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Abstract: The paper presents a model of structured objects in a grayscale or color image, described 

by means of optimal piecewise constant image approximations, which are characterized by the 

minimum possible approximation errors for a given number of pixel clusters, where the approxi-

mation error means the total squared error. An ambiguous image is described as a non-hierarchical 

structure but is represented as an ordered superposition of object hierarchies, each containing at 

least one optimal approximation in g0 = 1,2,..., etc., colors. For the selected hierarchy of pixel clus-

ters, the objects-of-interest are detected as the pixel clusters of optimal approximations, or as their 

parts, or unions. The paper develops the known idea in cluster analysis of the joint application of 

Ward’s and K-means methods. At the same time, it is proposed to modernize each of these meth-

ods and supplement them with a third method of splitting/merging pixel clusters. This is useful for 

cluster analysis of big data described by a convex dependence of the optimal approximation error 

on the cluster number and also for adjustable object detection in digital image processing, using the 

optimal hierarchical pixel clustering, which is treated as an alternative to the modern informally 

defined “semantic” segmentation. 

Keywords: color image; object detection; pixel clustering; piecewise constant approximations; 

hierarchical sequence; total squared error 

 

1. Introduction 

This paper presents interdisciplinary research in cluster analysis of big data and 

image processing. A mathematical model for detecting objects in an image by Ward’s 

and two other methods of adaptive hierarchical pixel clustering is proposed. The ap-

proach is to approximate the image in different numbers of colors with the minimum 

approximation error or standard deviation of the approximations from the image. The 

minimization problem is NP-hard [1]. Therefore, it cannot be solved in practice using a 

general cluster analysis. In modern image processing, real optimization of pixel cluster-

ing is achievable only if there is an adequate specific image model, which so far can only 

be dreamed of. We develop a solution to the problem of real-life minimization of the 

approximation error E  and simultaneously construct an adequate image model. In this 

way, we take into account the specificity of pixel sets, which distinguishes them from 

arbitrary data. While constructing a model for image processing of any content, we do 

not assume prior learning procedures for detecting objects-of-interest but only allow 

setting up a software system using predefined parameters. 

The main disadvantage of learning systems for image recognition is the training 

procedure asperities, comparable to the complexity of direct programming the recogni-
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tion of specific objects. An alternative to learning systems is customizable recognition 

systems, which have been massively created and continue to be created to solve an ex-

panding range of practical problems. Reducing the complexity of creating and operating 

customizable recognition systems is achieved mainly due to the active use of a priori in-

formation about objects and the problem being solved [2]. At the same time, taking into 

account a priori information limits the use of software products in changing application 

conditions, as well as in various tasks. The unification of specialized solutions, as a rule, 

is hindered by the insufficient consideration of the ambiguity of the image, on which the 

target objects-of-interest can be visually observed objects of various scales. For this rea-

son, in the field of image recognition, even the simplest tasks such as text recognition 

remain relevant [3], and software development turns out to be too expensive, which was 

noticed by American officials long ago [4]. 

To solve the technical and organizational problems of computer image recognition, 

it is important to create a transparent model of objects in an image of any content, taking 

into account the ambiguity of the image and providing for setting up the recognition 

system for the desired objects. 

The aim of the paper is to describe a formal model for detecting objects in an image 

by modernized versions of classical cluster analysis methods [5,6] (Otsu’s methods 

[7–10], Ward’s [1,11–13], K-means [1,14–19] and combined splitting/merging clustering 

methods [11,20–22]), which reduce the image approximation error of approaching an 

image by its piecewise constant approximations. In this case, the requirement of mini-

mizing the approximation error is to be fulfilled, which, as a rule, conflicts with the heu-

ristic consideration of a priori information about objects. The requirement of real-life 

minimization of the approximation error helps to avoid the typical engineering approach 

to image recognition of previously known content and contributes to the unification of 

solutions for images of any content. 

The main contributions of this work include: 

 We propose a mathematical model for detecting objects in an image, assuming that 

the sequence of approximation errors of optimal approximations in a successively 

increasing number of colors is convex. 

 We formalize the concepts of images, objects, and superpixels, distinguishing them 

from each other by structure to unify object detection without referring to specific 

examples of images and objects. 

 To verify the object detection model, the criterion of minimum standard deviation 

  or approximation error 2~ E  is used instead of using “ground truth” samples 

that do not take into account image ambiguity. 

 We offer three modernized versions of the classical methods for real-life minimizing 

approximation errors and customizable object detection by hierarchical image ap-

proximations. 

The rest of this study is arranged as follows. 

Section 2 illustrates the advantage of pixel clustering compared to image segmenta-

tion using a standard image as an example. 

Sections 3–5 describe the image model with the already constructed sequence of op-

timal approximations. Section 3 gives a transparent definition of superpixels that is in-

dependent of a particular algorithm and illustrates this definition with an example of a 

real-life image. In Section 4, the fundamental features of the proposed superpixel concept 

in comparison with known solutions are discussed. Section 5 describes a model for de-

tecting the hierarchy of objects and the objects themselves in a digital image, which is 

based on optimal pixel clustering. 

Sections 6–9 explain how to obtain a sequence of optimal image approximations. 

Sections 6–8 deal with three classical methods of cluster analysis, namely: Ward cluster-

ing, split/merge methods, and K-means. Their main shortcomings are indicated and 

modernized versions are proposed, which calculate optimal image approximations and 
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generate the superpixels. Section 9 explains how the modernized methods for minimiz-

ing approximation errors work together in the frameworks of the model for object detec-

tion. 

Section 10 describes the computer implementation of the model for object detection. 

Finally, the results and perspectives of this study are summarized in Section 11. 

2. Pixel Clustering vs. Image Segmentation 

Image segmentation, as a result of dividing an image into a relatively small number 

of connected segments, is rightly treated in the vast majority of papers on object detection 

as an attribute of the initial image processing. However, this does not at all imply an 

understanding of segmentation as a process of merging adjacent segments during bot-

tom-up image processing. Obviously, supporting pixel connectivity within the clusters 

can interfere with minimizing the approximation error. In our experience, this is indeed 

the case, as illustrated in Figure 1. 

 

Figure 1. Optimal (on the left), really optimized two-segment approximation (central), and itera-

tively segmented (on the right) image approximation with the standard deviations σ =30.64564,  

σ = 31.60341 and σ = 50.33156. 

Figure 1 on the left shows the optimal approximation of the standard “Lena” image 

in two levels of intensity, calculated by Otsu’s method [8]. On the right is the approxi-

mation obtained by error 2~E  minimizing using iterative merging adjacent segments. 

The image approximation on the right is significantly worse than the central image ap-

proximation with the standard deviation close to the minimum. The central approxima-

tion is obtained if, in the optimal image approximation (on the left), one-color segments 

are interconnected by thin lines one pixel thick. It turns out that segmenting an image 

with a real-life minimum approximation error is, in principle, more difficult than solving 

the same problem for pixel clustering. At one time, this motivated us to move from seg-

mentation to the study of more efficient pixel clustering. 

In the theory of clustering, we start from the results of [1] and subsequent works, 

which are listed in detail in [23]. In these works, the features of Ward’s clustering are 

studied, and the problem of joint application of Ward’s and the K-means methods is 

posed. To minimize the approximation error E  by the K-means method, it is proposed 

to pre-calculate the approximation hierarchy using Ward’s method and store it in terms 

of traditional trees (dendrograms). In this way, Ward’s method provides the calculation 

of the initial approximations of the image with an error E  in the vicinity minimum 

value for each cluster number that is absolutely necessary for further error E  minimi-

zation by the K-means method. 

However, in the application to the clustering of a large number of pixels, the fol-

lowing difficulties must be overcome. 

First, Ward’s pixel clustering according to [12] takes too long, since the required time 

depends quadratically on the number of pixels. To solve the problem, it turns out that we 

need two ways to speed up calculations, namely, by enlarging initial pixel sets and by 

processing the image in parts. To implement the latter, it is necessary, along with Ward’s 
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pixel clustering, to improve the hierarchies within image parts by splitting/merging sets 

of pixels to ensure the separability of the joint algorithm. 

Secondly, although Ward’s method does not take into account the geometric posi-

tion of pixels, it, due to multi-iterative calculations, gives different results when changing 

the scanning order of cluster pairs. Therefore, Ward’s pixel clustering significantly de-

pends on the implementation algorithm, as well as on minor changes in the image, for 

example, 90-degree rotation. 

Thirdly, to ensure the suppression of the dependence of the results of Ward’s pixel 

clustering, it is required to minimize the error E  for a given number 0g  of clusters, but 

the K-means method [1,24] is not effective enough for this purpose [25]. The fact is that 

although it reduces the error E , it does not minimize it, because ends before the possi-

bilities of minimization E  are exhausted. This is due to the fact that in the K-means 

method, in comparison with Ward’s method, the increment of the approximation error is 

estimated by a coarsened formula. The effect is aggravated when all sets of pixels of hi-

erarchically structured clusters are involved in the minimization process. K-means 

method, which, unlike the Ward method, is popular in image processing, also has a 

number of other disadvantages. 

Thus, all three clustering methods under consideration, which were developed at 

one time for manual calculations or with the help of adding machines, need to be mod-

ernized as applied to pixel clustering, which we will discuss in the article. 

3. Definition of Superpixels 

Superpixels are enlarged pixels, i.e., elementary clusters of pixels that approximate 

the image and objects in the image with varying accuracy. As the number of superpixels 

decreases, the approximation accuracy also decreases, but the processing speed increases, 

which is the main motivation for using superpixels. 

The definition of superpixels expresses a formal interpretation of the statement that 

the optimal approximations of an image consist of superpixels. 

Let us consider a series of optimal approximations of a color image in g,...,2,1  col-

ors, where g  is given in the range from 1 to G , and G  denotes the number of colors 

in a color image or intensity levels, in the particular case of a halftone image. Then  gs  

superpixels in the range from g  to gg  ...21!  are calculated as a result of the inter-

section of g  optimal partitions of N  image pixels into clusters. 

The above definition of superpixels, the example of a standard halftone “Lena” im-

age of 256 × 256 pixels, containing 216 intensities, is illustrated in Figure 2. 
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Figure 2. Structural representations of image, objects, and superpixels. The plots illustrate the 

standard deviation σ of approximations from the image depending on cluster number g. The upper 

purple curve describes the hierarchical segmentation of the image. The black solid curve describes 

the superpixel hierarchy. The lower gray curve describes the sequence of optimal image approxi-

mations, and the red curve describes the object binary hierarchy of approximations obtained by the 

hierarchical Otsu method [9,10,26]. 

Figure 2 for image approximations of g,...,2,1  pixel clusters shows the dependen-

cies of the standard deviation   on the number of clusters in the image approximations. 

The lower gray curve is built for optimal approximations and describes the sequence 

of the minimum possible values of  . The upper curve for the current number g  of 

clusters describes the intersection of the sequence of optimal approximations. The se-

quence of partitions into superpixels resulting from the intersection of optimal approxi-

mations is hierarchical. As established experimentally, when   is converted into the 

approximation error 23 NE  , the lower curve turns to be convex: 

1...,,3,2,
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Unlike the curve for optimal approximations, the curve for superpixels is not convex 

in the gE   coordinates, and, all the more so, in the g  coordinates, as in Figure 2. 

This limits the accuracy of image approximation by the superpixel hierarchy. 

In our model, the sequence of optimal approximations is treated as an image struc-

tural representation, and it is assumed that it is described by a convex curve for most 

cluster numbers g . In general, the sequence of optimal image approximations is not hi-

erarchical. So, an image is represented as an ordered non-hierarchical structure of ap-

proximations, which, with a change in the cluster number, are characterized by a mo-

notonous change in the approximation error E  and also by its increment E . 

The solid curve in Figure 3 describes the number of superpixels s  depending on 

the number g  of optimal approximations that generate the current division of the image 
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into superpixels. In this case, the number of partitions coincides with the number g  of 

pixel clusters in the image approximation. 

 

Figure 3. The number s  of superpixels as a function of the number g  of optimal image parti-

tions involved in dividing N  pixels into superpixels due to the accumulation of boundaries be-

tween clusters. The dotted curve shows the case of hierarchical optimal approximations. 

If the optimal approximations form a hierarchy, then the number of superpixels 

coincides with the number g  of pixel clusters in the current image approximation (dot-

ted curve in Figure 3). However, the actual curve for the number of superpixels deviates 

markedly from the dotted curve, which makes it possible to quantify how the sequence of 

optimal image approximations deviates from the hierarchy. 

Figures 4 and 5 visually demonstrate image approximations. 

 

Figure 4. Optimal approximations of a standard image in 1–8 tones, ordered from left to right and 

top to bottom. 
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Figure 5. Hierarchy of superpixels generated by eight optimal approximations, ordered from left to 

right and top to bottom. 

A series of eight initial optimal image approximations is shown in Figure 4. 

A hierarchical sequence of piecewise constant image approximations by superpixels 

is shown in Figure 5. 

The hierarchy of superpixels in Figure 5 visually looks somewhat better than the 

hierarchy of optimal approximations in Figure 4, which is explained by the increased 

number of superpixels compared to the number of clusters in the optimal image ap-

proximation. 

Numerical characteristics for optimal approximations and approximations of the 

image by superpixels with the number of pixel clusters from 1 to 20 are given in Table 1. 

Table 1. Characteristics of optimal and superpixel approximations 1. 

g σ s σs 

1 55.8832 1 55.8832 

2 30.6456 2 30.6456 

3 21.2174 4 18.1409 

4 14.9645 7 11.3062 

5 11.6976 11 8.71359 

6 10.0398 16 6.85761 

7 8.46072 18 5.67555 

8 7.51121 24 5.27755 

9 6.81359 27 4.62883 

10 6.14397 30 3.84431 

11 5.57864 33 3.71779 

12 5.11403 36 3.18455 

13 4.75689 39 3.09882 

14 4.42306 41 2.91261 

15 4.17825 43 2.61455 

16 3.92460 46 2.27893 

17 3.70326 50 2.10761 

18 3.50441 55 1.95239 

19 3.32383 60 1.68547 

20 3.15658 63 1.64135 
1 A complete table of standard deviations of optimal approximations for the Lena image is pub-

lished in [26]. 
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The first column of Table 1 shows the number g  of clusters in the optimal image 

approximation (Figure 4), which coincides with the current number of considered opti-

mal approximations related to the last two columns. The second column indicates the 

standard deviation   of the optimal approximation from the image, which is the 

minimum possible for a given g . The penultimate column shows the number s  of su-

perpixels in the superpixel image approximation (Figure 5), and the last column shows 

the corresponding standard deviation s . 

4. Approach to Superpixels 

With increasing image resolution, the subject matter of superpixels becomes espe-

cially relevant due to the necessity to reduce the computational complexity of image 

processing by replacing pixel operations with superpixel ones. Therefore, it is widely 

discussed in the literature, albeit in a non-strict, heuristic formulation of the problem of 

calculating superpixels as some enlarged pixels, which are usually identified with con-

nected image segments that do not distort the boundaries of visually observed objects 

[27–37]. There are no generally accepted accurate definitions for superpixels. The calcu-

lations use algorithms with unproven or at least non-obvious convergence [27,28]. At 

best, approximation error reduction methods are used as auxiliary methods, which, 

however, are often limited to versions of the K-means method. In these cases, the real-life 

minimization of the approximation error is not performed, and the external criterion for 

the successful operation of the software is some a priori given samples of the “ground 

truth”. 

Various approaches to the calculation of superpixels are considered in detail in [29]. 

A stable stereotype is the formation of superpixels in the mode of local pixel enlargement 

[27–37], although for color images there are also heuristic divisive approaches to deter-

mining superpixels [37]. When the pixels are enlarged, the boundaries between the ob-

jects are masked by the textural features of the reflecting surfaces of the objects in the 

scene, which are actually used to select the objects-of-interest in the images of a given 

subject area. In general, to separate an image into previously unknown objects, it is nec-

essary to suppress texture features, for example, as provided in the definition of super-

pixels, which is proposed in this paper. In the proposed definition, superpixels are ob-

tained by intersecting the initial optimal partitions of the pixel sets in g1,2,...,  colors, 

which do not take into account the local textural features of the image that arise with a 

large number of clusters. It is interesting that according to our definition, the optimal 

approximations are not the best (Figure 2), and the approach [29] to find the optimal 

metric solves the problem from the opposite origin. Moreover, when calculating super-

pixels, excessive minimization of the approximation error can probably have the negative 

effect of revealing false boundaries between objects. 

To accurately calculate superpixels, in addition to their rigorous definition, it is re-

quired to specify a method for generating a non-hierarchical sequence of optimal image 

approximations. In the case of a grayscale image, this is Otsu’s multithreshold method 

[7], which is a generalization of Otsu’s original method [8] of image binarization. At first 

glance, the fundamental limitation for the practical calculation of optimal approxima-

tions is that the computational complexity of the Otsu multithreshold method grows 

exponentially with the number of tones in the partition, since the problem is NP-hard. 

Therefore, using Otsu’s multithreshold method, it turns out to be impossible to obtain 

optimal partitions in a reasonable time, for example, already in 20 tones. However, the 

latter circumstance is surmountable due to the fact that, firstly, when calculating the op-

timal approximations, a rough solution is allowed and, secondly, the solution is consid-

ered for a limited set of quite specific image data. 

The solvability of the problem of obtaining optimal approximations and the corre-

sponding hierarchy of superpixels is shown in the example of the halftone image “Lena” 

in Figures 2–5 and Table 1. Optimal approximations with a relatively large number of 
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tones are built using methods that, on the one hand, have no more than quadratic com-

putational complexity, and, on the other hand, are applicable not only to grayscale but 

also to color images. 

The practical calculation of superpixels for individual images is useful to find suita-

ble heuristic criteria for pixel merging in high-speed agglomerative pixel clustering 

methods that are being developed to solve current engineering problems of detection and 

recognition of objects-of-interest. Experimental verification of the effectiveness of a priori 

assumptions about the unification of superpixels in terms of the number of pixels, size, 

shape, and other features, as in [27–37], remains an important research area to refine the 

concept of superpixels and optimize the calculations, but only to the extent that it does 

not reduce the efficiency of approximation error minimization. 

For the sake of generality of reasoning, we will further agree to consider minimizing 

the error of approximation of images without using the Otsu method. Then it is possible 

to solve the problem for color images. The formal definition of superpixels does not 

change when moving to color images. Since a grayscale image is a special case of a color 

image, the efficiency of minimizing the approximation error and calculating optimal ap-

proximations can be evaluated on grayscale images of three identical color components, 

and superpixel calculation methods developed for color images can also be tested. 

5. Model of Hierarchical Approaching of Optimal Approximations 

Strictly speaking, objects are understood as classes of visually observable objects, i.e., 

clusters of pixels of certain image approximations, which, with a sufficiently small 

number of clusters in the approximation, differ in three-dimensional color. Objects and 

images are assumed to be structured, i.e., consisting of objects or images in their turn. 

Any set of pixels is considered structured if a binary hierarchy of piecewise constant 

approximations, which is described by a convex sequence of approximation errors is 

calculated for it. 

Obviously, any pixel set, for example, a set of N image pixels or pixel clusters of 

any image partition, can be considered structured if the required hierarchy of approxi-

mations is calculated for each of them. The introduction of structured pixel sets ensures 

the correct estimation of the increment of the approximation error that accompanies the 

division of the pixel sets in two. At the same time, the property of convexity of the se-

quence of approximation errors ensures that the current increment of the approximation 

error is extremal in comparison with its subsequent increments during the iterative divi-

sion of a given set of pixels into parts. 

For computer detection of objects in an image, the problem of hierarchical approx-

imation of a sequence of optimal approximations is posed and solved. The superpixel 

hierarchy (Figures 2,5 and Table 1) can be considered as the required solution without 

tuning parameters. However, this solution is based on the calculation of the initial series 

of optimal approximations, for which it is necessary to develop a computational model. 

In this case, the hierarchical approximation of the sequence of optimal approximations 

turns out to be ambiguous, and control parameters arise that allow one to adjust to the 

optimal approximation with a given number of clusters, as well as to control the calcula-

tion speed. Whether the developed solution is independent or auxiliary in the calculation 

of the superpixel hierarchy in Figures 2,5 and Table 1—experiments will decide in the 

future. 

In the approach under discussion, the image is structured, i.e., is approximated by a 

hierarchy of piecewise constant approximations, which, in contrast to the superpixel hi-

erarchy: 

 is described by a convex sequence of approximation errors, similar to the hierarchy 

of optimal approximations; 

 is a binary hierarchy, where each pixel cluster either coincides with an indivisible 

superpixel or is divided into two. 
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Taking into account possible options for approximating the sequence of optimal 

approximations, hierarchical sequences of approximations are parameterized by the 

number 0g  of pixel clusters in the optimal image approximation contained in the target 

hierarchical sequence. 

The model of approximation of a non-hierarchical sequence of optimal approxima-

tions by a binary hierarchy of image approximations is illustrated in Figure 6. 

 

Figure 6. Model of hierarchical approaching of optimal approximations. The limiting lower gray 

curve, assumed to be predominantly convex, describes the optimal image approximations. The 

bold red convex curve tangent to the gray curve at g = g0 describes the target hierarchy of image 

approximations. Another thin red convex curve tangent to the gray curve describes the target hi-

erarchy of approximations at the maximum value g0 = g1. The rest upper thin red convex curve de-

scribes the hierarchy of approximations produced by Ward’s original method. The dotted black 

curve describes the hierarchy of superpixel approximations or enlarged pixels intended to initialize 

Ward’s pixel clustering. 

Figure 6 describes the hierarchical approximation of the optimal approximations by 

plotting the dependence of the approximation error E on the number g  of pixel clus-

ters in the approximation. In Figure 6, all curves are convex (1) and satisfy the condition: 

0




g

E
, (2)

where the written value, up to a sign, coincides with the value of the heterogeneity pa-

rameter: 0





g

E
H , which is attributed to the cluster as its integral characteristic and, 

like the number of pixels in the cluster, does not increase when the cluster ji  is di-

vided into its component parts i  and j : 

       jHjiHiHjiH   , . (3)

In Figure 6, the lower gray curve describes the sequence of optimal approximations 

with the number of clusters from 1 to the number N  of pixels in the image. The upper 

0

1
g0 g1 s(g1) 
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E 
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black curves describe hierarchical sequences of approximations that approach the se-

quence of optimal approximations in the ranges of the number of clusters from 1 to s , 

where s  is the number of superpixels in the image. 

The thick black curve in Figure 6 describes the target hierarchy of approximations, 

and the thin black curves describe variants of the hierarchical approximation of optimal 

approximations. For hierarchical sequences of approximations, the negative increment of 

HEsplit   as the number of clusters g  increases by one describes the division of one 

of the clusters into two. The parameter 0g  is chosen in the range from 2  to the maxi-

mum value 1g . Depending on 1g , the number  1gs  of superpixels indicates the min-

imum number of superpixels at which 1g  of initial optimal approximations without 

distortion can be obtained by merging s  superpixels (Table 1): 

 1101 gsgg  . 

The dashed gray curve in the range of the number g  of clusters from 11 g  to 

 1gs  describes the errors of the hierarchical image approximation by indivisible super-

pixels when the optimal approximations are calculated with distortions. Distortions for a 

given g  are estimated from below as the difference between the points of the dashed 

and solid gray curves. 

Under the basis objects or simply objects detected by the computer, we mean the pixel 

clusters of the optimal image approximation in 0g  colors, and the number 0g  of pixel 

clusters is treated as the number of objects. The number 0g  is a tuning parameter that 

can be set by focusing object detection on objects-of-interest. Another independent pa-

rameter is either some threshold for the number s  of superpixels or the number 1g  of 

first optimal approximations that are reproduced without distortion. By means of this 

parameter, a reasonable compromise is achieved between the processing speed and the 

detection accuracy of objects-of-interest, which consist of superpixels and can either co-

incide with the basis objects, or be identified with the union, or with parts of the basis 

objects. 

A feature of the model is that the entire image field is considered to be occupied by 

objects and describes the scene without “blind” zones. Therefore, to detect objects, total 

divisions of the set of N  pixels into clusters are considered, each of which is treated as a 

set of pixels of a potential object-of-interest. 

The object detection procedure is divided into two stages (Figure 7). 

 

Figure 7. Two-stage detection of objects in a color image.  

… 

5 tones, 14,132 segments  

Object map 

 Image 

1% HThreshold 

262,144 approximations 
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In the first stage, the image is structured by generating an approximation hierarchy 

(on the left in Figure 7) with the parameter 0g  (Figure 6). In the second stage, the ap-

proximation hierarchy is transformed into a gray representation of the image (on the 

right in Figure 7), which is designed to visualize the results of the detection of ob-

jects-of-interest in a visual form. 

The pixel values of the resulting gray image representation are interpreted as au-

tomatic designations, labels, which are assigned to color objects detected by the computer 

in the image depending on the threshold value thresholdH  of heterogeneity H . In this 

case, the threshold value thresholdH  is measured as a percentage of the maximum value 

and is selected by a software engineer for the convenience of detecting objects-of-interest 

in the labeled image. 

The algorithm for converting the hierarchy of approximations into a gray image 

representation (object map) consists in filling the field of the object map with incremental 

values of the current markup: 

 all pixels of the feature map are assigned initial zero values, and the current markup 

value is assumed to be equal to one; 

 clusters i  of the hierarchy of image approximations are scanned in order from 

smaller to larger heterogeneity  iH ; 

 from the number of clusters i  with heterogeneity values  iH  not lower than the 

established threshold thresholdH ,   thresholdHiH  : (a) the next cluster j  is selected, 

marked with zero values on the object map; (b) pixels of cluster j  on the object 

map are assigned the current markup value; (c) the current markup value is incre-

mented by one. 

Due to the convexity property (1)–(3), the algorithm is correct, which is not true, for 

example, if the heterogeneity H  is replaced by the average intensity within the pixel 

cluster. On the other hand, according to the convexity property, instead of the heteroge-

neity threshold, one can use a threshold based on the number of pixels or the area occu-

pied by cluster pixels. 

The main advantage of converting an image into an object map (Figure 7) is that it is 

controlled by a single threshold value of the thresholdH  parameter, and not by a pair of 

values that define a certain range, by which pixel clusters are filtered from a given hier-

archy of clusters [38]. At the same time, due to one, rather than the conventional pair of 

parameters, the online setup of the detection of objects-of-interest is simplified and the 

total division of the image field into objects is ensured. 

The generation of an approximation hierarchy for obtaining a structured image is 

provided by a system of three modernized methods, namely, Ward’s method, the 

K-means method, and the split/merge method which are described in the following four 

sections. 

6. Recursive Ward’s Method 

Some hierarchy of approximations, described by a convex (1) sequence of approxi-

mation errors 1gE , 2gE , ..., NgE  , is obtained by pixel enlargement by the original 

Ward method [5,6,12]. 

In Ward’s method, at first, each pixel constitutes an independent cluster. 

Then, at each iteration, a pair of clusters ji,  merge with each other, corresponding 

to the minimum increment of the approximation error  jiEmerge , : 

 jiEjijiji merge
gji

,minarg,:,
,...2,1,




 ,  
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where the number of clusters g  decreases from N  to 1, and the approximation error 

increment  jiEmerge ,  is expressed in terms of the number of pixels in , jn  in clusters 

ji,  and the three-dimensional average pixel values iI , jI  within the clusters ji,  as: 

  0,
2



 ji

ji

ji
merge II

nn

nn
jiE . (4)

Figure 8 describes the hierarchy of approximations obtained by Ward‘s method. 

 

Figure 8. Hierarchical approaching of optimal approximations according to original Ward’s 

method. The limiting lower gray curve, assumed to be predominantly convex, describes the min-

imal approximation errors gE  of the optimal image approximations depending on the number 

g of colors. The red solid convex curve describes approaching the image by the hierarchy of ap-

proximations for Ward’s pixel clustering. The dashed line shows the upper limit for both error 

sequences. 

In Figure 8, the red solid line shows the dependence of the approximation error E  

on the number g  of clusters (colors) in the Ward’s image approximations, which, in 

contrast to the black solid curve in Figure 2 is convex and describes a binary hierarchy of 

image pixel clusters. In Figure 8, the area where the curve is constructed according to 

Ward’s method is bounded from above by a descending dashed line from the point 

1,1 EEg   to the point 0,  ENg , and is bounded from below by a solid gray curve, 

which describes the sequence of optimal image approximations, as in Figure 2. 

In this case, for a given number g  of pixel clusters, it is guaranteed that successive 

values of approximation errors gE  do not exceed the threshold value written on the 

right side of the formula: 











N

g
EEg 11 , (5)

where 1E —approximation error of the image by identical pixels. 

Condition (5) expresses the closeness of the pair of curves in Figure 8 as a whole. 

Despite the fact that both curves in Figure 8 are convex and have a common beginning 

and ending, they do not coincide, because the curve for optimal approximations de-

scribes a sequence of approximations that is not hierarchical. Therefore, the problem of 

approximating optimal approximations by a hierarchical sequence of approximations 

seems to be contradictory. The contradiction is eliminated if the required coincidence or 

at least convergence of the curves is limited to a single point 0g , as in Figure 6. 

N 

Objects 

Image 

E 

g 

E1 

0 
1 
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The main limitation of the original Ward’s method is that it does not allow one to 

obtain any hierarchy of image approximations described by a convex sequence of ap-

proximation errors. At least, it is not obvious how to obtain the hierarchical approxima-

tion sequences provided in the model Figure 6. 

This limitation is removed by updating Ward’s method, in which it is applied to 

image parts, i.e., to pixel clusters from a certain image partition. Performing the pro-

cessing in parts allows not only to approach the optimal approximation sequence ac-

cording to Figure 6 but also to reduce the computational complexity of the upgraded 

Ward’s method. 

As is known, Ward’s method has computational complexity 2N  or even 3N  for 

head-on programming without storing and converting in the buffer pixel cluster pairs, 

the merging of which is accompanied by the minimum and closest to the minimum in-

crements of the approximation error mergeE . 

Let the computational complexity C  of Ward’s method increase as N  when the 

number N  of pixels increases, where 1 . Let us estimate how C  changes if Ward’s 

method is applied in parts, i.e., within each pixel (superpixel) cluster, which are first 

processed as independent images, and then ordered into a binary hierarchy as image 

elements: 

  NggC  1 , 

where   and   are the fixed parameters. Obviously, the written function of 
g

 for 

12

1

0
1 























Ng  reaches a minimum minC : 

12121212

1

min

2

1

1

12 










 




 





















 NC , 

where the formula for 0g  can be used to automatically calculate the number 0g  of su-

perpixels from the condition of minimum computational complexity. 

Thus, when processing in parts, the computational complexity NC ~  is reduced 

to 12

2

~ 



NC . 

When recursively repeating the acceleration of calculations in parts, it turns out: 

 at 2 , C  falls off like   NNNNNN t
t

  ....... 1255
256

15
16

3
4

2 , 

where ,...2,1 ,22  it i ; 

 at 3 , C  falls off like NNNNNN  ...42981185
43046721

6305
6561

65
81

5
9

3 . 

Thus, contrary to the prevailing stereotypes, the version of Ward’s pixel clustering 

by parts with proper programming [39] refers to high-speed image processing methods 

with almost linear computational complexity. 

In addition to the method of structuring the image in parts, the acceleration of cal-

culations is provided by the traditional replacement of pixels by their enlarged sets, in 

particular, by superpixels. 

For the recursive Ward method, in contrast to the original Ward method, it is easy to 

show the existence of solutions provided in the model in Figure 6. In this case, to ap-

proach the image by an approximation hierarchy containing the optimal approximation 

with 0g  pixel clusters or superpixels, it is sufficient: 

 to calculate the hierarchy of approximations for each cluster of optimal approxima-

tion by the original Ward method, as for an independent image; 
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 to rebuild the hierarchy of the image approximations without modifying the calcu-

lated pixel clusters, reordering the merging of clusters so that the resulting hierarchy 

of approximations is described by a convex sequence of approximation errors gE , 

where 0gg  ; 

 to complete the hierarchy to the full one, iteratively enlarging 0g  clusters of the 

optimal image approximation using Ward’s original method. 

Thus, the multivalued hierarchical simulation of optimal approximations in Figure 6 

and its parametrization by the number of objects 0g  are justified. In addition, the au-

tomatic calculation of 0g  parameters from the condition of minimal computational 

complexity is provided. 

The polynomial increase in the computational complexity of the agglomerative al-

gorithm with increasing N  means that as N  decreases, the computational complexity 

also falls rapidly. Therefore, in itself, processing by the recursive Ward’s method in parts 

of the image provides acceleration of calculations. However, if the partitioning of the 

image into 0g  clusters and the corresponding approximation are chosen arbitrarily, 

then the dependence gE  on g  will turn out to be piecewise convex with a violation of 

convexity at 0gg  . This will not happen if, for image partitioning, we choose the image 

approximation by means of 0g  structured clusters so that it cannot be improved by the 

approximation error E  by counter operations of splitting one of the pixel clusters in two 

and merging the pair of other clusters. 

The last statement is a necessary and sufficient condition for an approximation to 

belong to a certain hierarchy of approximations described by a convex sequence of values 

E . Such an approximation is obtained at the output of processing any image approxi-

mation with a fixed number of clusters, by the so-called CI method. 

7. CI Method for Improving Structured Approximations 

CI (Clustering Improvement) is the method of improving the quality of image ap-

proximations referring to the method of splitting/merging pixel clusters using a reversi-

ble cluster merging operation. 

Operation (4) of merging clusters i , j  into cluster ji  is considered reversible if 

for each cluster containing more than one pixel, a pair of clusters is stored, by merging 

which this cluster was obtained in the process of generating the hierarchy: jiji , . 

In this case, the division of the cluster ji  into two is accompanied by a non-positive 

increment of the approximation error, which coincides with the value of the derivative 

g

E




 of E  with respect to the cluster number g : 

    0, 



 jiEjiE

g

E
H mergesplit  , (6)

where mergeE  is calculated according to (4), and the symbol H  (Heterogeneity) de-

notes the value of the feature of heterogeneity (“complexity” [2], “saliency” [40–44]), 

which is assigned to each cluster in the considered hierarchy of image pixel clusters and 

indicates the presence of a noticeable color object in the area of the image occupied by 

this cluster of pixels. 

The CI method is as follows: 

At the input, any image approximation with a given number of clusters 0g  is taken, 

which are assumed to be structured without loss of generality. 

Then: 

 From 0g  clusters, such cluster ji  is selected, the division of which into two is 

accompanied by the maximum drop Hmax  in the approximation error E . 
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 From 0g  × 0g  of cluster pairs, that pair of clusters i , j  is selected, the merging 

of which is accompanied by a minimum increment mergeEmin  of E approxima-

tion error. 

 At mergeEH minmax  , the processing ends. If mergeEH minmax  , cluster ji  

is divided into two clusters i  and j , and a pair of clusters is merged with a min-

imum increase in E —either a pair of clusters i , j , or a new pair of clusters gen-

erated by the appearance of clusters i  and j . Next, the processing is resumed. 

At the output of the CI method, an image approximation by 0g  clusters is obtained, 

which is optimized for the approximation error E , and generates a certain hierarchy of 

image approximations described at the point 0g  by a convex curve (Figure 9). 

 

Figure 9. The CI method for minimizing the approximation error with the same number of clusters 

in the image approximation. The limiting lower gray curve, which is assumed to be predominantly 

convex, describes the optimal image approximations. The upper dotted curve describes the gener-

ation of some approximation of the image, specifically, by hierarchical segmentation. The inter-

mediate convex red curve describes the resulting hierarchy of approximations obtained by the CI 

method in combination with Ward’s method. 

Figure 9 graphically describes the approximation error E  depending on the cluster 

numbers g  in the image approximations. 

The lower gray convex curve still corresponds to optimal approximations. The dot-

ted black curve describes the generation of the initial image approximation of 0g  clus-

ters in one or another high-speed agglomerative segmentation algorithm [9,10]. The bold 

arrow shows the decrease in the image approximation error as a result of processing the 

input approximation with 0g  clusters by the CI method. The red convex curve describes 

the hierarchy of approximations, which contains the resulting image approximation by 

0g clusters, obtained by the CI method. The dashed descending straight line, limits the 

area of resulting convex gE  dependence. 

The CI method leaves unchanged any approximation from the hierarchy of image 

approximations generated by Ward’s method. 

The CI method provides the transformation of any algorithm of the iterative merg-

ing of pairs of clusters into an image structuring algorithm. At the same time, to obtain an 

approximation hierarchy described by a convex sequence of approximation error E  

values, it is sufficient to execute the CI method at each iteration after the merging of a pair 
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of clusters, which can be chosen arbitrarily [21]. True, in this case, it will be necessary to 

update the hierarchy of nested approximations for image approximations improved by 

the CI method. 

Due to the fact that the CI method guarantees obtaining an image approximation 

with an approximation error in a limited neighborhood of the minimum achievable val-

ues (in Figure 9 below the dashed curve descending from left to right), the effect of im-

proving the approximation as a result of processing by the CI method is the more pro-

nounced than the initial approximation is rougher [22]. 

Since the CI method minimizes the increment of the approximation error for cluster 

pairs, its computational complexity with an increase in the number 0g  of clusters in-

creases quadratically. However, as 0g  increases, the approximation error itself drops 

sharply, which makes it possible for large 0g  to use the CI method in the segmental 

version, i.e., in the form of the SI method (Segmentation Improvement) [45] with a linear 

increase in computational complexity. 

8. K-Meanless Method for Improving Structured Approximations 

To obtain an optimal or at least suboptimal approximation according to the model in 

Figure 6, the processing of structured image approximation with 0g  clusters in Figure 9 

continues with the so-called K-meanless method [14], which is illustrated in Figure 10. 

 

Figure 10. K-meanless method of minimizing the approximation error for a constant number of 

clusters in image approximation. The limiting lower gray curve, treated as predominantly convex, 

describes the optimal image approximations. The red convex curve tangent to the gray curve de-

scribes the hierarchy of approximations obtained using the K-meanless method. 

In Figure 10, the black vertical arrow shows the minimization of the approximation 

error E  of the image approximation following the minimization E  performed by the 

CI method (Figure 9). As a result of processing, an optimal or at least optimal-like image 

approximation is obtained, which generates a target hierarchy of approximations de-

scribed by the red convex curve. The target approximation hierarchy approaches the 

sequence of optimal approximations and contains the optimal image approximation with 

0g  pixel clusters. When the parameter 0g  changes, the minimization of E  by 

K-meanless method ensures the calculation of other optimal or optimal-like approxima-

tions. 
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Like the K-means method, K-meanless or “K-means without means” method [14] 

reduces the approximation error E  by reclassifying pixels from one cluster to another 

cluster. At the same time, the fundamental difference is the reclassification criterion in the 

K-meanless method, which is reduced to the condition of a negative correctE  increment 

that accompanies the reclassification of pixels from cluster to cluster: 

0min correctE , (7)

where the minimum is computed over a set of clusters for increments of the approxima-

tion error that accompanies the reclassification of each part from a given cluster to every 

other cluster. 

The correctE  increment of the approximation error during the reclassification 

(transfer) of k  pixels from cluster 1 to cluster 2  is expressed by the formula: 


















2
1

1

12
2

2

2
kkcorrect II

kn

n
II

kn

n
kE , (8)

where 1n , 2n , 1nk   and 1I , 2I  are the values of the number of pixels and 

three-dimensional average intensities in the donor and acceptor clusters, and kI  is the 

average value of k  pixels, which are excluded from the number of pixels of the first 

cluster and assigned to the second cluster. 

The formula for correctE  follows from (4) and transforms into the corresponding 

coarsened analytical expression for the K-means method under the assumption that the 

number k  of pixels is negligibly small compared to the values 1n , 2n  of the pixel 

numbers in the donor and acceptor clusters. However, the use of the approximate for-

mula of the K-means method instead of the exact Formula (8) for correctE  practically 

does not complicate calculations on a modern computer. Therefore, the use of the basic 

simplified formula in numerous versions of the K-means method [15–19] is not suffi-

ciently justified. 

For the efficient E  reduction by the K-meanless method, the order of transfor-

mation of triples of clusters that ensure the reduction of E  is important. When pro-

cessing hierarchically structured images to effectively minimize the approximation error 

E  according to criterion (7), the reclassification of pixel sets is performed from large to 

small, and individual pixel reclassification, which is often only conducted in K-means, is 

performed last and provides the final minimum optimization approximation. In this case, 

the assumption that k  is negligibly small compared to 1n  and 2n  turns out to be in-

correct. In order to avoid calculating false minima E , in most cases it makes sense to 

replace the K-means method with a stronger K-meanless method, in which the reclassi-

fication of pixel sets is performed either by comparing the values of the objective func-

tional E , as in [14], or by the equivalent Formula (8) for correctE , as in [13]. 

9. Discussion of the System of Methods for E Minimization 

Three methods, namely, the recursive Ward’s method in parts, the CI method, and 

the K-meanless method, applicable to both grayscale and color images, are the basis of 

the hierarchical approximation model in Figure 6 of optimal image approximations with 

minimization of the approximation error E . It is essential that the listed methods are 

analytically derived from the requirement of minimizing the additive functional E  and 

constitute a system of methods since the use of each individual method is not effective 

enough to minimize E . 

Ward’s recursive method by parts of the image, when approximating the optimal 

approximations, minimizes the approximation error E  for the binary hierarchy of pixel 

clusters as a whole due to the fact that the target hierarchy of pixel clusters, like the se-

quence of optimal image approximations, is described by a convex sequence of E  val-

ues. 
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The CI method and K-meanless method provide minimization of E  for image ap-

proximation with a fixed number 0g  of pixel clusters. The CI method is used to opti-

mize the partition into 0g  clusters during the execution of Ward’s method, as well as to 

reduce E  before the K-meanless method executing. The k-meanless method minimizes 

the error when changing the parameter 0g . A number of initial hierarchical image ap-

proximations in a limited 0g  number of colors determines the partitioning of the image 

and computer-detected color objects into superpixels. 

The optimal (suboptimal) approximation of an image with 0g  hierarchically 

structured clusters, described by a convex sequence of approximation error values E , is 

determined by the fact that it cannot be improved in E  by: 

 The CI method, i.e., by means of counter operations of splitting one of the clusters in 

two with the subsequent merging of a pair of other clusters; 

 The K-meanless method, i.e., reclassification operation, partially reassigns the pixels 

from one to another cluster. 

The given optimality conditions are constructive since their violation indicates a 

way to compensate for this violation by minimizing E . However, it should be taken into 

account that in the process of minimizing E , the condition of structuredness of pixel 

clusters, generally speaking, is violated. Specifically, the minimization of E  is per-

formed using two operations-splitting a pixel cluster in two and merging a pair of pixel 

clusters into one cluster. If the given cluster is structured, then, when split in two, it is 

transformed into a pair of structured clusters. However, a pair of structured clusters may 

turn out to be unstructured upon merging due to the violation of the convexity property 

of the resulting sequence of approximation errors. When programming, the easiest way is 

to get around the formulated problem. To do this, it is sufficient to supplement the op-

eration of merging pixel clusters by detecting and suppressing the violation of the con-

vexity property of the errors E  sequence by updating the broken hierarchical structure 

of the cluster. If we do not resort to the composite operation of merging pixel clusters, 

then the desired result is achieved by cyclically repeating the process of minimizing E  

until it stabilizes. 

In addition to preserving the hierarchical structure within the clusters, in the course 

of calculations, it is necessary to maintain the smoothness of the  gE  dependence at the 

0g  value, periodically repeating the processing by the CI method of the current image 

approximation in 0g  colors. As in the case of the merge operation, the correction of ap-

proximations by the CI method can be performed either online or cyclically repeated un-

til the possibilities of minimizing E  are exhausted. 

10. Dynamic Table of Ordered Image Approximations 

This section describes the implementation of the discussed model as some computer 

program that helps the user or programmer control the detection of hierarchically struc-

tured objects containing nested objects. 

Figure 11 shows a graphical representation of an image as a superposition of N  

hierarchies of pixel clusters, described by convex sequences of approximation errors gE  

depending on the color numbers g . 
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Figure 11. Parameterized approaching of an image by a hierarchical sequence of approximations in 

g0 = 1, 2,..., N colors. The lower gray convex curve describes Eg sequence of optimal image ap-

proximations. The remaining red convex curves describe the hierarchies Eg sequences of image 

approximations each containing at least one optimal approximation, in g0 = 1, 2, ..., N colors. 

Calculation of optimal approximations in Figure 11 is necessary for the full imple-

mentation of the image model in Figure 6, providing the generation of the superpixel 

hierarchy. 

NOTE. Sequences of optimal approximations and object hierarchies Figure 11 can be 

obtained using only Ward’s original method, which is applied to enlarged pixels, if the 

pixel enlargement, for example, by segmentation, does not affect the perception of the 

image. In this case, first, Ward’s method is applied, say, 100 times with a different num-

ber of enlarged segments. Then, from the resulting hierarchies of pixel clusters, a subse-

quence is selected that provides the minimal standard deviations in a given range of the 

color numbers, for example, from 1 to 15. 

In the case of using enlarged image pixels, in particular, superpixels from Figure 6, 

one can also use the scheme of Figure 11, in which the number of pixels N  is simply 

replaced by a smaller number of enlarged pixels if the original image is replaced with its 

real-valued tri-component color representation obtained by averaging the pixels within 

their enlarged sets. 

Figure 11 describes the set of 2N  image approximations that should be available to 

the user. In this case, the program must provide access to one or several hierarchies of 

image approximations in some range of colors. To ensure this, it is convenient to arrange 

the approximations of Figure 11 in the form of a Dynamic Table of approximations, 

which are fragmentarily calculated online. 

Let us explain the concept of a Dynamic Table using an example of a composite 

image taken from [46] (Figure 12). 

 

Figure 12. Test image. 

The image in Figure 12 contains 10 nested ones, including an image of a surfer 

(second from the left), whose body detection in the bottom-up strategy proves to be 

problematic. 
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The Dynamic Table of approximations for the above image is obtained in the form of 

Figure 13. 

The 4 × 4 fragment of Dynamic Table of (1774 × 272)2 = 232,833,270,784 image ap-

proximations. 

 

Figure 13. Dynamic Table of N × N image approximations, ordered along the columns and the main 

diagonal. Diagonal elements are highlighted in red. Dynamic Table demonstrates the hierarchies of 

image approximations arranged in columns.  

In the Dynamic Table, hierarchical sequences of approximations are arranged in 

columns. The rows show image approximations in the same number of colors. On the 

main diagonal are the optimal or optimal-like image approximations, with minimum 

standard deviations within the rows. If the minimums for different rows fall into one 

column, then this column is repeated in the Dynamic Table (to reduce the width of the 

table, repeated columns are excluded in Figure 13). 

Image approximations in the Dynamic Table are ordered along the columns and 

along the main diagonal. This means that the sequences of approximation errors 
23 NEg   in these directions are convex.  

Table 2 lists the standard deviations of the image approximations. The squares of the 

tabulated σ values form convex sequences along the columns and the main diagonal. 

Table 2. The 15 × 15 fragment of Dynamic Table of (1774 × 272)2 = 232,833,270,784 σ values denoting 

image approximations 1. 

   g0 
 g 

1, 2 3 4 5, 12 6 7, 9 8 10, 11 13, 14, 15 

1 82.7624 82.7624 82.76244 82.7624 82.7624 82.7624 82.76244 82.7624 82.76244 
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2 41.9853 45.6371 44.61491 48.8133 47.1703 47.1703 47.5201 46.2158 49.70901 

3 34.1905 30.5178 32.17524 31.9416 32.6948 31.0402 31.40646 30.7935 32.2961 

4 27.4511 27.4203 26.25674 27.99 28.3736 26.4501 27.7935 27.1017 27.13618 

5 24.1529 24.3494 23.98987 23.4904 23.5732 23.8579 24.41134 24.5259 23.81052 

6 21.5788 21.9211 22.23782 21.1801 20.922 21.2423 21.8049 21.9532 21.05243 

7 20.2058 19.8155 20.65018 19.9869 19.769 19.6739 19.9542 20.1168 20.00413 

8 18.744 18.5328 19.08621 18.9059 18.7525 18.443 18.39776 18.644 18.93809 

9 17.5868 17.6728 17.99386 17.7844 17.8988 17.297 17.46976 17.3337 17.94591 

10 16.6735 16.8386 17.05136 16.726 17.0394 16.7309 16.80458 16.514 16.92667 

11 15.8308 16.1807 16.34836 15.8691 16.3098 16.1497 16.1853 15.788 15.95407 

12 15.3293 15.553 15.86705 15.2115 15.7082 15.6135 15.59814 15.2757 15.2257 

13 14.834 15.0178 15.37627 14.7058 15.0876 15.1058 15.10836 14.7567 14.67922 

14 14.3752 14.5941 14.91152 14.2989 14.5841 14.603 14.62753 14.2415 14.20433 

15 13.9324 14.1667 14.49436 13.9219 14.0773 14.0968 14.15316 13.7995 13.79826 
1 The diagonal elements are highlighted in bold and are listed in the first table row. 

NOTE. The property of convexity of the sequence of gE  values in columns is al-

ways provided by the construction algorithm. A significant corruption of the convexity 

along the main diagonal indicates either insufficient minimization or a violation of the 

basic model assumption about the specifics of the image data. The study of counterex-

amples of images and other data characterized by a pronounced non-convex dependence 

of approximation errors 
0ggE   along the main diagonal is of independent interest. 

Diagonal optimal or optimal-like image approximations are resistant to algorithms 

for their calculation since optimal approximations are determined only by the minimum 

values of approximation errors gE , and not by a specific calculation algorithm. There-

fore, it is the optimal image approximations that are convenient to use to select the de-

sired cluster hierarchy for best detecting structured objects-of-interest. 

So, the procedure for detecting structured objects-of-interest may be that the user 

first analyzes the diagonal optimal approximations, which consist of basic objects. In 

overdiagonal image approximations of the image, objects are represented by unions, and 

in underdiagonal approximations, by parts of basis objects. The user chooses the param-

eter 0g  and the hierarchy of clusters from among the available ones in such a way that 

in a certain range of color numbers g  it is better than others to model the hierarchy of 

objects-of-interest in accordance with his perception. 

Through a good choice of approximation hierarchy, one can focus the system on the 

target objects-of-interest and, for example, overcome the loss of objects in [46] (Figure 14). 
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Figure 14. Customizable selection of desired object hierarchy. The input composite image from [46] 

is displayed in the top line. The middle line shows the result of object detection according to [46], 

where the surfer’s body is poorly detected. The bottom line shows the proposed method results 

using g0 = 3, g = 14. 

Figure 14 in the bottom line shows the 14th approximation of the test image (Figure 

12) from the hierarchy in Figure 13 containing the optimal-like approximation in three 

colors ( 30,5178,30  gg ). In this approximation, the surfer’s body (encircled by 

dotted line) stands out mainly in three colors. In other hierarchies in Figure 13, back-

ground spots on the surfer’s body are revealed. 

After selecting the hierarchy, object detection continues as in Figure 7. Alternatively, 

the image is replaced by a representation in a reduced number of colors, as in Figure 14, 

and processing is continued by suitable known methods. 

The hierarchical representation of the image provides a number of additional fea-

tures, such as: ranges of hierarchy levels, i.e., values of g  within which the cluster or 

segment do not change; sequences of approximation errors E  and their increments E  

calculated for clusters and segments at different hierarchical levels g , etc. The calcula-

tion of additional features for image pixels as elements of clusters and segments contrib-

utes to automating the detection of objects and object hierarchies. 

It seems promising to implement the proposed variants of the three classical meth-

ods of cluster analysis in the widely used MatLab software package. 

11. Conclusions 

Thus, in this paper, we have considered the informal component of the model of a 

digital image, its elements (superpixels), and objects in the image, developed for auto-

matic detection and recognition of objects. It turns out that in order to unify and, most 

importantly, simplify the detection and recognition of objects, it is useful to pre-order 

image data at the primary stage of image processing, which is provided by a system of 

modernized cluster analysis methods. 

It should be noted that in addition to the described conceptual model, its computa-

tional version has been developed. In the computational model, high-speed calculations 

are performed in terms of the so-called algebraic multilayer network (AMN). Character-

istically, for hierarchical data ordering, AMN uses Sleator–Tarjan dynamic trees instead 

of conventional trees. This speeds up calculations and saves memory. The main ad-

vantage of Sleator–Tarjan dynamic trees is the most concise description of the split-

ting/merging pixel clusters by breaking/setting the arcs connecting the image pixel coor-

dinates. The latter helps to simplify the software implementation of reversible calcula-
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tions; however, the network AMN data structure only optimizes computations but does 

not change the conceptual model in any way. Therefore, we leave its detailed description 

for subsequent papers. 

We are working on the implementation of a model for solving the engineering 

problems [47,48]. However, this is not the main thing, as modern image processing con-

tains a variety of different engineering solutions. The main thing is to understand and, 

therefore, surpass the unified natural visual perception. Perhaps we are on the right 

track. 
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