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Abstract: Accurate detection of respiratory system damage including COVID-19 is considered one of
the crucial applications of deep learning (DL) models using CT images. However, the main shortcom-
ing of the published works has been unreliable reported accuracy and the lack of repeatability with
new datasets, mainly due to slice-wise splits of the data, creating dependency between training and
test sets due to shared data across the sets. We introduce a new dataset of CT images (ISFCT Dataset)
with labels indicating the subject-wise split to train and test our DL algorithms in an unbiased manner.
We also use this dataset to validate the real performance of the published works in a subject-wise
data split. Another key feature provides more specific labels (eight characteristic lung features) rather
than being limited to COVID-19 and healthy labels. We show that the reported high accuracy of the
existing models on current slice-wise splits is not repeatable for subject-wise splits, and distribution
differences between data splits are demonstrated using t-distribution stochastic neighbor embedding.
We indicate that, by examining subject-wise data splitting, less complicated models show competitive
results compared to the exiting complicated models, demonstrating that complex models do not
necessarily generate accurate and repeatable results.

Keywords: COVID-19; deep learning; subject-wise data split; slice-wise data split; repeatability

1. Introduction

The spread of corona virus disease in 2019 (COVID-19) led to a worldwide pandemic.
This condition is caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2).
The gold standard diagnostic investigation for COVID-19 is the reverse-transcription-
polymerase chain reaction (RT-PCR) test. Furthermore, chest computed tomography(CT)
has also been accessible to clinicians for diagnosis [1]. The current literature has shown
that artificial intelligence (AI) is a rapidly growing technological advancement, actively
aiding the field of medical imaging in the fight against COVID-19. The traditional quali-
tative assessment of chest CT slices is very time-consuming and prone to error. CT data
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typically contain hundreds of slices that need to be read and assessed individually to reach
an accurate diagnosis. Hence, AI-assisted deep learning (DL) techniques are preferred,
and most of the recent publications have demonstrated promising outcomes on published
datasets [2–5]. The main concern about the available models and the datasets is related to
slice-wise splitting of the data, rather than focusing on subject-wise splits. In subject-wise
data splits, all CT slices coming from one subject are allocated only to a test or training set,
whereas in slice-wise split, this point is not considered [6]. Current studies of the application
of DL in health-related data have shown that slice-wise splits overestimate the accuracy of
the models and make them unreliable in clinical diagnostic applications [6,7]. In particular,
multiple observations from each subject should be split only in the training set or the test
set. Otherwise, complex DL algorithms are powerful enough to detect a confounding
relationship between the subject and the diagnostic status. Accordingly, unrealistically high
prediction accuracy may be reported, which should be avoided by focusing on subject-wise
splitting of the dataset.

Considering the available CT datasets for the diagnosis of COVID-19, many well-
known datasets are currently in the literature. Our analyses revealed that most publications
have used slice-wise splitting, resulting in overestimated high reported accuracy (Table 1).
Although in Table 1, we have presented some papers with subject-wise splits that have
reported high performance among their outcomes, we indicate that the designed models
in these papers typically use extremely selected and well-processed datasets that are not
representative of real-world circumstances. We investigate this issue in more detail in the
following sections.

Table 1. Summary of the published works on usage of DL in diagnosis of COVID-19 with CT
slices (slice-wise = IW, subject-wise = SW, C = COVID-19 and NC = non-COVID-19, N = normal,
ND = not determined).

Published DL
Work Dataset Slice-Wise or

Subject-Wise
Number of
CT Slices

Number of
Subjects DL Models Reported Accuracy

Yang et al.
[8]

COVID-CT dataset
[8] IW C: 349

NC: 463
C: 216

NC: VD

Transfer-Learning:
DenseNet-169,
ResNet-50, and

contrastive
self-supervised

transfer learning

F1-Score = 0.90
AUC = 0.98

Accuracy = 0.89

Ghaderzadeh et al.
[9]

Ghaderzadeh et al.
[9] IW C: 7644

NC: 2509
C: 190
NC: 59

Transfer-Learning:
NASNet

Sensitivity = 0.999
Specificity = 0.986
Accuracy = 0.996

Zhao et. al
[10] COVIDx CT 2A [11] IW

C, SARS-CoV-2
and CP: 194,922

N: ND

C, SARS-CoV-2,
and CP: 3475

N: ND

BigTransfer (BIT)
[12]

Accuracy = 0.992
Sensitivity = 0.987
Specificity = 0.995

NPV= 0.996
PPV=0.985

Zhang et al. [13] CC-CCll;
Zhang et al. [13] IW

C: 156,070
viral pneumonia:

159,700
N: 95,459

C: 839
viral pneumonia:

874
N: 758

A 3D classification
networks

Accuracy = 0.924
Sensitivity = 0.943
Specificity = 0.911

Kassania et al. [14]

Cohen et al. [15],
and KaggleRSNAP-
neumonia Detection

dataset [16]

IW C: 20
N: 20

C: ND
N: ND

Examination of
transfer learning
with a range of

methods, including:
DenseNet121,

Xception,
InceptionV3,
DenseNet201,

InceptionResNetV2,
VGG16, VGG19,
NASNETLarge,
NASNetMobile,

ResNet50v2,
ResNet101V2, and

ResNet152V2

Accuracy = 0.99
Precision = 0.99

Recall = 0.99
F1-Score= 0.99
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Table 1. Cont.

Published DL
Work Dataset Slice-Wise or

Subject-Wise
Number of
CT Slices

Number of
Subjects DL Models Reported Accuracy

Jaiswal et al. [17] COVID CT slices [8] IW C: 746
N: ND

C: ND
Normal: ND

COVIDPEN:
Pruned

EfficientNet-B0

Accuracy = 0.85
AUC = 0.84

F1-Score = 0.86

Kogilavani et al.
[18] Kaggle IW C: 1958

N: 1915
C: ND
N: ND

VGG16, DenseNet,
MobileNet,
Xception,

EfficientNet, and
NASNet

Accuracy = 0.97
F1-Score = 0.98
Precision = 0.99

Recall = 1

Chouat et al. [19]
GitHub

repository [8], and
Kaggle [20,21]

IW C: 408
N: 325

C: ND
N: ND

VGGNet-19,
ResNet50, Xception,

and InceptionV3

Accuracy = 0.905
F1-Score = 0.905
Precision = 0.915

Recall= 0.903

Zouch et al. [22]
Database of CT

slices provided in
GitHub [23]

IW C: 349
NC: 408

C: ND
NC: ND

VGG19 and
ResNet50

Accuracy = 0.98
F1-Score = 100

Precision = 0.993
Recall = 100

Ortiz et al. [24] CC-CCll;
Zhang et al. [13] SW

C: 156,070
viral pneumonia:

159,700
N: 95,459

C: 839
viral pneumonia:

874
N: 758

Inception ResNetV2
Accuracy = 0.95

AUC = 0.96
Sensitivity = 0.94

Wang et al. [2] COVIDx [2] SW C: 358 CXR
N: not determined

C: 266
NC: 5538

no pneumonia: 8066
COVID-Net

Accuracy = 0.933
Sensitivity = 0.91

PPV = 0.989

To compare the proposed method with the published works and to show the disadvan-
tage of reporting the results from slice-wise splits, we introduce a new publicly available
CT slice dataset (ISFCT Dataset), accompanied by a subject-wise split, demographic data,
and ground truth classification (https://zenodo.org/record/7997151, accessed on 2 June
2023). The ground truth is not only limited to COVID-19 and healthy classes, and it
benefits from detailed information comprising eight characteristic lung features in the
right or left lung for all CT slices from all subjects. Moreover, we applied a diverse
range of previously published and new DL models to some of publicity existing datasets
(elaborated in Table 1) and the new ISFCT dataset and evaluated the performance of the
models using slice-wise and subject-wise strategies, generalization ability, and repeatability.
We also evaluated the effect of decreasing or increasing the complexity of the models
(for example, number of the layers) on the performance of the models. The utilized and
newly designed DL models are freely available for further comparison by researchers
(https://zenodo.org/record/7997151, accessed on 2 June 2023). It is expected that this
dataset and models will improve reproducibility and make the associated research more
discoverable with less need to duplicate efforts.

2. Materials and Methods

A comprehensive range of different algorithms in the literature was applied to the
ISFCT dataset, and their performance was compared. Furthermore, two shallow models
were developed to show how a simpler architecture could address our and other avail-
able datasets.

2.1. Dataset

The ISFCT Dataset was collected by Sepahan Radiology, Isfahan, Iran, and the study
was approved by the Isfahan University of Medical Sciences Institutional Review Board
(IRB) (IR.MUI.RESEARCH.REC.1399.003) and adheres to the tenets of the Declaration of
Helsinki. Written informed consent was obtained from all participants.

A range of characteristic lung features is already known for COVID-19, including
ground-glass opacity (F1),peripheral (F2), central (F3), peribronchovascular (F4), consoli-
dation (F5), reversehalo (F6), crazypaving (F7), and atelectasis (F8) (eight subclasses) [25].
These radiological patterns are significant for determining the severity of COVID-19 [13];
however, in previous AI-based studies, such detailed features were all merged in the pres-

https://zenodo.org/record/7997151
https://zenodo.org/record/7997151
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ence or absence of COVID-19. To address this issue in the ISFCT Dataset, eight characteristic
lung features and their existence in the right (R) or left (L) lung were marked for each CT
slice. Figure 1 and Table 2 demonstrate a summary and samples of the features. In binary
classification, in which only health and COVID-19 are considered, the COVID-19 label is
assigned according to presence of F1-R or F1-L, as is prevalent in other published works.
According to previous studies, men appear to fare worse, and our findings showed a similar
data distribution [26]. A previous study examining a mixture of patients suffering from
COVID-19 and SARS observed that there are positive correlations of increasing age, male
gender, and severity of disease with mortality, and our dataset agrees [27]. In accordance
with our demographic data, the average age of patients infected by COVID-19 is 51 years
old with a standard deviation of 14.61, and 57 percent of all patients are men.
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Figure 1. Samples of eight characteristic lung features and one healthy case.

Table 2. The explanation of eight characteristic lung features.

Feature Explanation Symbol

Ground-Glass Opacity The hazy gray indicates increased density inside the lungs [25]. F1

Peripheral The feature is situated on the edge or periphery of the lung. F2

Central The feature is located in the middle of the lung. F3

Peribronchovascular Thickening of the interstitial or bronchial wall [28]. F4

Consolidation The alveolar air spaces are filled with fluid, cells, tissue, or other material [29]. F5

Reverse Halo Central ground-glass opacity surrounded by denser consolidation of a crescent shape or
a complete ring of at least 2 mm in thickness [30]. F6

Crazy Paving Scattered diffuse ground-glass attenuation with superimposed interlobular septal
thickening and intralobular lines [31]. F7

Atelectasis Complete or partial collapse of the entire lung or area(lobe) of the lung [32]. F8

The ISFCT Dataset contains data from 178 subjects diagnosed with COVID-19 (43,399 CT
slices) and 156 healthy controls (39,767 CT slices). All CT slices have an equal size of
768 × 768 pixels, and each subject has (on average) 260 CT slices. The distribution of scans
labeled with each of the eight characteristic lung features is presented in Figure 2. This
dataset alsoincludes demographic details, including gender and age.
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Figure 2. Distribution of CT slices in each subclasses (eight characteristic lung features).

2.2. Data Preprocessing

Each individual is presented by multiple CT slices, and each CT slice may have one
of the lung characteristic features in the left (L) or right (R) lung; the presence of each
is considered presence of that feature in the CT slice. Many images contain more than
one feature because of the characteristic lung changes during acute and chronic periods
of disease [25]. The patterns observed on CT images of COVID-19 are dynamic and can
be categorized into four stages. The earlystage spans from 0 to 4 days following the
manifestation of the initial symptoms. In this stage, one can observe F1 unilaterally or
bilaterally in the lower lobes. The second stage has a duration of 5–8 days and is known as
the progressive stage, during which one can detect F1, F7 patterns, and F5. These features
are distributed bilaterally in multiple lobes. The third stage, known as the peak, is from
the ninth to the 13th day. During this period, dense F5 becomes more predominant. The
fourth stage of the disease, absorption, becomes apparent after 14 days, around the time
the infection becomes more controlled. At this stage, the F7 pattern and F5 are steadily
absorbed. However, F1 remains. These radiological patterns of disease are significant for
classification of severity of COVID-19 during assessment of the patients. As a result, some
images are placed in different categories. In the supporting materials, a Microsoft Excel file
is prepared, and for each patient, number 1 in each column (features) indicates the presence
of any feature. The input CT slices are generally scaled to retain compatibility with the
network structures. For most of the networks, the input size is fixed at 224 × 224 × 3.
However, for some networks, such as EfficientNetB0 and Efficient CovidNet [33], the input
dimensions are adjusted to the determined size by the published papers. To standardize
the CT slices, the brightness of each image is transferred to the 0–1 interval. The different
data split methods utilized in this paper are illustrated in Figure 3.



J. Imaging 2023, 9, 159 6 of 14J. Imaging 2023, 9, x  6 of 14 
 

 

 
Figure 3. The proposed process for data selection and evaluation. 

2.3. Algorithms Based on Transfer Learning 
Most DL algorithms have numerous parameters, training of which requires a huge 

number of labeled data. Transfer learning is introduced to take advantage of such 
algorithms in applications with small numbers of data. For this purpose, a pre-trained DL 
algorithm with learned parameters is used, and only a small proportion of the parameters 
remained trainable with the new dataset (which is not essentially similar to the original 
data) [10,27]. We used famous pre-trained models (trained on the ImageNet dataset [34], 
including ResNet50V2, EfficientNetB0, EfficientNetB3,VGG16, EfficientNetB0, and 
EfficientNetB3 [35]). Additionally, a limited number of published algorithms trained with 
COVID-19 data (NASNet-based model [9], COVID-NET, and MobileNet) were used as a 
baseline for our transfer learning approaches. 

For transfer learning, the kernels of the CNN layers were initialized with pre-trained 
ImageNet weights. For the EfficientNetB0, EfficientNetB3, ResNet50V2, VGG16, and 
VGG19 models, the weights of CNN levels of the models were frozen first, and all fully 
connected layers were removed and substituted with a new fully connected classifier. The 
architecture of this classifier was selected empirically. More details are provided in Table 
3. For transfer learning on COVID-19-based networks, such as Efficient CovidNet, 
NASNet, and COVID-Net, the networks were pre-trained on ImageNet and then on 
provided COVID-19 datasets in their related papers. 

Table 3. Architecture of different transfer learning models (FC: demonstrating how fully connected 
layers have been developed). 

Classification 
Models Input Slice Size FC Initial Weights 

ResNet50v2 (224 × 24 × 3) 

Average pooling 2D 
Flatten layer 

Dense 256 
Drop out 0.5 

Dense 2 

ImageNet 

VGG16 (224 × 224 × 3) 

MaxPooling2D  
Flatten  

Dense256 
Dense 2 

ImageNet 

Figure 3. The proposed process for data selection and evaluation.

2.3. Algorithms Based on Transfer Learning

Most DL algorithms have numerous parameters, training of which requires a huge
number of labeled data. Transfer learning is introduced to take advantage of such algo-
rithms in applications with small numbers of data. For this purpose, a pre-trained DL
algorithm with learned parameters is used, and only a small proportion of the parameters
remained trainable with the new dataset (which is not essentially similar to the original
data) [10,27]. We used famous pre-trained models (trained on the ImageNet dataset [34],
including ResNet50V2, EfficientNetB0, EfficientNetB3,VGG16, EfficientNetB0, and Effi-
cientNetB3 [35]). Additionally, a limited number of published algorithms trained with
COVID-19 data (NASNet-based model [9], COVID-NET, and MobileNet) were used as
a baseline for our transfer learning approaches.

For transfer learning, the kernels of the CNN layers were initialized with pre-trained
ImageNet weights. For the EfficientNetB0, EfficientNetB3, ResNet50V2, VGG16, and VGG19
models, the weights of CNN levels of the models were frozen first, and all fully connected
layers were removed and substituted with a new fully connected classifier. The architecture
of this classifier was selected empirically. More details are provided in Table 3. For transfer
learning on COVID-19-based networks, such as Efficient CovidNet, NASNet, and COVID-
Net, the networks were pre-trained on ImageNet and then on provided COVID-19 datasets
in their related papers.

Table 3. Architecture of different transfer learning models (FC: demonstrating how fully connected
layers have been developed).

Classification Models Input Slice Size FC Initial Weights

ResNet50v2 (224 × 24 × 3)

AveragePooling2D
Flatten layer

Dense 256
Drop out 0.5

Dense 2

ImageNet

VGG16 (224 × 224 × 3)

MaxPooling2D
Flatten

Dense256
Dense 2

ImageNet
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Table 3. Cont.

Classification Models Input Slice Size FC Initial Weights

EfficientNetB0 (224 × 224 × 3)

MaxPooling2D
Flatten

Dense256
Dense 2

ImageNet

EfficientNetB3 (300 × 300 × 3)

MaxPooling2D
Flatten

Dense256
Dense 2

ImageNet

MobileNet (224 × 224 × 3)

AveragePooling2D
Flatten layer

Dense 256
Dropout 0.5

Dense 2

ImageNet

COVIDnetwork based
on NASNET (224 × 224 × 3) No change

ImageNet and
Ghaderzadeh et al. [9]

COVID-19 dataset

COVID-Net (224 × 224 × 3) Dense 2 COVIDx [2]

2.4. Shallow Algorithms

To show the performance of shallow networks in addressing our and other datasets,
we also developed M1- and M2-COVID networks. The M1-COVID network consists of
three convolution operations. We adopted max-pooling after each convolution, and a batch-
normalization layer was utilized. Rectified linear unit (ReLU) was considered as an acti-
vation function, and two dense layers were finally added. The M2-COVID network has
similar structure to M1-COVID, with two additional convolutional layers, each followed by
batchnormalization and max-pooling. Additionally, more dropouts between layers were
added. In terms of hyperparameters, we employed Adam optimization and a batch size of
32 for both networks. The loss function was set to categorical cross-entropy.

2.5. Implementation Details

To train the models, the learning rate was initialized with a value of 0.0001. This value
was determined by a grid search and then tuned using a cosine annealing learning rate
scheduler [36,37] and a decay factor. In our dataset, the COVID-19 and non-COVID-19
case distributions were almost similar, but a weighting scheme was used to eliminate any
bias in predictions, giving more weight to samples from smaller data groups. Softmax
was used as an activation function in the last layer of all models. Additionally, the binary
cross-entropy as a loss function and Adam as an optimizer showed better performance on
examined models and were used to train the models.

For transfer learning models (based on networks pre-trained on ImageNet), the
weights of all the layers of the base model were frozen, and the fully connected layers were
removed and substituted by newly trained classifiers.

For networks pre-trained on COVID-19, two strategies were selected:

1. For evaluating the performance of these models on our new dataset, the model was
trained from scratch;

2. For transfer learning, fully connected layers were substituted and retrained.
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2.6. Performance Evaluation Metrics

Model accuracy and loss curves are presented for evaluation of the networks. For M1-
and M2-COVID, confusion matrixes are also presented. The following metrics are al so
provided to show the performance of the models:

Accuracy =
TP + TN

TP + FT + TN + FN
(1)

Specificity =
TN

TN + FP
(2)

Precision =
TP

TP + FP
(3)

Sensitivity/Recall =
TP

TP + FN
(4)

NPV =
TN

TN + FN
(5)

where true positive (TP) refers to the correctly classified COVID-19 samples; false-positive
(FP) is the number of non-COVID-19 samples classified as COVID; true-negative (TN)
indicates the non-COVID slices correctly classified as non-COVID; and false-negative (FN)
refers to the number of COVID-19 samples classified as non-COVID.

3. Results
3.1. Comparison of Algorithms in Slice-Wise and Subject-Wise Splits

In this section, various models are assessed in two distinct ways using our new
ISFCT dataset:

1. In slice-wise setting, the data are randomly divided, and CT slices from the same
subject maybe present in both the training and test data;

2. In subject-wise setting, the data are split such that the training and test splits contain
slides from different subjects.

The evaluated algorithms include transfer-learning models and shallow algorithms.
Table 4 shows the performance in more detail. Based on the results, COVID-Net, M1-COVID,
and M2-COVID achieved the best results on the ISFCT dataset with a slice-wise split.

Table 4. Performance of the examined models based on different measures.

Models
Slice-Wise Subject-Wise

ACC Precision Recall Specificity NPV ACC Precision Recall Specificity NPV

Transfer
Learning Models

ResNet50V2 0.84 0.64 0.46 0.76 0.60 0.59 0.35 0.11 0.84 0.55

EfficientNetB0 0.52 0.50 1 0 0 0.44 0 0 1 0.56

EfficientNetB3 0.50 0 0 1 0.50 0.48 0 0.4 0.6 0

VGG16 0.84 0.73 0.38 0.87 0.60 0.62 0.69 0.37 0.79 0.55

COVID
network
based on
NASNET

0.94 0.93 0.95 0.92 0.95 0.66 0.66 0.67 0.67 0.66

MobileNet 0.52 0.52 0.56 0.47 0.50 0.49 0.47 0.40 0.57 0.50

COVID-NET 0.99 1 0.99 1 0.99 0.60 0.73 0.54 0.7 0.50

Shallow
Models

M1-COVID 0.99 0.99 0.99 0.99 1 0.58 0.58 0.40 0.56 0.58

M2-COVID 0.99 1 0.98 1 0.98 0.61 0.67 0.40 0.78 0.53

The COVID network based on NASNet also showed good performance. These results
indicate that our simple models, M1-COVID and M2-CVOID, have good performance
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in comparison with investigated transfer learning-based models and multiple COVID-
based networks.

It is clear from Table 4 that the performance of the models decreased drastically when
the data were split subject-wise. Achieving high accuracy with a subject-wise split remains
a challenging task.

To provide a better view regarding the high performance of our two shallow models,
in Figure 4, ROC, learning rate, and precision-recall curves with different thresholds for
M1-COVID and M2-COVID models in the slice-wise approach are shown.
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for M1-COVID and M2-COVID using various thresholds.

To provide a visual description of different splitting methods, each CT slice is rep-
resented by two features (one point) using t-distributed stochastic neighbor embedding
(t-SNE). CT slices pertaining to each subject are depicted in different colors, and 10 individ-
ually clusters are found for 10 randomly selected subjects in Figure 5, indicating common
characteristics of slices from each subject. Figure 6 provides visual comparison of slice-wise
and subject-wise splitting in CT slices. There is no doubt that discrimination of COVID
(blue) from healthy (red) is a challenging task. However, as shown with slice-wise splitting
(left panel—Figure 6), test images (circle mark) are selected from subjects (clusters), which
are learned by the algorithm during the training stage (x mark). In particular, in slice-wise
splitting, the leakage of information yields unreliably high accuracy, which is not achieved
with a subject-wise split (right panel—Figure 6).
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high accuracy, which is not achieved with a subject-wise split ((right) panel).

3.2. Average Accuracy of DL Models in Classification of Sub-Class Features

In this section, the performances of DL models in the classification of sub-class fea-
tures are presented. We conducted a comprehensive examination of the provided eight
features in the ISFCT dataset. Our main aim was to evaluate how effectively models could
detect individual features, which are considered significant in COVID-19 detection but
have received less attention in previous studies. In our evaluation, we assessed model
performance for each feature (both right and left) using a multi-classifier approach. This
approach determined the presence or absence of the examined feature in each sample. We
present the results in Table 5. However, it is important to note that there were an insufficient
number of samples available for features 6 and 7 to properly evaluate model performance.
As a result, these two features are not included in the table. In general, our investigation
revealed that the examined models did not exhibit remarkable performance in accurately
identifying the different features present in the provided samples. Therefore, it is crucial
for future research to focus on developing models that effectively detect these features. Ad-
ditionally, further investigation should explore the impact of the presence of these features
on detecting the given disease.
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Table 5. The average accuracy of different models in sub-classes.

Models F1 F2 F3 F4 F5 F8

Transfer Learning
Models

ResNet50v2 0.75 0.57 0.50 0.47 0.57 0.51

EfficientNetB0 0.73 0.50 0.53 0.48 0.51 0.37

EfficientNetB3 0.74 0.40 0.69 0.40 0.48 0.40

VGG16 0.74 0.45 0.65 0.46 0.64 0.64

COVID network
based on NASNET 0.80 0.53 0.76 0.56 0.72 0.66

MobileNet 0.67 0.53 0.60 0.53 0.51 0.68

COVIDNET 0.75 0.40 0.79 0.61 0.65 0.60

Shallow Models
M1-COVID 0.73 0.50 0.77 0.71 0.74 0.40

M2-COVID 0.50 0.50 0.62 0.58 0.59 0.52

4. Discussion

COVID-19 detection papers frequently employ explainable methods, such as Grad-
Cam [38], occlusion sensitivity maps [39], and GSInquire [40], to demonstrate whether
the detection decision of their proposed model is based on relevant information. These
techniques are used to ensure that models are not drawing conclusions based on irrelevant
data, which might result in situations in which correct decisions are made for the wrong
reasons. However, these tools only show the decision of a proposed model in a specific
dataset, and they cannot be interpreted as tools to show generalizability of the models. If
a model can find the cause of a disease such as COVID-19 by analyzing CT slices, it should
perform well on similar data. We examined a number of publicly available COVID-19
datasets. In some datasets, such as [9], the subject to which each slide belongs to was
not determined. We tested M1-COVID on the dataset provided in [9]. The results after
only 15 epochs were very promising (accuracy 0.99, precision 0.99, and recall 0.8), offering
the conclusion that the data are divided slice-wise and randomly. We also examined the
COVIDxV9B dataset provided by [2]. The authors proposed COVID-NET to be applied
on this dataset, which is divided into training and test tests in a subject-wise manner.
We applied multiple models, such as VGG16, Resnet, DenseNet201, EfficientNetB0, and
M2-COVID, on this dataset. All investigated models have shown more than 86% accuracy,
demonstrating that the dataset consists of an easy set of images based on these findings.
However, when we applied the provided model, COVID-NET, to our dataset, the model
performed poorly. We conclude that the COVIDxV9B collection (which has been declared
to be a subject wise split) does not reflect all CT imaging data collected in health centers,
and almost all of the models have very good performance on it. Although these models
provide many achievements and new understandings, they are not applicable in real-world
scenarios. We came to the conclusion that models perform effectively for two reasons: they
are trained on a biased dataset with the data partitioned slice-wise, or they are trained
on datasets that are in an ideal shape and selected with bias. According to these findings,
creating models capable of operating on heterogeneous datasets that are similar in content
but vary in other features is crucial. Our publicly accessible data on eight sub-classes
demonstrate enhanced performance with relatively small networks but not very high
performance when subject-wise splitting is considered. We are providing free access to
the ISFCT dataset. Moving forward, our work will focus on utilizing and analyzing the
dataset using a subject-wise split. This approach will enable us to gather more reliable and
accurate findings over time.

It is important to mention that, although the dataset is extensive, it does have its
drawbacks. Some features, such as reverse halo and crazy paving, occur rarely, making
it difficult to train networks with precision. Moreover, the dataset lacks proper scoring
for each feature, creating ambiguity in determining the significance of each feature in
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classifying a patient as normal or infected. However, there is potential for creating a more
comprehensive dataset in the future, enabling a more in-depth analysis of how each feature
impacts disease diagnosis and assigning appropriate scores for these features.

5. Conclusions

In this paper, the ISFCT Dataset is introduced to challenge the previously published bi-
ased works, which were designed without considering subject-wise splitting. Furthermore,
each CT scan in this new dataset has more than only two labels (COVID-19 and healthy).
In particular, F1 toF8 are introduced as features in the lung, and their presence in the right
or left lungs is labeled.

Our primary focus in this work is to classify each subject-wise split CT scan to a healthy
or COVID-19 set (based on the presence of F1-R or F1-L). We examine multiple models
on our dataset using two methods of data splitting, slice-wise and subject-wise. With
a slice-wise approach, data are randomly split into training and test sets. As a result, CT
slices from the same individual are possibly present in both the training and test sets, which
is a kind of information leakage and can lead to bias. The examined models include transfer
learning using the most successful models and some state-of-the-art COVID-19 detection
networks, as well as two shallow models. We show that shallow models perform acceptably
well in a slice-wise split, with results comparable to state-of-the-art COVID-19 detection
models. However, when the data are divided subject wise (such that the training and test
sets comprise CT slices from different subjects), the performance of all developed models
decreases drastically. We therefore conclude that the high performance of many published
works is only due to slice-wise splits and leakage of the information, rather than the power
of the designed networks, which perform similar to our proposed shallow models (M2).
Generally, the bias problem in DL models due to incorrect data distribution is difficult to
resolve with transfer learning or augmentation [41]. The comparably high performance of
the proposed shallow network (M2) demonstrates that a deeper model does not always
imply a more unbiased and accurate model. Furthermore, the model’s generalization does
not necessarily improve by training models on out-of-field datasets. This finding shows
that evaluated models that have shown promising results in previous papers were only
customized to perform well with specific datasets and not in most cases, in which the data
are not split in a subject-wise manner.
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