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Abstract: Recently, signature verification systems have been widely adopted for verifying individuals
based on their handwritten signatures, especially in forensic and commercial transactions. Generally,
feature extraction and classification tremendously impact the accuracy of system authentication. Fea-
ture extraction is challenging for signature verification systems due to the diverse forms of signatures
and sample circumstances. Current signature verification techniques demonstrate promising results
in identifying genuine and forged signatures. However, the overall performance of skilled forgery
detection remains rigid to deliver high contentment. Furthermore, most of the current signature
verification techniques demand a large number of learning samples to increase verification accuracy.
This is the primary disadvantage of using deep learning, as the figure of signature samples is mainly
restricted to the functional application of the signature verification system. In addition, the system
inputs are scanned signatures that comprise noisy pixels, a complicated background, blurriness, and
contrast decay. The main challenge has been attaining a balance between noise and data loss, since
some essential information is lost during preprocessing, probably influencing the subsequent stages
of the system. This paper tackles the aforementioned issues by presenting four main steps: prepro-
cessing, multifeature fusion, discriminant feature selection using a genetic algorithm based on one
class support vector machine (OCSVM-GA), and a one-class learning strategy to address imbalanced
signature data in the practical application of a signature verification system. The suggested method
employs three databases of signatures: SID-Arabic handwritten signatures, CEDAR, and UTSIG.
Experimental results depict that the proposed approach outperforms current systems in terms of
false acceptance rate (FAR), false rejection rate (FRR), and equal error rate (EER).

Keywords: offline signature verification system; preprocessing; feature fusion; forgery detection;
Arabic signature; one-class support vector machine

1. Introduction

A signature is one of the most important human attributes. It is often used as proof of
identity on legal documents like bank checks, credit cards, and wills. An effective automatic
system can handle many fraud issues and other daily crimes. There are two different kinds
of signature verification scenarios: online and offline. An online signature verification
system uses tablets, PDAs, iPads, and smartphones to evaluate the signature image. The
system has a dynamic nature, operating on features such as writing, orientation, pen tip
positions, momentum, velocity, pressure, etc. [1,2].
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An offline verification validates signatures by employing an optical detector to collect
signatures on paper. This approach contains static data such as inclination, boundary,
signature length and altitude, baseline, pressure, and size [3]. Offline verification is more
intricate than online verification due to the absence of dynamic parameter information.
Moreover, in an OSV system, signatures are obtained from various devices, so the resolution
of training and testing samples is not the same, resulting in intraclass variation [4]. The raw
signature may contain additional pixels known as noises or may not be in perfect working
order, necessitating preprocessing.

Additionally, variations in the original signer’s signature are related to document
orientation, signature degeneration, illness, illegible signatures, pen width, age, etc. As a
result, preprocessing is a fundamental stage to improve the input data or isolate raw data
samples into a standard format appropriate for the feature extraction stage. Nevertheless,
it is crucial to balance noise removal and data loss, since a certain amount of relevant
information may be lost during preprocessing, impairing the accuracy of subsequent
system stages [5]. Therefore, proposing an algorithm that can effectively remove noise
while maintaining relevant information is crucial.

Generally, the handwritten signature verification system determines whether the query
signature is genuine or forged [2]. There are three forms of forgery: random forgery, simple
(unskilled), and skilled forgery. In random forging, the forger uses a signature without
knowing the original user’s name or signature. This signature shape is distinct from the
genuine signature. The simple forger knows the user’s name, but is uninformed of the
signature’s pattern. In this case, the forms of the original and forged signatures may not
be similar.

On the other hand, the skilled forger learns the signature form and professionally
mimics the signature with practice. This form of imitation is more challenging to detect
since it is comparable to an authentic signature [6]. Figure 1 shows the samples of signatures.
The most challenging aspect of the signature verification process is the substantial intra-
class variance across signatures from the same individual, in contrast to low intra-class
between forgery and genuine. Second, no comprehensive system can recognize all scripts.
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According to the literature, signature verification systems have been the subject of
substantial study in several languages, including English, Hindi, Bangla, and Chinese.
However, studies on Arabic signatures are still limited, and improvement is slow because
the language is more difficult to analyze than others. Arabic script is characterized by its
cursive form, changing letter shapes, joining and non-joining characters, delayed strokes,
and ligatures [7,8].

Recently, researchers have focused on two major processes: feature extraction and
verification methods. Feature extraction methods depended on handcraft, such as statistical,
geometric, structural, and automatic deep learning. In several cases, researchers have
combined multiple methods to improve performance. Fusion is the process of integrating
multiple patterns of components into a single matrix using a fusion approach, such as
score-level fusion and high-priority index feature fusion [9].

The problem with earlier approaches was that they typically employed a combination
of features without considering correlations and discriminants, such that the generated
feature vector could not recognize a skilled forgery. In addition, fusion techniques were
used to increase system complexity and computational time. Moreover, the current deep
learning approaches are defective in the signature verification domain because deep training
models necessitate large data samples and effort in selecting images suitable for learning
construction [8]. Deep learning also necessitates substantial computer resources, such as
expensive GPUs.

This research aims to propose an offline Arabic signature verification system that can
recognize skilled forgery and genuine signatures at a highly accurate rate and low FAR,
FRR, and EER. First, efficient preprocessing techniques such as image cropping, denoising,
binarization, and removing stray isolated pixels are recommended to decrease noise while
maintaining essential data.

The contributions of this study include the following:

1. Efficient preprocessing techniques are recommended to decrease noise while main-
taining essential data.

2. Hybrid feature types have been proposed to solve the low inter-class variability
between authentic and skilled forgery and the high intra-class variability in each
individual’s signature.

3. The early serial concatenation fusion approach (ESCF) integrates multiscale informa-
tion without prejudice complication.

4. Propose GA_OCSVM to improve feature selection and tackle the potential correlation
between fused features

5. Settle the problem of unbalanced and restricted forgery samples by using
one-class classification.

The extensive computing time and storage capacity are unnecessary for the pro-
posed approach.

This paper has the following organization: Section 2 presents the related studies.
The framework for the proposed signature verification system is given in Section 3. The
experimental results and comparisons of the proposed methodology to previous research
are presented in Section 4. The summary of the proposed work is presented in Section 5.
The conclusion and recommendations for further work are provided in Section 6.

2. Related Works

Signatures are typically simple or unconventional, and have no distinct characteristics
that are hard to lose or forget compared to other biometric features [10]. Consequently,
signatures on checks, card payments, and legal documents are often used and accepted
as evidence of authorship or approval. Signatures are currently authenticated in various
environments [11]; however, the rapid progress of computer technology has attracted the
attention of researchers in automated signature verification and authenticity detection.
OSV has significantly evolved in the last decade; researchers have employed various
methodologies and techniques to accomplish high performance, superior accuracy, and
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efficiency in offline signature verification. Signature verification methods are typically
divided into template matching, statistical, and structural approaches [12].

In the template matching approach, the pattern of test signatures is compared with
templates already stored in the database. Dynamic time warping (DTW) is the most often
utilized for this purpose, ref. [13] proposed a crowdsourcing experiment to develop a
human baseline for signature recognition and a new attribute-based automated signature
verification system based on FDE analysis. The technique combines the DTW algorithm
with an attribute-based approach to improve accuracy with 5% EER. The authors of [14]
proposed a graph-based system for signature verification. This approach combines DTW
with linear time graph dissimilarity to measure the polar graph embedding distance (PGEd)
called structural DTW (SDTW). They used a sliding window approach to compare PGEd at
various local positions on several subgraphs. The resulting distance matrix was used to
find an optimal alignment between the sequences of subgraphs using DTW. The authors
applied the proposed method to standard GPDS-75 and MCYT-75 datasets.

However, statistical models are employed in the vast preponderance of signature
verification systems, such as distance-based classification, support vector machine (SVM),
deep learning, and other classification techniques. The distance-based approach is one
of the most straightforward and reliable approaches for identifying query and reference
signatures because this approach lacks parameters and model training [15]. Nevertheless,
distance-based techniques are not interested in the influence of general variability on
distance and often exhibit random fluctuations of varying sizes. The most prominent
methods used in this domain are Euclidean distance, city block distance, Chi-square
distance, Manhattan distance, and Hamming distance. On the SUSIG dataset, a Hadamard
transform-based technique was developed [16]. The Hadamard matrix was generated from
the extracted features, and then the Euclidean and Manhattan distances were employed for
feature comparison and verification.

In [17], the Euclidian distance was employed to compare stored and new feature
vectors. The investigation used one hundred and eight signature samples from participants.
Global thresholding was used to convert images to grayscale, and the median filter was
utilized to remove noise. The Canny edge detector was employed to identify signature
edges. Seven hundred moments of invariants were calculated for five samples, and the
standard deviation was used to generate a feature vector.

Similarly, SVM and deep learning techniques such as convolutional neural networks
(CNNs) are the most often used classifiers in OSV. SVM performs well in high-dimensional
spaces, regardless of whether the dimensionality exceeds the sample quantity. It is memory
efficient because it uses a subset of training images (support vectors) in the decision
function [18]. However, SVM is mathematically and computationally complex. Ref. [19]
used the SVM and shape correspondence approaches for signature verification. Pixels were
correlated using an adaptive weight that included Euclidean and shape context distances.
Plate spline transformation was used to convert the query signature plane to the reference
signature plane. On the GPDS signature dataset, the system achieved an accuracy of
89.58%. The authors in [19] used a decision tree classifier and a Local Binary Pattern feature
extraction. Two collected datasets with 100 and 260 authors were employed to evaluate the
performance of the system. The system produced a FAR of 7.0% and 11% for simple and
skilled forging signatures, respectively.

Moreover, the authors in [20] introduced a dynamic signature verification technique
(DSVT) using mutual compliance (MC) between the security system and the biometric
device. The security system was responsible for online and offline signature approval
using personal inputs from the user. The signing bit, key, and size were used as security
metrics to verify both modes using classifier learning. The verification was based on stored
online/offline signatures using certificates provided for authentication.

The E-signature was conducted based on the user’s specific inputs. The user au-
thenticity was examined based on stored online/offline signatures using certificates and
authentication during manual sessions. A traditional tree classifier was used to distinguish



J. Imaging 2023, 9, 79 5 of 26

the dynamic verification between online and offline signatures. The success rate of the
suggested strategy was 0.893%, while the failure rate was 8.58%.

The [21] compared SVM with five machine-learning classifiers, i.e., boosted tree,
random forest classifier (RFC), K-nearest neighbor, multilayer Perceptron, and naïve Bayes
classifier, utilizing four image-based characteristics. The BHsig260 dataset (Bangla and
Hindi) was used in the proposed work, which included signatures from 55 Hindi and
Bangla users. The offline Hindi signature verification accuracy using MLP with 20 sample
sizes was 72.3%. The accuracy for Bangla was 79% using RFC with two signature samples,
while KNN and SVM obtained above 92%.

In addition, various deep-learning techniques have been proposed for online and
offline signature verification. In the offline signatures system, ref. [22] employed CNNs
in a two-stage method. Feature representations were learned in the writer-independent
phase by discriminatively training a CNN to identify authors. These CNN characteristics
were then utilized for training writer-dependent classifiers (SVMs) to recognize differences
between genuine and skilled signatures. Moreover, they tested this method using four
distinct feature representation versions of AlexNet and VGG networks [23]. Kohonen
neural networks were proposed to construct an offline signature verification system, which
was a form of self-organizing map [24]. The intra-variability of an individual’s signatures is
quantified using their competitive learning power. The proposed system achieved FAR and
FRR for the genuine samples of 2.8% and 5%, respectively, for simple and random forgeries.

The researchers in [25] also used CNN to verify a Bengali handwritten signature. Two
handwritten signature databases were used as experimental data for the training system.
The first database contained 800 handwritten signature images of 40 students at the Fergana
branch of the Muhammad al-Khwarizmi Tashkent University; each student had 10 genuine
and 10 forged signatures. The second database was a public Bengali handwritten signature
database, which included 100 people with 24 authentic and 30 skilled signatures. The
average accuracy achieved for the first database was 90.04% on images of size 250 × 150,
and 97.50% for the second database on images of size 250 × 150.

The researchers in [20] proposed an offline signature verification system using a
multi-size assembled attention swin-transformer (MSAAST) network. The main modules
included the resize, swin-transformer, and attention block. The signature images were
resized to different sizes, including (224, 224), (112, 112), and (56, 56). Then, they were
simultaneously put into the Patch-Embedded module and swin-transformer to extract
and combine features. The cross-dataset strategies were used to improve the dataset;
considering the generalization ability, CEDAR was utilized as a training dataset and
evaluated in Bengali. Three databases were used to assess the model: CEDAR, Bengali, and
Hindi. The training and testing datasets extended double, and images were concatenated in
combination forms: genuine-genuine signature pairs (GGSP) or genuine-forgery signature
pairs. The regularized dropout (R-Drop) strategy and adversarial methods were employed
in the training phase to improve the verification performance. The authors used the R-Drop
strategy to limit the model’s outputs and keep them in identical distributions even when
the inputs were run through the model more than once. The accuracy metric significantly
increased from 0.955 to 0.973. However, in the experiment on R-Drop, the dropout produced
different outputs for the same input images each time.

Despite the tremendous achievements of deep learning in signature identification, one
of the significant downsides of deep learning models is that they need a massive amount
of labeled data for training to obtain a high level of accuracy. Most signature databases
are limited (particularly concerning the number of original signatures per writer). This
limitation faced the authors in [26], who used samples from the SVC 2004 and SigComp
2009 datasets to learn a convolutional neural network (CNN) followed by a recurrent
neural network (RNN). The proposed model achieved low validation results due to the
few samples used; the experiments showed 90.65% accuracy and 15.43% FAR.

In contrast to statistical representation models, structural (i.e., string, tree, and graph-
based) techniques express the fundamental topological features of a handwritten signature
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in a highly natural and exhaustive form. This model compares the symbolic representation
(trees, graphs, and strings) to database-stored models. However, this advantage comes at
the expense of increased complexity in basic dissimilarity assessments [27]. The authors
in [28] focused on dissimilarity-based graph embedding techniques for signature verifi-
cation. It generated n-dimensional feature representations for graphs, which were then
used to classify signatures. In an experimental assessment of the MCYT-75 and GPDS-960
benchmark datasets, the suggested technique achieved 10.67% EER and 16.53 EER using
10 references.

In addition to being accurate and secure, the signature verification process should
be fast. Furthermore, signature verification is complicated since the distinctions used to
discriminate are frequently precise. As a result, offline signature recognition is still open
research. Table 1 displays an overview of related works and their respective outcomes.

Table 1. Summary of related work.

References Features Used Verification Approaches Accuracy/EER

[29] Global features and center of gravity features Threshold technique 87% on the GPDS-960 database

[30] Global features. fuzzy-C
means + threshold 9.2% EER on MCYT database

[31] Global feature (entropy) and functional
information features SVM 97.81% n SVC2004 database

[23] Deep CNN SVM

12.83% EER on
(GPDS) database

4.17% on (BRAZILIAN
PUC-PR) database

[32]
Median of Medians (MoM) statistical dispersion

measure (∆x)

Fuzzy similarity between
test and training

signature sample and
threshold technique

0.11 ERR on
(MCYT-100) database

0.088 ERR on
MCYT-330) database

0.916 ERR on SVC database

0.08 ERR on SUSIG database

[33] Condensed Nearest Neighbors (CNN) SVM 3.46% EER GPDS-960 dataset

[34] global and grid features belonging feature dimension and
decision threshold

7.66% ERR on
CEDAR database

9.53 on MCYT database

[35] Meta learning

4.70 ERR on GPDS dataset

12.77 ERR on MCYT

8.02 ERR on CEDAR

6.7 ERR on Brazilian

[36]

Gray Level
Co-occurrences Matrix
(GLCM) and geometric

features

SVM
2.33% MCYT,

9.59% EER on GPDS synthetic

[37]
Structure- and

direction-oriented
features

Recurrent Neural Network (RNN)

GPDS-300 98.02%

MCYT-75 99.39%

BHSig260 Hindi 99.28%

BHSig260 Bengali 99.37%
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Table 1. Cont.

References Features Used Verification Approaches Accuracy/EER

[38] CNN method transfers learning
SIFT + SVM

99.94% on

SVM, 98.1 on
112 images were from IDRBT

bank cheque dataset, used
50 images for testing

[39] CNN

88% on signatures of
100 people, included

24 genuine signatures and
30 forged signatures

3. Materials and Methods

The proposed model comprises five phases: preprocessing approaches, feature extrac-
tion, feature fusion, feature selection, and classification, as shown in Figure 2.
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3.1. Preprocessing Phase

A review of the problems related to offline signatures may include noisy pixels or
equipment that may not be in perfect working order. As a result, several preprocessing
methods are presented to provide an improved image that can be utilized for subsequent
phases without losing data.
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3.1.1. Image Conversion

The first step in the proposed approach is to convert an RGB image to a grayscale
image, which is required to decrease system complexity and processing time because
grayscale images are simpler to modify than RGB images.

3.1.2. Noise Reduction

The scanner or the paper backdrop might produce noise in a scanned image; the
image may become fuzzy due to insufficient illumination and stained regions, such as dots
and speckles. The image filtering technique improves the image by converting irrelevant
brightness information into valuable data, and is easily understandable and concentrated
on machine interactions. The median filtering (MF) strategy is utilized in this work to
remove noise from the signature image. The MF technique [40] is a statistically based
nonlinear method for reducing image noise. Applying a linear low-pass filter is the
preferred approach for smoothing, which is the appropriate method in a static signature.
The MF has the following two key advantages:

MF retains sharp edges, whereas low-pass linear filtering softens the edges.
MF is quite effective in smoothing down a noise spike.
MF retains the pertinent information of the image and changes the original grey value

of each pixel to the median gray value of the area of the neighborhood. This filter reduces
visual noise without causing edge blurring. The median is calculated by sorting the pixel
values of the neighborhood window and substituting the considered pixel with the middle
(median) value. The formula for the MF image D(x, y) of image I(m, n) is represented as (1).

D(x, y) = median(m,n)∈Rxy{I(m, n)} (1)

where m, n ∈ center around the processed pixel (x, y ).

3.1.3. Binarization

This process transforms a grayscale image into a binary image. Image binarization is
the earliest step of image processing and analysis. Pixels in an image are separated into
two different areas, black and white. The main goal of image binarization is to be able to
describe the difference between text in the foreground and text in the background. The
thresholding technique is the simplest type of binarization. In thresholding, pixels are
identified as foreground or background by comparing them to the maximum threshold
value. However, determining the optimal threshold value for such signature text is chal-
lenging. Inaccurate estimation of the threshold value leads to the erroneous classification
of pixels as foreground or background, which affects binarization results and the accuracy
of signature authentication.

In this research, the backdrop of an image is estimated using the grayscale morpholog-
ical method [41]. The contrast of the image text regions is boosted using the approximate
background data. A recognition threshold value for image sections is determined by
analyzing the histogram of the contrast image. In image processing, morphology can
be applied to two types of pixel sets: objects and structural elements (SEs). Objects are
described as collections of foreground pixels. SEs are created using both foreground and
background pixels.

The size of the SEs is first determined and calculated using the histogram of the
distance between consecutive edges. The morphological processing techniques include
dilation and erosion. SEs generate both dilation and erosion by interacting with a collection
of exciting pixels in an image. The SEs have a morphology and an origin. A⊕ B denotes
dilation, which is the collection of all shifts satisfying the condition in Equation (2):

A
⊕

B =
{

z
∣∣(B̂)z ∩ A 6= ∅

}
(2)
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where A is a set of foreground pixels, B is SEs,
(

B̂
)

is the reflection of the structuring B
about its origin, followed by a shift by z, and z’s are foreground values (one’s). The erosion
represented by the symbol A	 B is defined as Equation (3):

A	 B = {z|(B)z ⊆ A} (3)

3.1.4. Image Segmentation

Segmentation is used to extract the signature region from an image. This procedure
decreases the processing time by deleting the excess pixels of the image. In this work,
an automated segmentation technique is computed using the histogram; the region is
automatically segmented based on pixel values. The histogram depicts the total amount of
black-and-white pixels [42]. The distribution is horizontally and vertically separated. The
white pixel’s highest point is utilized as a trimming reference. The image is divided in half
to simplify the recovery of the starting and ending points.

Consequently, two points denote the beginning and end of cutting originating from
the highest point. The horizontal histogram determines the starting and ending positions
of the horizontal trim. Additionally, vertical cutting uses the vertical histogram to calculate
the beginning and ending locations. Equations (4)–(6) generate histograms:

HX = ∑n
y=1 bim(x, y) (4)

HY = ∑m
x=1 bim(x, y) (5)

imcrop =

{
originimage Xmax < X < Xmin and Ymax < Y < Ymin
0 otherwise

(6)

bim denotes the binary image, while m and n indicate the matrix bim’s rows and
columns, respectively.

3.1.5. Stray Isolated Pixel Elimination

In some signatures, extra points caused by ink flowing unrelated to the signature
may affect the original signature area. Consequently, the MATLAB function eliminates
any connected components (objects) with less than 50 pixels from the binary image B(x, y).
This procedure is known as an area opening, as shown in Equation (7).

Bnew(x, y) =bwareaopen (B(x, y) (7)

3.1.6. Skeletonization and Thinning

Thinning is an iterative process that results in skeleton production. This procedure
minimizes the number of character characteristics to aid feature extraction and classification
by erasing the width fluctuations of the pen. Applying a specific morphological operation
to the binary image B, a fast parallel thinning method (FPT) removes inside pixels to leave
an outline of the signature [43]. The FPT approach extracts the skeleton from an image by
removing all contour points except those relevant to the skeleton. As illustrated in Figure 3,
each point p(i, j) has eight neighbors.
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Each iteration is separated into two subiterations to preserve the structure of the
skeleton. See Algorithm 1 and Figure 4.

Algorithm 1: FPT

1: A (P1) is the number of (01) patterns in the ordered set P2, P3, P4, . . . ., P8, P9 that are the eight
neighbors of P1
2: B (P1) is the number of nonzero neighbors of P1
3 : B(P1) = ∑9

i=2 Pi
4: Iteration 1: P1 = 0

If 2 ≤ B (P1) ≤ 6
If A (P1) = 1
If P2 × P4 × P6 = 0

If P4 × P6 × P8 = 0
Else

P1 = 1
A (P1) = 2

5: Iteration 2:
P2 × P6 × P8 = 0, P2 × P4 × P8 = 0

Keep the rest points
6: End
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Skeletonization is achieved by removing specific foreground pixels from a binary
image through image thinning. Consequently, a collection of tiny arcs and curves portrays
the signature pattern. The complement of the image is adjusted to make the signature
bright and the background dark to skeletonize the original image. See Figures 5 and 6.
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3.2. Hybrid Feature Extraction

Feature extraction is a crucial step in the verification of a signature. The proposed
Hybrid Statistical Feature Extraction (HSFE) technique extracts highly informative features
by combining multiple types of features using three statistical approaches: interest point
features, global and local texture features, and curvelet transformation features.

3.2.1. Texture Feature

In image processing, the texture is described as a function of the spatial variation of
the brightness intensity of the pixel. Image processing is the primary term to define objects
or concepts in a given image. Texture analysis is critical in computer vision applications
such as object recognition, surface defect detection, pattern recognition, and medical
image analysis. This paper combines two statistical methods of edge direction matrices
(EDMs) [44] and local binary pattern (LBP) [45] to extract texture attributes.

LBP features are also known as the texture operator for a grayscale image, which
helps to characterize the spatial structure of the input image texture. Once the central
pixel value is obtained, the pattern code can be computed by comparing these values to its
neighborhoods. It can be expressed as Equation (1).

LBPN,R = ∑N−1
n=0 s

(
In − Ig

)2N (8)

s(x) =
{

1, x ≥ 0
0, x < 0

where Ig denotes the gray value of the center pixel, In represents the gray values of the
circularly symmetrical neighborhood, and N denotes the total number of spaced pixels on a
circle of radius R. The final texture feature employed in texture analysis is the histogram of
the operator outputs (i.e., pattern labels) accumulated over a texture sample. The operator
for grayscale and rotation-invariance texture description is shown in Equations (9) and (10).

LBPN,R =

{
∑N−1

n=0 s
(

In − Ig
)

i f ULPBN,R ≤ 2
N + 1 otherwise

(9)

where

ULPBN,R =
∣∣∣s(IN−1 − Ig

)
− s
(

I0 − Ig
)∣∣∣+∑N−1

n=1

∣∣s(In − Ig
)
− s
(

In−1 − Ig
)∣∣ (10)

However, LBP cannot provide information about shape; that is, the spatial relation-
ships of pixels in an image. As a result, LBP is combined with EDMS. The global features
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are the features that result from the shape of a signature contour [45]. EDMS is a feature
extraction approach that detects the texture of a binary image I(x, y) based on edge-to-
neighbor pixel relationships. Eight adjoining kernel matrices were applied, and each pixel
was linked to two neighboring pixels. A connection was established between the edge pixel
E(x, y ) and its neighboring pixels, as illustrated in Figure 7a. The eight pixels were used to
change the surrounding values into the position values, as shown in Figure 7b.
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Figure 7. (a) Two neighboring edge pixels, (b) EDMs principal.

This approach is presented from two perspectives: first-order relationship (FOR)
identification and second-order relationship (SOR) identification. Each cell in the FOR
matrix has a location between 0 and 315 degrees, depending on the pixel neighborhood
association. The relationship between the pixel values can be determined by computing the
occurrence of the FOR values while considering the edge image of each pixel concerning
two other pixels.

The relationships are sorted according to their priority by ordering the values in FOR
in descending order. Subsequently, the highest-order relationships are selected, and the
others are disregarded. The acquired relationships are computed and saved in the SOR
cell. Algorithms 2 and 3 provide critical statistical features, including data attributes and
distribution descriptions.

Algorithm 2: FOR

1: for each pixel in (E (x,y))
2: If p (x,y) = 0 {Black pixel at center} Then
Increase the frequency of occurrences at FOR (2,2) by 1
3: If p (x + 1) = 0 {Black pixel at 0◦} Then,
Increase the frequency of occurrences at FOR (2,3) by 1
4: If p (x + 1, y − 1) = 0 {Black pixel at 45◦} Then
Increase the frequency of occurrences at FOR (3,1) by 1
5: If p ((x, y − 1)) = 0 {Black pixel at 90◦} Then
Increase the frequency of occurrences at FOR (2,1) by 1
6: If p ((x − 1, y − 1)) = 0 {Black pixel at 135◦} Then
Increase the frequency of occurrences at FOR (1,1) by 1
7: If p (x, y − 1) = 0 {Black pixel at 180◦} Then
Increase the frequency of occurrences at FOR (2,3) by 1
8: If p (x − 1, y + 1) = 0 {Black pixel at 225◦} Then
Increase the frequency of occurrences at FOR (3,1) by 1
9: If p (x, y + 1) = 0 {Black pixel at 270◦} Then
Increase the frequency of occurrences at FOR (2,1) by 1
10: If p (x + 1, y + 1) = 0 {Black pixel at 315◦} Then

Increase the frequency of occurrences at FOR (1,1) by 1
End
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Algorithm 3: SOR

1: Sort R1 = FOR (x, y)↓
2: For each pixel in (E (x, y))
3: If E (x, y) = Black Then

R2 = Relationships of neighborhood two pixels in E (x, y))
4: Compare (R1, R2)
5: Connected cell in SOR = SOR + 1,
End

3.2.2. Interest Point Features

This work uses the speeded up robust feature (SURF) to identify an image’s interesting
points. SURF is a resilient representation approach invariant to translation, rotation, and
scaling. This descriptor is used to find the similarity between different interesting points.
The entry of an integral image

∫
(x, y) at a location (x,y)T is used to represent the sum of

all pixels in the input image I(x, y) within a rectangular region formed by the origin and
(x,y)T. See Equation (11). ∫

(x, y) =
i≤x

∑
i=0

j≤y

∑
j=0

I(i, j) (11)

Additionally, the Hessian matrix is used to identify blob-like formations at regions
where the determinant is optimal. The Hessian matrix H (p, σ) at point p = (x,y)T and scale
σ = 3 is shown as Equation (12):

H(p, σ) =

[(
Lxx(p, σ)

Lxy(p, σ)

)(
Lxy(p, σ)

Lyy(p, σ)

)]
(12)

where Lxx (p, σ) is the convolution of the second-order derivative of the Gaussian ∂g(x,σ)
∂x

with image
∫
(x, y) at point p and is similar to Lxy (p, σ) and Lyy (p, σ).

3.2.3. Curvelet Transformation (CT)

CT is a multiscale pyramid with several orientations and placements at each length
and is needle-shaped at a small scale. CT was produced in recent years to address the inher-
ent limits of conventional multiscale representations, which describe curve-like edges with
a limited number of coefficients compared to wavelets far from optimal [46]. The CT tech-
nique captures the curved edge of characters in an Arabic script. The CT is mathematically
described as Equations (13) and (14):

CT =
∫ 0

R
f (x)

−
Wa,b,θ(x)dx (13)

Wa,b,θ(x) = Wa(Rθ(x− b)) (14)

where Wa,b,θ(x) are the wavelet coefficients; a is the number of levels in the wavelet pyramid
(a = 4); b = [3 4 4 5] represents location scalar parameters; θ is an orientation parameter
θ ∈ [0, 2π]; Rθ =

(
(cos θ

sin θ)(
sin θ
cos θ)

)
and is the rotation matrix with angle θ.

3.3. Feature Fusion

The precision of signature classification can be improved by extracting appropriate
features. A method for fusing hybrid features is proposed to solve the restriction of a
single feature extraction technique, as shown in Figure 8. Feature fusion combines several
feature vectors to generate the final feature vector, which involves complementing each
other’s advantages to obtain more robust and accurate outcomes [47]. The ESCF technique
converts the feature matrix into a feature vector that describes the signature and can reduce
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error rates. ESCF is simple to implement, does not cause the loss of information, and has
no impact on computational efficiency.
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Let A and B be two feature spaces specified on pattern space Ω. For an arbitrary
sample ξ ∈ Ω, the associated feature vectors are α ∈ A with n-dimensional features and
β ∈ B with m-dimensional features; the Serial Fused feature of ξ is defined as γ = (α

β)

with dimension (m + n ). The mathematical description of the fusing process is based on
Equation (15).

F(v) =


CT1×N

EDM1×N
SURF1×N

LBP1xN

 (15)

where F(v) is the final fused vector of 1 × sum(N) dimensions for all samples.

3.4. Feature Selection

Feature selection has been a productive area of research in intelligent algorithms and
machine learning, which is undoubtedly essential. Feature selection eliminates attributes
that may negatively affect the performance of classifiers, such as irrelevant, redundant,
or less informative features. As indicated in the preceding section, a simple concatenated
fusion technique combines various statistical features to generate an additional dimension
that can identify skilled forgeries and genuine signatures with high accuracy.

The problem with combining characteristics without considering correlation and dis-
crimination is that the resulting feature vector cannot detect a skilled forgery. Furthermore,
fused features from multiple approaches may provide high-dimension features that could
influence the verification process. As a result, a feature selection approach is necessary to
minimize the number of features and remove data correlations.

GA has achieved success in many applications. GA can handle more complicated
problems than neural networks and specializes in identifying an appropriate feature for
a given class. However, automating the design of such fitness functions is still an open
challenge. Adopting simple and effective fitness functions is a critical issue for GA.

In this work, GA is used with one class support vector machine (OC-SVM) classifier
to discover the genes with the highest predictive performance. Meanwhile, OC-SVM
is employed for the classification. This proposal is one of the valuable contributions to
reducing the issue of complexity and extending search spaces. Figure 9 shows the flowchart
of the GA-OCSVM.
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The procedure starts by randomly generating an initial population.

• The initial population size is created and set to 10.
• Calculate and assign a score of the fitness value to each member of the current pop-

ulation. These values are regarded as the raw fitness scores. The fitness function of
each individual is determined by evaluating the OC-SVM using a training set. As a
result, the fitness function containing classification precision is utilized in this study,
as described in Equation (16).

f ittness( f ) = Max(accuracy( f )) (16)

where accuracy( f ) is the accuracy of the classifier for the subset selection of features
expressed by f .

• Select members, known as parents, according to their expectations. Some individuals
in the present population with maximum fitness levels are selected as elite (the subset
with the best classification precision). These elite members are transmitted to the
following population.

• Generates offspring from the selected parents. Offspring are produced by combining
the vector entries of two parents (crossover). A uniform crossover with a crossover
rate of 0.8 is employed.

• Low-frequency offspring introduce variety into a single-parent population (mutation).
A uniform mutation method is selected with a mutation rate of 0.2.
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The roulette wheel method is applied to randomly cross and mutate the Chromosome,
which keeps the selective pressure in the center rather than at the extremes. In roulette
wheel selection, the circular wheel is divided into n pies, where n equals the number of
individuals. Based on their fitness level, each individual receives an appropriate circular
piece. The wheel is rotated at a defined circumferential point. The region of the wheel just
forward of the setpoint is referred to as the parent. The same method is followed for the
next generations. The probability Pi of the individual is defined as Equation (17).

Pi =
fi
S

(17)

where S = ∑n
i=1 fi, n is the size of the population, and fi is the fitness of individual i.

• Individuals with higher fitness are more likely to be selected for reproduction.

The 110 features are selected as optimal features, a collection of discriminant charac-
teristics. These distinguishing characteristics are fed into the classifier for verification.

3.5. One-Class Classification

One-class classification (OCC) is used to solve the issue of an imbalanced database
of signatures in the real world, where the authentic signature is only generated, and
the forged signature is absent, which indicates that the original signer is incapable of
forging the signature. This research employs OC-SVM to address these issues. The OC-
SVM can successfully deal with the positive samples in the training set. The appropriate
distance used by the radial basis function kernel (RBF kernel) must be specified to train
the OC-SVM. OC-SVM is developed in two phases. First, one-class information (normal
class) trains a classifier to distinguish genuine instances. The classifier rejects the samples
belonging to unknown classes and classifies them as forgeries, as shown in Figure 10. A
hypersphere with the shortest radius is constructed around the positive class data, which
encloses approximately every point in the dataset. According to the parameter RBF γ, the
hypersphere is defined by Equation (18).

K(xi, x) = e−γ(d(x,xi)) (18)

where d(x, xi) is the distance between the original images x and the target samples xi (or
positive), and γ = 0.07 is the deviation parameter of the kernel function. The OC-SVM
decision function is shown in Equation (19).

f (x) = sign(∑N
i=1 αiK(xi, x)− ρ), (19)

0 ≤ αi ≤
1
v

where N is the number of training instances, ρ is the distance of the hypersphere from
the origin, αi denotes the Lagrange multiplier for each distance, and v = 0.01 represents
the trade-off between maximizing the data points (encompassed by the hypersphere) and
reducing the hypersphere’s distance from the origin. If the decision value of the sample is
more significant than zero, we conclude that the target is a positive class; otherwise, it is a
negative class.
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4. Experimental Results and Analysis

The suggested model was evaluated on three databases: SID Arabic signatures,
CEDAR, and UTSig [48–50]. The model was constructed in MATLAB®2021a on an Intel®

CoreTM i5-8300H CPU @2.30 GHz.

4.1. Experiments and Evaluation of Preprocessing

The proposed preprocessing strategies’ performance is appraised using image quality
performance metrics such as mean square error (MSE) and peak signal-to-noise ratio
(PSNR) in Equations (20) and (21). The assessment aims to illustrate the efficiency of image
enhancement procedures on captured signature images.

The PSNR ratio is a quality measurement between the original image I and the en-
hanced image j. The high value of PSNR demonstrates the significant quality of the
processed image. However, as mentioned above, more than this ratio is needed in the
offline system because critical data may be lost during preprocessing. As a result, MSE is
used to verify the image quality without losing key features. If the value of MSE is close to
zero, the image quality is accepted. Conversely, the image loses its main attributes.

PSNR(I, J) = 10 log10 R2/MSE(I, J) (20)

MSE(I, J) =
1

N ∗M∑N
a=1 ∑m

b=1(I(a, b)− J(a, b))
2

(21)

M*N signifies the image size, and I(a, b) and J(a, b) denote the original and processed
image pixel intensities, respectively. R is the maximum allowable pixel value. Six experi-
ments were performed to show the impact and significance of each preprocessing method
on the image, as shown in Tables 2–4.
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Table 2. Results of preprocessing on the SID database.

Binarization Filtering Segmentation Isolation Thinning Skeletonization PSNR MSE

x
√ √ √ √ √

0.66473 55,796.55√
x

√ √ √ √
48.22255 0.9791√ √

x
√ √ √

59.33641 0.07576√ √ √
x

√ √
48.22479 0.97859√ √ √ √

x
√

48.21457 0.9809√ √ √ √ √
x 48.21593 0.98059√ √ √ √ √ √

64.85921 0.02124

Table 3. Results of preprocessing on the UTSIG database.

Binarization Filtering Segmentation Isolation Thinning Skeletonization PSNR MSE

x
√ √ √ √ √

0.29984 60,687.15√
x

√ √ √ √
48.29015 0.96397√ √

x
√ √ √

58.16179 0.10013√ √ √
x

√ √
48.29242 0.96347√ √ √ √

x
√

48.27211 0.96799√ √ √ √ √
x 48.27471 0.96741√ √ √ √ √ √

62.94906 0.03297

Table 4. Results of preprocessing on the CEDAR database.

Binarization Filtering Segmentation Isolation Thinning Skeletonization PSNR MSE

x
√ √ √ √ √

0.12439 63,189.01√
x

√ √ √ √
48.14727 0.99622√ √

x
√ √ √

60.87482 0.05316√ √ √
x

√ √
48.16807 0.99146√ √ √ √

x
√

48.16467 0.99223√ √ √ √ √
x 48.1664 0.99184√ √ √ √ √ √

72.40394 0.00374

Based on the MSE and PSNR results. The findings demonstrate that after applying
the proposed preprocessing, the output images maintain the exact representation of the
original images but with fewer pixels. It can be evidenced that the proposed preprocessing
methods achieve an equilibrium between noise reduction and image data preservation.

4.2. Experiments and Evaluation of Verification

In this step, the performance of the proposed model is comprehensively evaluated.
The verification is evaluated in two experiments: (a) features selection and extracted
features without combining preprocessing; and (b) integration preprocessing with feature
extraction and selection. FAR, FRR, and EER measurements were used to assess the model.
FAR and FRR are two types of error measurements used to evaluate the performance of
biometric systems. FRR is the percentage of authorized users whose request is incorrectly
rejected. FAR is the percentage of unauthorized users who are mistakenly accepted, and
EER specifies the point where the FRR and FAR are equal and stated as flowing equations.

FAR =
no. o f f orged signatures classi f ied as genuine

Total no : f orged signatures
× 100 (22)

FRR =

no. o f genuine signatures classi f ied
as f orged

Total no : genuin signatures
× 100 (23)

EER =
FRR + FAR

2
(24)
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The proposed model was only trained on genuine samples with no forgeries to simu-
late the verification system in the real world, as shown in Table 5. The ratio validation of
the model is 0.2. with random selected.

1. In the first experiment, the model performance was examined without preprocessing
steps. This experiment aims to show the impact of preprocessing on verification
accuracy. As shown in Table 6, the unsatisfactory verification results confirm that
each preprocessing step significantly enhances image quality; this is what the second
experiment proved.

2. The second experiment included all stages of the proposed model, including prepro-
cessing, hybrid feature extraction, feature fusion, feature selection, and verification.
The training phase was separately performed using three sets of genuine (G) samples.
Table 7 displays the verification results on the SID Arabic database.

Table 5. Division of database samples for modeling assessment.

Database Phase Genuine Skilled Forgery Simple Forgery

UTSIG

Training

Set1

0 0

575 (5 × 115)
Set2

1150 (7 × 115)
Set3

1380 (10 × 100)

Testing
2530 (22 × 115)

690 (6 × 115) 4140 (20 × 115)2300 (20 × 115)
1955 (17 × 115)

SID

Training

Set1

0 0

700 (7 × 100)
Set2

1000 (10 × 100)
Set3

1200 (12 × 100)

Testing
3300 (33 × 100)

2000 (20 × 100) 2000 (20 × 100)3000 (30 × 100)
2800 (28 × 100)

CEDAR

Training

Set1

0

275 (5 × 55)
Set2

385 (7 × 55)
Set3

550 (10 × 55)

Testing
1045 (19 × 55)

1320 (24 × 55)935 (17 × 55)
770 (14 × 55)

Table 6. Results of verification without preprocessing.

Database FAR_Simple FAR_Skilled FRR ERR

SID 0.077 0.065 0.190 0.130
UTSig 0.042 0.229 0.235 0.185

CEDAR 0.048 0.309 0.309
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Table 7. Results of the proposed model on the SID database.

Training Signature Sample FRR FAR_Skilled FAR_Simple EER STD * Acc.
(%)

Time
(Sec.)

7G 0.032 0.061 0.072 0.049 0.017 95.099 86.8799
10G 0.026 0.041 0.070 0.041 0.014 95.929 82.2922
12G 0.037 0.039 0.063 0.044 0.007 95.583 85.0556

* STD represents the standard division.

The suggested approach was also evaluated on CEDAR (English signature) and UTSIG
(Farsi signature) to demonstrate its comprehensive performance. The model attained superb
results on these databases, as shown in Tables 8 and 9.

Table 8. Results of the proposed model on the CEDAR database.

Training Signature Sample FRR FAR ERR STD Acc. (%) Time (Sec.)

5G 0.065 0.058 0.061 0.002 93.859 46.647
7G 0.067 0.034 0.051 0.008 94.926 48.5451

10G 0.056 0.041 0.048 0.004 95.179 52.3336

Table 9. Results of the proposed model on the UTSIG database.

Training Signature Sample FRR FAR_Skilled FAR_Simple ERR STD Acc. (%) Time
(Sec.)

5G 0.045 0.186 0.028 0.076 0.03 92% 97.6121
7G 0.055 0.178 0.024 0.078 0.02 92% 100.738

10G 0.052 0.162 0.030 0.074 0.02 93% 127.86

To compare the proposed algorithm results with existing signature verification tech-
niques, Tables 10–12 show the results of the proposed model with state-of-the-art methods.
From the results, it is clear that the performance of the presented model is good in terms of
FAR and FRR using one-class training. The average error rate has been reduced to 10% in
the SID database, 2–10% in the UTSIG database, and 3–7% in the CEDAR database.

Table 10. Comparison of the results of the proposed approach and the state-of-the-art methods using
the SID database.

References Feature Type Classifier FAR-
Simple

FAR-
Skilled FRR EER

[48] Geometric features + wavelet
Transformation (MLP) 0.0379 0.0895 0.1495 0.0984

[51]
Graphometric +

geometric

NN 0.0745 0.1870
- -HMM 0.295 0.3705

SVM 0.1385 0.1875
[52] Global feature PMCM-BP/SVM 0.0835 0.0910 - -

Proposed 0.063 0.039 0.037 0.044
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Table 11. Comparison of the results of the proposed approach and the state-of-the-art methods using
the UTSIG database.

References Features Type Classifier FAR-Skilled FRR EER

[53] ResNet CNN pretrained on
Handwriting classification tasks SVM - - 0.0980

[49]
Geometric features

SVM 0.1841 0.4170 0.2933(fixed-point arithmetic)
[54] DWT + Gabor filter CNN 0.1365 0.3267 0.223

[55]
HOG+ Discriminative Deep

Metric Learning (DDML) 0.1615 0.1896 0.1745DRT

[56]
Gaussian Weighting Based

Tangent SVM 0.2495 0.0741 0.1618
Angle (GWBTA) + Cylindrical

Shape Context

[57]
Statistical + shape
based + Similarity

based + Frequency based

Binary Red Deer
Algorithm (BRDA)

feature selection
+ Naïve Bayes classifier

- - 0.100

Proposed 0.162 0.052 0.074

Table 12. Comparison of the results of the proposed approach and the state-of-the-art methods using
the CEDAR database.

References Features Type Classifier FAR FRR EER

[58]

Histogram of oriented
gradients (HOG)

SVM
- 0.2092

LPB 0.0890
LDF 0.0654 0.0581 0.0618

[59] Chain code histogram SVM 0.0784 0.0939 0.086

[60] DWT + local quantized patterns
(LQP) SVM 0.0746 0.0786 0.0766

[61] Local + Global SVM 0.0743 0.0446 0.0595
[34] Geometric feature Threshold 0.0654 - 0.0766

[62] DWT + multi-resolution
box-counting (MRBC) Gaussian process (GP) 0.0757 0.0643 0.07

[5]
pretrained

DCNN(GoogLeNet) + NCA
features selection

SVM - - 0.200

[63] SNN Threshold 0.0734 0.0694 0.0714

[64] Interval type-2 fuzzy set (IT2FS
ELM (extreme learning
machine) + SRC (sparse
representation classifier

0.1054 0.1236 0.111

[65] AlexNet Decision Tree (DT) - - 0.079
Proposed 0.041 0.056 0.048

4.3. Discussion

The proposed approach obtained superior FAR, FRR, and ERR on the three databases,
particularly for skilled forgeries, which is the essential contribution of this study. Each stage
of the model contributed to the increased precision. The preprocessing steps enhanced
the verification results because all uninformative data and noise were removed. Moreover,
the verification system’s supremacy is due to fused hybrid features and discrimination
feature selection. The proposed feature extraction is advantageous because it combines
multiple features to address the low intraclass difference between skilled forgery and
genuine signatures, and the high intraclass difference between original signatures to the
same writer. This combination maximizes the merit of each approach by complementing
the advantages of other techniques, hence improving verification capabilities.
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EDMs is a global textural descriptor used to analyze the entire image. Although
EDMs were adequate for simple forgeries, they could not achieve high precision for skilled
forgeries. For skilled forgers, LBP was more effective and accurate than EDMs. LBP
is a local texture descriptor that describes a small part of the image and extracts more
information. Some images may have local details that LBP could not figure out. In order
to increase the detection percentage of skilled forgery, the SURF descriptor was used to
add more distinct local features. SURF can detect and describe the interesting feature of
the image. The key points in the picture include characteristics such as corners, edges,
spots, and so on. The consistency of the key points can be helpful for performance. SURF
outperforms SIFT in terms of performance and computational complexity.

Furthermore, the curvy lines in the Arabic characters were captured using a CT; CT
accurately represents curved discontinuities. In addition, the feature selection strategy
plays a crucial role in improving accuracy by removing insignificant characteristics. It
also tackled the problem of correlation that may result from the feature fusion process, as
illustrated in Figure 11.
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Overall, the findings of the proposed methodology prove that the proposed method
performs considerably better than recent signature verification approaches.

The complexity of the proposed model was assessed in this work using computing
time. Each signature was processed in 0.01063 s, 0.01982 s, and 0.01544 s for the SID,
CEDAR, and UTSIG databases.

5. Summary of the Scientific Work

The Arabic OSV system was presented using six stages: preprocessing, hybrid fea-
ture extraction and fusion, GA-OCSVM-based optimum feature selection, and OCC. This
research suggests a multi-step process for preprocessing images, starting with image bina-
rization, and moving on to denoising, segmenting, isolating, thinning the signature, and
skeletonizing. Experiments yielded efficient results with high PSNR and low MSE. The
suggested approaches significantly impacted verification processing time and accuracy.

Though the proposed method elicits and fuses four different statistical techniques, the
ESCF fusion strategy has remained feasible regarding complexity. The best features were
then selected using GA.

Additionally, OCC was employed to address the need for forgery signature samples
in practical applications in the real world. The proposed model was implemented using
the three databases mentioned earlier.

6. Conclusions

This paper proposed a signature verification model with four primary phases: prepro-
cessing and hybrid feature extraction, followed by feature fusion. Finally, features selection
and verification. The algorithm’s output was constructed with genuine and forged sig-
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nature samples from three standard databases: SID-Signatures, CEDAR, and UTSIG. The
suggested approaches significantly impacted the verification processing time and accuracy.

The proposed method combined four different statistical techniques. The best GA-
based features were then identified for classification. Additionally, the proposed model
employed OC-SVM to address the restriction of the current Arabic OVS regarding skilled
forgery. The results revealed that the proposed system outperformed existing techniques.
It improved the FAR by 10% on the SID-Arabic signature database without increasing the
computation time. The experiment yielded 0.037 FRR, 0.039 FAR_skilled, 0.063 FAR simple,
and 0.044 EER.

Moreover, the model was superior in enhancing the EER values of UTSig and CEDAR
databases, which achieved 0.074 and 0.048, respectively. The FRR value could be enhanced
by adding structural features in the future. Additionally, the accuracy of feature selection
can be strengthened by improving crossover and mutation.
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