification of microcalcifica-
tion clusters is performed using the Class Activation Mapping method, which produces an
attention map derived from the image according to the malignancy score of the pixel. The
localization of the clusters is refined with an attention loss. The result of this localization is
then used to feed a self-adversarial learning module, which distinguishes between benign
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and malign regions within the same image, and improves the classification accuracy of the
backbone network.

Self-supervised learning can benefit from other engineering techniques and learning
methods that have been used in supervised learning. For example, in [63], Srinidhi and
Martel proposed a curriculum learning approach to the self-supervised learning process
by progressively sampling harder examples. There are two main questions to address in
curriculum learning: how to score the example difficulty and in what order to present them
to the network. The difficulty of each sample is assumed to be correlated with the loss
value associated with it. The hardness score decreases with time, in what the authors call
dynamic hardness-aware loss, which serves to order by difficulty and sample according
to a strategy. The authors first train with easy-to-hard examples and then with hard-to-
very-hard examples, ordered according to the aforementioned score. This method was
tested on three histology datasets, improving the performance especially on out-of-domain
distribution data.

It is standard practice to reuse features learned in a different domain or task and adapt
them to the task at hand. This process is called transfer learning. Deep neural networks
trained on the large ImageNet dataset are widely available, and their features are used
for the most varied tasks using natural images. In [64], Truong, Mohammadi, and Lenga
investigate the transferability of self-supervised features in medical image classification
tasks. The authors conclude that the self-supervised pre-trained models perform better than
the supervised models in tasks such as tumor detection, diabetic retinopathy classification,
and multiple chest pathology classification and detection. This is particularly important for
small labeled datasets.

Table 1 presents a summary of the reviewed articles.

Table 1. Studies Summary.

Authors Goal Method/Algorithm Imaging Modality Results

Kayode et al. [32] Benign/Malignant
Lesion Differentiation Texture Features with SVM Mammography Sensitivity = 94.47%;

Specificity = 91.3%

Mohanty et al. [33] Benign/Malignant
Lesion Differentiation

Texture Features with
Decistion Tree Mammography AUC = 0.995

Wei et al. [34] Benign/Malignant
Lesion Differentiation

Texture Features/LBP
with SVM Ultrasound

Sensitivity = 87.04%;
Specificity = 87.62%;

AUC = 0.9342

Nie et al. [35] Benign/Malignant
Lesion Differentiation

Texture/Morphology
Features with Artificial

Neural Network
MRI AUC = 0.82

Huo et al. [8] High-Risk/Low-Risk group
Differentiation

Texture Features with Linear
Discriminant Analysis Mammography AUC = 0.91

Tan et al. [37] Risk Prediction based on a
“prior” evaluation

Asymmetry Texture
Features/risk-factors

with SVM
Mammography AUC = 0.725

Zheng et al. [39]
Differentiate contra-lateral

healthy images from diseased
women from normal cases

Texture Features with
Logistic Regression Mammography AUC = 0.85

Qiu et al. [41] Risk Prediction based on a
“prior” evaluation CNN Mammography

Sensitivity = 70.3%;
Specificity = 60%;

AUC = 0.697

Yala et al. [42] Single-Image + Risk Factors
Risk Prediction CNN (ResNet18) Mammography AUC = 0.7

Dimitrios
Korkinof et al. [46,47] Mammogram Synthesis PGGAN Mammography ≈50% probability of

identifying synthetic samples

Rui Man et al. [49] Mammogram
Patches Synthesis AnoGAN Histopathological Classifiers with

>99% accuracy

Xiangyuan Ma et al. [51] Segmentation
Masks Synthesis GAN Mammography

Segmentation Masks
Dice-Coefficient > 87%;

Jaccard Index > 77%

Eric Wu et al. [53] Mammogram Variation GAN Mammography Classifiers with accuracy
of 89.6%
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Table 1. Cont.

Authors Goal Method/Algorithm Imaging Modality Results

Caglar Senaras et al. [54] Image-to-Image
Mammogram Synthesis GAN Mammography ≈50% probability of

identifying synthetic samples

Li et al. [58] Lesion Detection SSL, GAN and CNN Mammography Improvements of ≈3 pp on
accuracy

Gao et al. [60] Normalization, classification
and segmentation SSL and CNN Mammography Improvements of ≈10 to

15 pp on AUC scores

Miller et al. [61] Breast cancer detection SSL and CNN Mammography
Improved 4-fold data

efficiency and ≈3 pp on
accuracy

Ouyang et al. [62] Detection of clustered
microcalcifications SLL and CNN Mammography Improvements of ≈5 pp on

AUC scores

Srinidhi and Martel [63] Classification SSL, curriculum
learning, CNN Histology Improvements of ≈2 pp on

AUC scores

Truong et al. [64] Classification and Detection SSL and CNN
lymph node images, fundus

images, and chest
X-ray images

Improvements of ≈2 pp on
AUC scores

5. Discussion

This paper covers several areas in breast imaging where AI can play a major role. In
terms of lesion detection/interpretation, Machine Learning methodologies based both on
ROI and overall breast analysis have proven to provide positive outcomes. The strategy of
developing handcrafted features is not only laborious, but it can miss some undercover char-
acteristics that could help to learn. As it was perceived, most of these ML studies had a small
dataset, which makes the present metrics not robust enough for clinical practice transition.

The shift from ML to DL, with increased computational capacity, could help to over-
come some problems that block the deployment of AI solutions in clinical practice. Deep
Learning techniques can not just use a great amount of data (which increases the robustness
of the evaluation made) but can also learn representations from raw input (even in an
SSL fashion as seen in the previous section), unveiling patterns that would not be found
with typical handcrafted features. Of course, there are several challenges before AI can be
correctly implemented in clinical practice [65–67]: in addition to the need for a big dataset
correctly labeled and with good image quality, the true generalization capability of the
models needs to be assessed as well. This generalization capability is usually evaluated
with a test set that was not used for training but that comes from the same distribution of
the training set, which could bias evaluation. Therefore, novel AI solutions that aim for
clinical deployment should be concerned not only with gathering a great amount of data
but also with increasing their variability in terms of machinery used for acquisition, lesion
type, and women’s ethnicity.

As it was discussed in this paper, data augmentation techniques could in fact help to
overcome the problem of lack of data. Nonetheless, data augmentation techniques need to
be further studied and developed so that they can learn to correctly reproduce the specific
characteristics of the lesions that it is trying to augment. If an AI system can achieve
a substantial performance and generalization capability, further testing in a real-world
environment is needed in order to guarantee not only that the software is doing what it
was designed to do but that it is safe. This testing period is also important for the users,
since it allows them to understand what they can expect from the AI system, how it works,
and even find some limitations, enabling safer use. Despite these current challenges, AI
has great potential for reducing the workload of healthcare professionals, while increasing
detection rates.

The work presented here is a review of different topics where AI can positively impact
breast imaging. As it was discussed, it was chosen to give a general review of different
topics instead of extensively describing each area of research. This could be a limitation of
this study since it may overlook divergent strategies to achieve the same goal. Future work
should focus on exploring each of the areas identified in the present work, constructing
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a repository of the most significant research in each area. Nonetheless, the paper gives a
general review of the methodologies used in the development of ML/DL techniques for
lesion identification/interpretation and for breast cancer risk prediction. A section on data
augmentation presents several studies that can be of extreme importance in overcoming
problems related to lack of data. Therefore, this review, despite gathering into one article
different uses that AI can have in breast images, also serves the purpose of being a basis for
novel research that aims to overcome the problems identified with each present work.

6. Conclusions

There are several areas in the field of breast cancer that can benefit from the use of AI.
Lesion diagnosis and detection can be improved and sped up either through traditional
ML/DL methodologies or through SSL. The incorporation of AI in the medical field,
especially in what concerns diagnosis, can be of great importance since the timing is
extremely important. The fact that these AI methodologies can serve as a “second reader”
of the medical images allows reducing the time spent in assessing each image while
improving accuracy. The differentiation between normal and abnormal tissue is very well-
achieved through AI using mammography, as seen in [32]. In addition to that, the work
conducted in [33] also shows the potential that AI has in being able to correctly characterize
lesions. Given what was seen when analyzing [34,35], AI can also be applied in imaging
techniques other than mammography while maintaining positive results. Of course, the
translation of these latter methodologies to clinical practice is more difficult since the used
imaging modalities are not standard.

There are several risk prediction models used in clinical practice, most of them con-
cerning genetic factors. The capability of developing an AI system that can predict the
future development of BC would be of extreme importance once it could allow for adapting
screening modalities, detecting the disease earlier, resulting in an improved prognosis.
The results obtained through ML techniques in the analyzed papers [8,37,39,40] give confi-
dence that these types of systems can be developed, either referring to genetic information,
contra-lateral unaffected images, or sequential mammograms. However, the laborious pre-
processing and the need for image segmentation might be barriers to their implementation
in clinical practice. On the other hand, DL methodologies, such as the ones seen in [41,42],
overcome some of the referred problems while presenting satisfactory results (still with
room for improvement).

Nonetheless, in order to develop these DL techniques, big databases of annotated data
are needed. Most of the time, it might be difficult to find these databases, and that is why
the works reviewed in Sections 3 and 4 are so important. The great range of applicability
that GANs have in the field of data augmentation should be noted. In addition to the
generation of synthetic mammograms that resemble real images—so much so that readers
cannot differentiate them—these techniques can also be applied to histopathological and
MRI images, always with good results.

GANs are not only highly useful in the augmentation of the amount of data but also
in their variability, since they have the capability to generate new images with malignant
lesions added or to remove the lesions from images that already have them. Self-Supervised
Learning, on the other hand, tries to overcome the need for labeled data by learning
characteristics of the unlabeled input data, and then those learned representations can be
used to train models in a supervised fashion. The assessed works have a wide range of
applications, which really translate the potential that AI can have in the medical field—the
capacity to, from an image of one vendor, create multiple images from different vendors;
enhance contrast in areas of the images that have a greater potential for the appearance of
lesions; and, of course, breast cancer detection improvement.

As it can be perceived, AI can be used in different fields concerning breast imaging and
most of the time with very encouraging results. The transfer of these AI solutions to day-
to-day clinical practice could result in better outcomes for the patients while diminishing
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the workload of healthcare professionals. The limitations of the analyzed studies open the
door for further investigation and future work.

Since the current medical paradigm is one of preventive and personalized care, the
development of methodologies that in an individual way predict the risk of developing BC
should be of great importance. However, solutions such as this one should overcome many
of the flaws presented by the reviewed works. The datasets used should be as diverse as
possible both in terms of breast anatomy and machinery used. In addition to diversity,
increasing dataset size is also of extreme importance in order to achieve results that can
be translated to clinical practice. The transition from handcrafted features that could bias
learning to self-learned representations as it happens with Deep Learning should also be
considered, while using entire images for classification, leaving behind the laborious ROI
definition. These future lines of work, if correctly employed in clinical practice, can have
an extremely positive impact on the lives of thousands of women.
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