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Abstract: The composition of an image is a critical element chosen by the author to construct an
image that conveys a narrative and related emotions. Other key elements include framing, lighting,
and colors. Assessing classical and simple composition rules in an image, such as the well-known
“rule of thirds”, has proven effective in evaluating the aesthetic quality of an image. It is widely
acknowledged that composition is emphasized by the presence of leading lines. While these leading
lines may not be explicitly visible in the image, they connect key points within the image and can also
serve as boundaries between different areas of the image. For instance, the boundary between the
sky and the ground can be considered a leading line in the image. Making the image’s composition
explicit through a set of leading lines is valuable when analyzing an image or assisting in photography.
To the best of our knowledge, no computational method has been proposed to trace image leading
lines. We conducted user studies to assess the agreement among image experts when requesting
them to draw leading lines on images. According to these studies, which demonstrate that experts
concur in identifying leading lines, this paper introduces a fully automatic computational method
for recovering the leading lines that underlie the image’s composition. Our method consists of two
steps: firstly, based on feature detection, potential weighted leading lines are established; secondly,
these weighted leading lines are grouped to generate the leading lines of the image. We evaluate
our method through both subjective and objective studies, and we propose an objective metric to
compare two sets of leading lines.

Keywords: image composition; leading lines; grouping lines; image aesthetic

1. Introduction

Images serve as a means of storytelling. Martine Joly et al. [1] propose that, apart from
the depicted scene and its staging, various aesthetic and artistic elements aid creators in
conveying their intended message. These elements encompass aspects such as the color
palette, lighting mood, framing, point of view, and composition. Consequently, the recon-
struction of these aesthetic components can facilitate image analysis and comprehension.
The reconstruction of specific aesthetic features has been the subject of numerous publica-
tions, including the computation of a color palette [2,3], which describes the primary colors
in an image, and the determination of the lighting style [4] associated with an image’s
aesthetic. Concerning models of image composition, the primary challenge arises from
the diverse approaches used to describe image composition. Some authors employ shape-
based models [5], describing composition in terms of primary shapes or their juxtaposition,
while others utilize line-based models [6]. Shape-based image composition models also
incorporate leading lines to elucidate the arrangement of shapes (see Figure 1), providing
an aesthetic rationale for these leading lines. For instance, Molly Bang [5] expounds that an
underlying upward diagonal leading line implies motion or tension.
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Figure 1. Leading lines: Our method automatically computes the likely leading lines that underlie
the image’s composition. Depending on the complexity of the image’s composition, our method can
reconstruct either a single leading line or multiple leading lines. The top is the original image and the
bottom is the leading line result.

First research on image aesthetics evaluation employing hand-designed features un-
derscored the pivotal role of composition in assessing aesthetics. In these studies, authors
do not attempt to reconstruct the composition’s leading lines but instead rely on classical
composition rules, such as the rule of thirds or upward and downward diagonals [7]. They
assess the alignment of main objects along vertical and horizontal lines that divide the
image into thirds [8,9]. While the detection of leading lines is crucial for image content
understanding and aesthetic evaluation, there is currently no dedicated method for recov-
ering these lines. Debnath et al. [10] acknowledge the impact of leading lines on aesthetic
scores and propose a convolutional neural network for leading line recognition. However,
their method merely estimates the existence of evident leading lines in an image without
pinpointing their precise locations. The rule of thirds is also widely utilized in automated
image cropping [11,12].

The role of lines in the human visual system is fundamental for perceiving and
interpreting the surrounding world. Lines are essential visual elements that the brain
utilizes to construct shapes, objects, and scenes. This process of visual perception and
organization aligns with Gestalt psychology, which provides historical context for our
comprehension of how the brain processes visual information [13]. The importance of
lines in perception is evident in the concept of “Illusory contours”, where edges, lines, or
shapes appear to exist in a visual scene even when they are not physically present in the
stimulus. In other words, our visual system fills in missing information to create the illusion
of contours or boundaries that are not physically present. One of the most well-known
examples is the Kanizsa figure or "Pac-Man configuration" (see Figure 2). Recent research
has indicated that certain neuroanatomical structures are specialized for detecting lines.
Line perception involves both lower-level processing in the primary visual cortex (V1) and
higher-level processing in areas within the visual association cortex [14].

Figure 2. The Kanizsa figure is an optical illusion that demonstrates how our brains perceive invisible
lines. Even though there are no actual lines connecting certain shapes, our brains create the perception
of hidden lines due to our innate ability to fill in gaps and interpret incomplete information.
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Semantic lines are closely related to leading lines, as they demarcate lines in an image
that separate different semantic regions [15]. Numerous studies have focused on the
detection of semantic lines [15–18]. While in some instances, semantic lines may also serve
as leading lines for composition, the utilization of semantics to expound image composition
has sometimes imposed the overly restrictive assumption that leading lines are confined to
the borders of regions with different semantics. Leading lines, in fact, can connect different
points without necessarily denoting a boundary between zones. It is important to note that,
in most cases, a subset of semantic lines can also be considered leading lines. However,
leading lines in an image encompass lines that are not categorized as semantic lines (see
Figure 3).

Figure 3. Comparison between semantic lines (depicted by blue lines in the left-hand images,
computed according to [17]) and composition leading lines (illustrated by red lines in the right-hand
images) computed with our method: while certain semantic lines may also serve as composition
leading lines, they alone are insufficient for a comprehensive depiction of the image’s composition.
Indeed, there are composition leading lines that do not align with semantic lines.

To our best knowledge, no computational method has been introduced for tracing
image leading lines. Furthermore, there is no predefined ground truth for the leading lines
of image composition, as these are features derived from image analysis [1]. The consensus
among image experts in defining leading lines for composition is a valid question, as
individual interpretations may vary. Subjective studies show substantial agreement among
experts on most images, supporting the feasibility of automated leading line detection.

In this paper, we present a method that automatically identifies the likely leading lines
in an image’s composition (see Figure 1). Our method encompasses several steps: (1) the
computation of the contrast map of the image; (2) the generation of potential leading lines
weighted according to the contrast map and (3) the grouping of potential leading lines to
extract the final leading lines.

Our main contributions are the following.
First, we show that there is a strong consensus among experts on where the com-

position leading lines of an image are. Consequently, this confirms that modeling image
composition by a set of leading lines is a worthwhile approach.

Second, we propose a dataset of forty images and related composition leading lines
drawn by four experts. The dataset includes photographs, paintings, and drawings.

Third, we propose the first non-supervised method to compute the likely composition
leading lines of an image. We designed the method as simple as possible to have an
understandable method.

In Section 2, we provide a brief overview of existing methods designed to detect lines in
images. The primary focus of these methods is the detection of real edges in images rather
than underlying lines. In this section, we also summarize the approaches related to semantic
line detection. In Section 3, we introduce a metric for measuring the distance between two
sets of lines and assess the consensus among experts in identifying composition leading lines
within images. The results of this study underscore the validity of proposing an automatic
algorithm for reconstructing composition leading lines. Section 4 explains the method used to
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compute the composition leading lines, while Section 5 delves into the analysis of the results.
Furthermore, we demonstrate that this algorithm can be a valuable tool for guiding image
capture in Section 6. Finally, Section 7 concludes this work and sets the stage for future works.

2. Related Works

Numerous methods have been proposed for the detection of lines in digital images.
The Hough Transform [19] stands as one of the most commonly employed algorithms for
line detection. It transforms the task of detecting straight lines in image space into the
challenge of detecting points within a parameter space. However, the Hough transforma-
tion can be time-consuming. To mitigate this issue, the probabilistic Hough Transform
was introduced [20]. Other innovative approaches, such as those presented in [21,22],
apply an elliptic-Gaussian kernel and a pyramid structure to enhance the original Hough
transform. In line detection through the Hough Transform, the typical initial step involves
edge detection. Apart from Hough Transform-based line detectors, several approaches,
such as [23–25], have proposed mathematics-based line segment detectors.

Furthermore, there are learning-based approaches, such as those found in [26–29], which
leverage convolutional neural networks (CNNs) to predict line segments within images.
For example, [26] utilizes a U-net architecture to predict segment masks and tangent fields,
subsequently applying a grouping algorithm to convert them into the final line segments.
On the other hand, [27] introduces a representation of line segments using center, angle,
and length, combined with a shared feature architecture for line segment prediction. These
methods’ objectives are to recover line segments (local features) in images to extract the
wireframe structure of objects or to estimate human poses [30,31]. Composition leading lines
do not necessarily consist of objects’ edges so we will not rely on these approaches. Edges
of objects or boundaries of large-scale semantics zones are meaningful curves in images
that structure the images. Computing these geometric structures in a digital image without
any a priori information led to many publications [32,33]. computed maximal boundaries
using local contrast and the Helmholtz Principle. The large-scale structure given by these
methods is not the set of composition leading lines but is close to a sketch outlining the
boundaries of image objects.

Semantic lines, defined as the primary and significant lines that demarcate various
semantic regions within an image [15], have also received considerable attention. The work
of [15] marked the inception of semantic line detection, with the introduction of a multi-task
learning CNN for predicting semantically important lines. To facilitate network training,
they assembled a semantic line dataset comprising 1750 images and employed the mean
intersection over union (mIoU) metric for line distance measurement. Building upon the
work of [15,17,18], devised a harmonization network and a complete graph for determining
the final semantic lines. They also introduced a harmony-based intersection-over-union
(HIoU) metric to gauge the overall matching score of two sets of lines. Additionally, [16]
incorporated Hough Transform into a deep learning network for predicting semantic lines
in the parametric space, thereby transforming line detection into point detection. They
curated a dataset containing 6500 images across various scenes and proposed a distance
metric that considers both Euclidean and angular distances for measuring line distances. A
common thread among these works is their adoption of supervised learning approaches,
which necessitate the availability of suitable datasets.

However, these traditional line detection methods are unable to reconstruct the leading
lines in the image. Straight line detections focus on the actual physical lines in the image,
edge detections focus on portraying the edge details of the object rather than a line that
has leading effects. Semantic lines are approximated to leading lines in special scenarios
but are incompletely equivalent. Semantic line detections emphasize detecting lines that
segment semantic regions of an image rather than analyzing image compositional features.
Therefore, we propose a method aimed at reconstructing the image leading lines.
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3. Leading Lines to Model Image Composition

We propose to model image composition, encompassing various visual mediums
such as painting, engraving, drawing, and photography, using the concept of leading
lines. In this paper, the comprehensive characterization of a line encompasses an infinite
arrangement of points, yet its manifestation on a 2D image materializes as a collection of
pixels originating from the image’s perimeter.

Composition-leading lines structure the entire image, they do not describe the structure
of a part of the image, consequently, a composition-leading line goes through the image:
starting on an image edge and ending on another image edge. Composition-leading lines
structure the content inside the image while the edges define the frame, consequently, we
assume that image edges are not composition-leading lines. Assessing the viability of using
leading lines to model image composition involves examining expert consensus in defining
the leading line when recovering image composition. Without author-provided ground
truth, identifying leading lines becomes subjective, relying on viewer interpretation.

We show that expert agreement justifies automated leading line detection. Indeed,
we conducted a subjective experiment where image experts outlined leading lines based
on their composition interpretation and compared their similarities. For this purpose, we
adapted the metric introduced by Zhao et al. [16] in Section 3.1.

3.1. Distance between Two Sets of Lines

In their work [16], Zhao et al. introduced a similarity score known as the EA-score to
quantify the similarity between two lines. This score is defined as:

SEA(li, lj) =

((
1−

θ(li, lj)

π/2

)
×
(
1− D(li, lj)

))2

(1)

Here, li and lj denote two lines, and θ(li, lj) stands for the angle between these two
lines, D(li, lj) represents the Euclidean distance between the midpoints of two lines (both
lines are cropped to fit the image frame). It is essential to note that the image is first
normalized as a unit square before the computation.

Now, our objective is to assess the agreement between sets of manually defined
composition leading lines. As a result, we require a measure to evaluate the similarity
between two sets of lines. Leveraging the similarity score SEA, our initial step is to define
the distance dLS between a line li and a set G comprising N lines. We adopt the classical
method of computing the distance between one element and a set of elements based on the
distance between two individual elements. This is expressed as:

dLS(li,G) = min
n∈{1..N}

(dEA(li, gn)) (2)

Here, dEA(li, lj) = 1− SEA(li, lj) and gn denotes a line belonging to the set G.
Subsequently, we define the distance between two sets of leading lines, DLS(F ,G),

as the average of two average distances. The first average distance computes average
of dLS( fi, G), i = 0, 1, . . . , NF, whereas the second average distance computes average of
dLS( fi, F), i = 0, 1, . . . , NG, the equation to express this distance is as follows:

DLS(F ,G) = 1
2

((
1

NF

NF

∑
i=1

dLS( fi,G)
)
+

(
1

NG

NG

∑
i=1

dLS(gi,F )
))

(3)

In the equations above, F and G represent sets of NF and NG composition leading
lines, respectively. This formulation ensures that we obtain a symmetric distance measure,
meaning that DLS(F ,G) is equivalent to DLS(G,F ). This is consistent with the similarity
comparison logic, when comparing the results of leading lines in two images, the order of
the images does not affect the comparison result.
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3.2. Preliminary Study about Experts Agreements

Our preliminary study aimed to evaluate consensus among experts in image creation
and analysis regarding composition leading lines, considering the subjective nature of their
perception. In the experiment, four experts were tasked with delineating leading lines on a
diverse set of forty images. Using the metric described in Section 3.1, we quantitatively
assessed agreement among the experts, who had no time constraints in defining the lines.

The median distance between composition leading lines delineated by experts exhibits
an overall low value, signifying a high degree of consensus among them. The distances vary
within the range of 0.03 to 0.42, as illustrated in Figure 4. However, on the right-hand side
of the figure, we observe a more pronounced disparity between experts. This discrepancy
is particularly noticeable in certain images with intricate compositions, where even the
assessments of experts may differ significantly (see Figure 5).

Figure 4. Analysis of the distances between composition leading line sets traced by experts. The
images on the x-axis are arranged in order of the median distance. Each image is represented by a
box plot displaying the distribution of distance scores among the experts. The orange line within
each box plot represents the median distances between the composition leading lines identified by
the four experts.

(a) expert A (b) expert B

(c) expert C (d) expert D
Best agreement d = 0.03

(e) expert A (f) expert B (g) expert C (h) expert D
Worse agreement d = 0.42

Figure 5. Projection of the leading lines determined by each expert, to visualize the agreement
between them. Best agreement among experts: a to d images show the leading lines defined by each
expert. Each expert has defined a single leading line which is confused with the horizon, the median
distance between four sets of leading lines is 0.03. Worse agreement among experts e to h images
show the leading lines defined by each expert. In this case, two experts defined two leading lines
while the two others defined 3 leading lines, the median distance between four sets of leading lines is
0.42, nevertheless, we can note that all experts traced a downward diagonal as a leading line.

Except for eleven images, the inter-expert distances fall below or equal to 0.2. For
half of the images, the distances are less than 0.14. The median distance exceeds 0.4 for
only two images (images 26 and 35). This suggests a substantial level of agreement among
the experts.

The findings of this study indicate a strong consensus among the experts when identi-
fying composition leading lines in images. The substantial concurrence in their assessments
highlights the reliability and consistency of their judgments. Given the high agreement
among these experts, it is justified to put forth a model for detecting composition lead-
ing lines.
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In summary, the results of this preliminary study support the notion that experts
exhibit a strong consensus in their identification of composition leading lines in images.
This paves the way for developing a model in this domain.

4. Method: Computing the Composition-Leading Lines

In this section, we present our algorithm for detecting composition leading lines in
images. Figure 6 provides an overview of our approach, which consists of two main steps:
first, weighting all the potential leading lines, and second, grouping the lines to identify
the final leading lines.

Figure 6. Overview of our method’s pipeline. The operator "*" between "line set generation" and
"extracting" denotes the weight computation of a line (see equation 5)

The first step comprises three components:

1. We employ spline interpolation to resize the image from its original resolution to s× s.
This resizing retains the general structure of the image.

2. We compute a contrast map of the resized image.
3. We assign weights to all potential lines based on the sum of contrast values for each

crossed pixel.

In the second step, we have developed a grouping algorithm to determine the final
leading lines from the set of potential lines. Each iteration involves grouping closely
positioned potential leading lines to form groups. The central leading line of each group
becomes one of the final leading lines.

4.1. Generation of the Potential Line Set

We begin by generating all possible leading lines in the image. A leading line starts
from one image edge and ends at another edge. Therefore, the total number of potential
leading lines is given by: s2 × 4×3

2 = s2 × 6. For each couple (i, j) ∈ s × s, it produces
3 lines starting from pixel i along border bn and ending at pixel j along border bm, with n
and m in {0, 1, 2, 3} and n ̸= m. Since there are four possible starting borders, each couple
(i, j) yields 12 lines. It is important to note that the couple (j, i) produces the same lines as
(j, i) (See Figure 7). To enhance the robustness of our results, we exclude very short lines
and those that are in close proximity to the image edges, as illustrated in Figure 7. This
reduces the search space to (s− δ)2 × 6. A typical value for δ is s/10.
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(a) (b)

Figure 7. Generation of all possible leading lines. (a) We generate 12 leading lines from each couple
(i, j), where i is the coordinate of the starting point on border k and j the ending coordinate on border
l ̸= k. The couple (i, j) is in s× s. Note, that the couple (j, i) produces the same set of lines. (b) Lines
near the edges, shown in red, are not considered potential leading lines.

4.2. Contrast Map: Discrete Derivative of Gradient L1 Norm

After generating each potential leading line, we calculate a weight for each line. A
higher weight signifies greater visual significance, indicating a higher likelihood of being a
leading line. Various forms of pixel contrast values are utilized for detecting salient pixels
in an image [34–36]. We propose computing the contrast mapMi,j as follows:

Mi,j = |Pi,j+1 − Pi,j|+ |Pi+1,j−1 − Pi,j|
+ |Pi+1,j − Pi,j|+ |Pi+1,j+1 − Pi,j|

(4)

Here, Pi,j represents the pixel Y value of row i and column j in the XYZ color space.
Our contrast value closely resembles both the discrete derivative of the L1 norm of the
gradient and the discrete Laplacian of the image.

Subsequently, the weight of a line is calculated as the cumulative value of the element-
wise of the pixel contrast values.

Wi = ∑
p∈li

Mp (5)

Here, p represents all the pixels in line li, andMp is the contrast value of pixel p.
We do not normalize line weight based on its length to prioritize longer lines. In fact, we

operate under the assumption that composition lines encompass the entire image globally.

4.3. Extracting of Leading Lines

Having obtained all the weighted potential leading lines, we proceed with an extract-
ing process (see Algorithm 1) to identify the final leading lines. The final leading lines are
represented by the central line of each group. Our extracting algorithm operates iteratively.
In each iteration, a new set of groups is generated, with a group count equal to or less than
that of the previous iteration. The process terminates when the number of groups remains
unchanged between two consecutive iterations. Each iteration follows these steps:

• We begin an iteration with a set of line groups: C = {Ci} with Ci =
(

li, Wi,
[
li
j

])
. The

superscript i is the index of the group, and the subscript j is the index of the line. Each
group is defined by:

– its central line li that is the line in the group whose weight is the median weight
of lines li

j belonging to the group.

– the lines li
j belonging to the group, also noted: lj ∈ Ci
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– a weight Wi equal to the maximum weight of leading lines weights in the group:
Wi = maxlk∈Ci

Wk

• We build a new set of lines L = {lp} consisting of the central lines of groups and
related weight and start a new group set to an empty set: C = {}

• For each line lp, in decreasing order of weight Wp, we evaluate if lp belongs to an existing
group Cq. The inclusion criteria for lp in Cq is as follows: (dEA(lp, lq) < δd)&(|Wp−Wq| <
δW). If the criteria are validated then the line lp is put in Cq, and we pass to the next line. If
lp is in the scope of Cq, i.e., (dEA(lp, lq) < δd) but with (|Wp −Wq| > δW) then the line lp
is discarded and we pass to next line. Finally, if lp has not been discarded and does not
belong to any existing group, a new group Ck = (lk = lp, Wk = Wp, [lp]) is built.

• At the conclusion of the iteration, we update these and the thresholds. Updating
the median weighted line as the central line of the group. The distance threshold is
fine-tuned by adding 1/S , while the weight threshold is fine-tuned by adding 1.

Algorithm 1: Leading line grouping.
Data: Leading line groups:
C = {Ci} with Ci =

(
centralLine: li, weight: Wi, lines:

[
li
j

])
while Cold ̸= Cnew do
{li} ← get centralLines of Cnew and sort them
Cold ← Cnew

Cnew ← {}
create new group C0 =

(
centralLine: l0, weight: W0, lines:

[
l0])

add C0 to Cnew

/* loop of lines */
for lp in {l j} do

/* loop of groups */
for Cq in Cnew do

if (dEA(lp, lq) < δd) then
if (|Wp −Wq| < δW) then

add lp to Cq lines
else

discard lp

end
end

end
if lpnot discarded and not in any Cnew then

create new Cp: (centralLine: lp, weight: Wp, lines: [lp])
add Cp to Cnew

end
end
update groups
δd ← δd + 1
δweight ← δweight + 0.5

end

The initialization process of the algorithm is the following: (1) set the initial values
for δW = 3 and δd = 8/s where s is the size in pixel of the resized image, and (2) the initial
set of lines are all the possible leading lines computed at the previous step. In practice,
we limit the initial set of lines to the first two percent of lines from the previous step, in
decreasing order, this speeds-up the algorithm and does not impact the final results. The
algorithm ends when the new set of groups is equal to the previous iteration one.

In the next section, we present some results, specifically the composition leading lines
computed by our algorithm, and then delve into a detailed analysis of these findings.
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5. Results and Discussion

In this section, we first showcase the reconstructed leading lines from various types of
images, including paintings and photography. Next, we assess our model’s performance
through subjective studies. Finally, we compare our results with ground truth data.

5.1. Results

Figure 8 displays a selection of results obtained using the following algorithm pa-
rameters: s = 64 pixels, δd = 8/s, and δW = 3. Overall, the reconstructed composition
leading lines are quite well aligned with our expectations. Our algorithm yields an average
of 2.8 leading lines across a dataset of 40 images, ranging from a single leading line for
straightforward compositions to up to 5 for more complex cases.

Figure 8. Results of leading lines: Test images include both paintings and photographs of various
compositions, our method gives results that are visually consistent with human perception of leading lines.

Figure 9 showcases the semantic lines obtained from the same 15 images using
Zhao et al.’s approach [16]. It is apparent that while in some instances, certain semantic
lines align with leading lines, the semantic line approach often falls short in detecting
composition leading lines. This observation underscores the need for our algorithm’s
proposal to reconstruct composition leading lines.

Figure 9. Semantic lines detection results [16].
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5.2. Subjective Study

In this section, we measure how the model performs for naive observers. To do this,
the leading lines predicted by the model are presented to a group of subjects with no
specific knowledge. After a brief presentation of what constitutes a composition leading
line, observers were asked to choose, through a 2AFC procedure (two alternative forced
choices), the results of the model and another version.

To assess the model’s relevance for describing leading lines, a Two Alternative Forced
Choice (2AFC) methodology is employed. The dataset includes 40 diverse images selected
for their variety.

For each image, three versions of the leading line are computed (See Figure 10):
one with the method described above, the other with the same number of lines randomly
arranged on the image and the last corresponds to the lines chosen by one of the experts. The
version of the lines chosen to represent the experts is, for each image, the one that minimizes
the distance from the other experts. This version is considered the most representative of
expert opinion for the considered image.

The following comparisons are proposed:

• model versus random
• model versus expert version.

our method random expert

Figure 10. An example for the comparison.

A total of fifteen volunteers took part in the experiment (11 males and 4 females). The
average age is 23.4 years with a standard deviation of 11.1. All participants have normal
vision or corrected-to-normal vision; four of twelve wear glasses.

Images are shown on a standard laptop monitor (Full HD resolution). The subjects are
given a short presentation of what the leading lines are with a few examples. They are then
asked to choose the version they feel best represents the leading lines over the images, as
shown in Figure 11. In order to avoid order and position bias, the order of presentation of
the 40× 2 = 80 images is randomized (order and side presentation).

Figure 11. Interface for the experiment. Participants have to choose the image where the displayed
line set corresponds as closely as possible to the image leading lines.
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The results of the experiment are presented in Table 1 and Figure 12. Participants
consistently preferred the lines suggested by our method when our method is confronted
with a random distribution. On the other hand, when the choice is between our method and
an expert’s proposal, the majority of subjects tend to choose the expert’s proposal, but our
method is nevertheless chosen in around a third of cases. These two effects are statistically
significant at a threshold of 1% error. (χ2 values are, respectively, 447.2 and 77.8).

Table 1. Results of the 2AFC Experiment.

Condition Choices for the Model Other Choices Percent

Our method vs. Random 559 41 93.2
Our method vs. Expert 192 408 32.0

A per image analysis shows that for all the images considered, the model is preferred
to a random distribution. When the choice is between the lines of an expert and that of the
model, a large variation is observed. Although the majority of the images are chosen by
the experts, the model is preferred for certain images, in particular, images 2, 8, 18 and 40.
Images 10, 11, 26, 35 and 37 remain problematic for the model.

The subjects’ choices are clearly in favor of the model when compared with a random
distribution of the same number of leading lines. When compared to the most representative
expert, the model’s choices are retained by the observers in about a third of the cases. This
suggests that the algorithm’s choices are of good quality, although they do not match the
accuracy of the experts. In some images, the model even seems to give an “opinion” that
the experts had not considered.

(a) (b)

Figure 12. Results of the subjective study: (a) Choice for the model when compared with the a
random distribution. (b) Choice for the model when compared with the most representative expert.
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5.3. Comparison of the Model with Ground Truth

In Section 3.2, we established the consistency of subjective markings between four
experts. Consequently, we utilized the results from the four experts as a reference to
validate the consistency of our algorithm’s output with the manual results. We introduced
our algorithm results as the fifth set of expert markers and employed our line set metric
to compute the distances between these five sets. These distance values constituted a
symmetric 5× 5 matrix, with zeros along the diagonals. Observing this matrix, we noted
that when the distance between two sets was less than 0.2, as depicted in Figure 13a, there
were no significant visual disparities between them. When the distance ranged between
0.2 and 0.3, as illustrated in Figure 13b, their layouts were similar, albeit with some slight
positional or quantitative differences. Therefore, distances less than 0.3 implied that the two
sets could be considered consistent. In contrast, distances between 0.3 and 0.4, as shown in
Figure 13d, indicated differences in the overall layout between expert B and expert C. While
the two sets of lines varied in their overall structure, some lines had similar positions. If the
distance between two sets exceeded 0.4, as depicted in Figure 13c, the results between the
algorithm and the experts exhibited significant differences in both the overall layout and
the positions of individual lines. Hence, distances greater than 0.3 signified inconsistency
between two sets of lines. Supplementary to the results in Figure 13, other quantitative
results on the differences between the model and the experts are appended in Appendix B.

Subsequently, we established two thresholds for these distances: τ1 = 0.2 was the
upper limit distance for two sets indicating overall agreement, while τ2 = 0.3 served as
the upper limit distance for two sets with acceptable differences. To assess the correlation
between the algorithm and the four experts, we calculated the median distances both with
and without the algorithm’s results. The results are presented in Figure 14, the orange line
represents the median distance between the four experts; the blue line signifies the median
distance between all five sets, including the algorithm’s set. As indicated in the figure, the
algorithm’s results were consistent with experts, except for specific images that exhibited
inconsistencies even among the experts.

In our empirical study of this model, we compared it with a random distribution
and analyzed the consistency of its results with expert labeling. The experimental find-
ings demonstrated the model’s effectiveness in reconstructing leading lines in images.
Although it may exhibit bias in some specific compositions, as seen in Figure 13c, the model
proved applicable in the majority of scenarios for reconstructing leading lines, as evident in
Figure 12.
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Figure 13. Comparison results between different sets of lines: The first row shows the distances
between the different leading lines set, green values representing distances less than 0.3 and two line
sets with consistent spatial distribution, and non-green values representing distances greater than
0.3 and two line sets with inconsistent spatial distributions. (a) indicate that the algorithm results
are consistent with the expert’s results. (b) indicates that the results of expert B have subjective
differences from the other results but are consistent overall. (c) shows agreement among the four
experts, but the results of our algorithm are inconsistent with the experts. (d) shows that there are
large subjective differences in this image, even among experts.

Figure 14. Distance analysis between line sets: The orange line illustrates the median distance of the
four experts. The blue line illustrates the median distance of the five experts, where the result of the
model is regarded as the fifth expert.
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6. Application

The reconstruction of leading lines aids in comprehending an image composition,
making our proposed model a valuable tool for photographers.

We have integrated our model into a camera, enabling the position of leading lines
to adapt to the captured content, thus offering photographers a compositional guide. As
depicted in Figure 15a represents the initial composition, while Figure 15b showcases the
composition adjusted based on the position of leading lines.

(a) before adjustment (b) after adjustment (c) clearly-composed (d) confuse-composed

Figure 15. Applications of leading lines. (b) is the optimized result of (a) with the guide of leading
lines displayed with green color. (c) Clearly-composed sea beach, (d) Pebble beach without clear
composition.

Moreover, the position and number of leading lines also contribute to capturing well-
composed images. An abundance of disorganized leading lines in a camera shot often
indicates an unremarkable image composition, as seen in Figure 15d. In contrast, clearly
composed images with distinct themes tend to feature concise and well-organized leading
lines, exemplified in Figure 15c. The leading lines reconstruction algorithm provides an
objective reference for assessing image composition.

7. Conclusions and Future Works

In this paper, we have demonstrated a consensus among experts in the identification
of composition leading lines within images, highlighting the potential utility of automatic
reconstruction for image composition analysis and assistance during image capture. To
detect probable leading lines, we have introduced an unsupervised automatic algorithm,
which initially calculates all potential weighted leading lines in an image based on pixel
contrast. Subsequently, it groups the weighted leading lines, ultimately generating the
final leading lines by identifying the centers of the groups. Acknowledging the subjective
variability of leading lines, we have devised a metric for quantifying the distance between
two sets of lines, allowing comparisons between sets with varying numbers of lines. In
addition to conducting several subjective studies, we have performed objective comparisons
to evaluate the accuracy and robustness of our algorithm.

For future work, we aspire to address other forms of leading curves, particularly
focusing on circular leading curves. We also aim to expand our ground truth dataset of
image composition leading lines to pave the way for supervised algorithms capable of
handling more intricate compositions and subjective preferences.
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Appendix A

The distance from the line set F to the line set G is computed as:

dLS(F ,G) = 1
NF

NF

∑
i=1

dLS( fi,G) (A1)

The distance from the line set G to the line set F is computed as:

dLS(G,F ) = 1
NG

NG

∑
i=1

dLS(gi,F ) (A2)

where NF is the number of lines in the set F , and NG is the number of lines in the set G.
Then we use the average of two distance as the final distance between two sets, which is
computed as:

DLS(F ,G) = 1
2
(dLS(F ,G) + dLS(G,F )) (A3)

Appendix B

A comprehensive compilation of all comparative results is accessible via the following
URL https://projets.jrcandev.netlib.re/leadinglines (accessed on 22 December 2023).

These results seem to support the hypothesis that the model’s output closely aligns
with that of the experts. Beyond the quantitative dimension, it is notable that the model’s
propositions, even when divergent from the average consensus, do not appear anomalous and
occasionally coincide with the judgments of one of the experts. To investigate this proposition,
further examinations involving a broader spectrum of experts would be requisite.

Matrix Algo Expert A Expert B Expert C Expert D

Figure A1. Comparison results and matrices.

https://projets.jrcandev.netlib.re/leadinglines
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