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Abstract: This article presents a computer vision-based approach to switching electric locomotive
power supplies as the vehicle approaches a railway neutral section. Neutral sections are defined
as a phase break in which the objective is to separate two single-phase traction supplies on an
overhead railway supply line. This separation prevents flashovers due to high voltages caused by
the locomotives shorting both electrical phases. The typical system of switching traction supplies
automatically employs the use of electro-mechanical relays and induction magnets. In this paper,
an image classification approach is proposed to replace the conventional electro-mechanical system
with two unique visual markers that represent the ‘Open’ and ‘Close’ signals to initiate the transition.
When the computer vision model detects either marker, the vacuum circuit breakers inside the
electrical locomotive will be triggered to their respective positions depending on the identified image.
A Histogram of Oriented Gradient technique was implemented for feature extraction during the
training phase and a Linear Support Vector Machine algorithm was trained for the target image
classification. For the task of image segmentation, the Circular Hough Transform shape detection
algorithm was employed to locate the markers in the captured images and provided cartesian plane
coordinates for segmenting the Object of Interest. A signal marker classification accuracy of 94% with
75 objects per second was achieved using a Linear Support Vector Machine during the experimental
testing phase.

Keywords: computer vision; neutral section; image processing; Circular Hough Transform; histogram
of oriented gradient; classifier

1. Introduction

Transnet is a South African state-owned company, and National Freight Rail is one
of the divisions with approximately 8000 km of electrified railway overhead lines. The
electrified lines are split into 3 kV DC (861 km), 25 kV AC (2516 km), and 50 kV AC
(4621 km). In a 25 kV AC traction system, it is common to find the neutral sections (NS)
installed along the railway overhead lines. The purpose of a NS is to separate two single
phases from shorting circuiting, which avoids tripping of the main power substations.
There are currently three conventional railway NS switching schemes, namely, ground
switching, pole switching, and onboard switching. The method of ground switching is
based on vacuum circuit breakers (VCBs), which are installed on the ground, and sensors
are used to detect the presence of a train. When a train is detected, it operates the VCBs to
automatically switch power to the train while it traverses through the NS. Han et al. [1]
developed a system that uses a ground substation, whereby axle counters on the ground
detect the position of the train and subsequently enable the substation to switch breakers.
The system uses mechanical VCBs, which require frequent maintenance due to the reduced
life span caused by the high voltage switching. Ran et al. [2] suggested replacing the
mechanical switches with Silicon Controlled Rectifiers (SCRs); however, this would require
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additional firing control circuitry that adds further complexity to the system. Transnet
Freight Rail implements the onboard switching scheme to switch electric locomotives when
traversing through a NS [3]. This scheme includes induction magnets that are installed
in-between the railway tracks at opposite ends of the NS and an onboard magnetic sensor
installed underneath the electric locomotive. When an electric locomotive passes through
one set of induction magnets, the onboard magnetic sensor is activated, which subsequently
initiates the onboard system to trigger the VCBs to remove power from the locomotive.
When the locomotive has traversed past the NS, a second set of magnets switches the VCBs,
thereby switching the locomotive ‘on’ with a different single-phase voltage supply. Figure 1
illustrates a typical Transnet railway NS installed at a length of 9.4 m on the overhead
catenary line with two separated 25 kV AC single phases. A set of induction magnets, each
having North and South polarities, is installed at the opposite ends of the railway track,
45 m apart.
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Figure 1. Neutral section switching configuration at Transnet Railway.

A major drawback to this approach is that there is a high cost incurred during the
installation and maintenance of the railway magnets, which are prone to theft. Furthermore,
deterioration of the magnetic field strength may result in the locomotive sensor failing
to detect a NS changeover. To circumvent the problems associated with this switching
technique, an alternate methodology is to replace the railway induction magnets with
visible signboards and an image identification system. A camera can then be mounted on
the locomotive to capture the stationary railway marker images. Image recognition can
be employed to initiate the switching sequence at either end of the NS. The idea of using
image recognition for automatic NS switching was proposed by Chen et al. [4]. In their
work, a simplistic edge detection technique was used to compare the diagonal lengths of
existing railway markers. However, their system was not tested in rainy and foggy weather
conditions. This approach was further extended by Mcineka and Reddy [5] and Mcineka
and Pillay [6], where the marker image is pre-processed and followed by localization
of the Region of Interest (RoI). The RoI is then segmented into Objects of Interest (OoI),
where a machine learning algorithm is employed to perform the classification of each OoI.
In this article, additional insights into this methodology are provided, and key findings
are discussed.

The article is structured as follows: A discussion of related work on computer vision
applications in the railway industry is given in Section 2. Section 3 describes the proposed
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computer vision model used for NS switching. Section 4 provides the system performance
of optimal parameter settings and comparative tests for the different machine learning
models for the selected application. Section 5 provides the conclusion of the study with
recommendations for improvement.

2. Related Literature for Object Detection in the Railway Industry

Over the last few years, deep learning methods have shown their adept ability to
outperform traditional methodologies in several fields, for instance, autonomous driving
and road sign recognition [7,8]. Notably, computer vision is a prominent discipline that
has rapidly evolved and progressed using various rich deep learning techniques. Since the
focus of this work is to apply computer vision methods to detect unique railway signal
markers, image processing and object detection methods will fundamentally play a vital
role in the successful implementation of NS. Primarily, object detection is the process of
detecting instances of certain classes in a digitized image. A common approach in the
object detection framework is to create an adequate set of candidate images for training
and validation purposes. Various image preprocessing techniques are usually employed to
derive distinctive object characteristics that focus on the image ROI and subsequent OoI.

It should be noted, however, that when examining related works about railway com-
puter vision applications [9–28], there is still much room left for the field to mature. Further-
more, it is stressed that existing algorithms and approaches are not universal, since railway
signage differs in various countries around the world. The primary variations exist to ad-
dress specific applications, which may not be universally applicable to all railway systems.

Early developments in the field of railway sign identification were similar to the
recognition approaches tailored to road signs, a problem for which many solutions have
been proposed in the literature. Traditional approaches made use of color segmentation
and template matching techniques, which were highly susceptible to varying illumination,
changing weather conditions, perspective distortions, motion blur, and image rotation.
In the research conducted by [9], a Scale Invariant Feature Transform (SIFT) method was
used to circumvent these issues and extract distinctive features from the captured greyscale
railway sign images. Their chosen target for the experiments was selected as the Japanese
‘slow-speed-notifying signal’ sign board. The proposed approach was built upon clusters
of modified SIFT features that were able to learn specified features of the selected target
sign and achieved a recognition rate of 90%. An alternate approach was given by [10],
whereby the authors developed their own algorithm to detect a selected class of ‘W11p’
railway signs. They simplified the processes of localization, segmentation, and recognition
using a backpropagation Artificial Neural Network (ANN). Their method included an
interactive approach for generating the training dataset, enabling diverse colour pixel
inclusion, and using a full spectrum ANN response for automatic threshold adjustment
based on segmentation and recognition results. The system achieved 90% effectiveness at
detecting ‘W11p’ signs and approximately 97% effectiveness at classifying them. However,
a relatively small sample set of 71 railway signs was used to train the model.

More recently, a comprehensive review of vision-based on-board obstacle detection
in railways was given by [11]. They also confirm that development in this field is far less
established, as evident by the significantly smaller number of published related works in
comparison to road sign recognition. Furthermore, there is a need for additional computer
vision research and development, particularly in the railway transportation industry. The
authors point out that on-board obstacle detection in railway systems can be classified
into two main categories, namely, traditional computer vision and Artificial Intelligence
(AI) methods. In traditional computer vision systems, ‘hand-crafted’ features such as edge
detection, shape descriptors and threshold segmentation are utilized in the object recog-
nition process. In contrast, AI-based methods, in particular deep learning, use Machine
Learning (ML) and CNN techniques for end-to-end learning of features extracted directly
from the captured images. In addition, the authors also allude to limited publicly available
datasets. They suggest that this may be a contributing factor to the fewer published works
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in the literature for railway image detection and classification. The dataset ‘RailSem19’ was
introduced as an openly available data source specifically developed for semantic railway
scene understanding. It contains images from the viewpoint of a train and is specific to
a variety of tasks that include the classification of trains, switch plates, and other objects
typically found in railway scenarios. However, the sample dataset does not contain any
anomalies or obstacles. In this study, the development of the proposed model is based on
custom-made railway images of unique switching markers mounted alongside the railway
line. The image acquisition process is subsequently described in Section 3.1.

Other railway applications that use AI methods for image recognition include rail
track detection [12–15], obstacle detection [16–20], and distance estimation [21–23]. In the
field of railway management systems, asset mapping is an important consideration. This
field has the potential to be greatly improved using computer vision approaches. Due
to the lack of available data, Ref. [24] proposes the use of a Faster R-CNN (Region-based
Convolutional Neural Network) approach to address autonomous railway asset detection.
They achieved a 79.36% accuracy on the detection of railway signals and a mean average
precision (mAP) of 70.9% using their dataset. Their system has the potential to be improved
since the authors claim that the results were compromised by a high degree of similarity
across the different classes and relatively small object sizes in the low-resolution images
that were captured.

More recently, Ref. [25] discusses the importance of automated detection and recog-
nition of traffic signals in railway systems, especially for mainline locomotives, where
autonomous driving is still challenging due to the complex nature of the environment.
The authors introduce a deep learning method using the You Only Look Once (YOLOv5)
architecture for detecting and recognizing wayside signals, including a heuristic for identi-
fying blinking states. The system was trained on a curated version of the ‘FRSign’ dataset
emanating from the French Railways, thereby enabling real-time recognition under various
conditions, such as rainy and nighttime environments.

Another important consideration is railway track circuit signal object detection. In
the research conducted by [26], they propose a two-phase detection algorithm to monitor
the status lights of the track circuit signals in the control room. Their computer vision
monitoring system effectively provides important information for humans to conduct work
on the railway track, thus enhancing safety when driving the locomotive.

A safe level crossing at the intersection of a railway line with a pedestrian footpath,
road, or bridge intersection is another area that has been explored using deep learning
techniques [27,28]. Level crossings in particular pose many safety challenges and are a
significant risk to the public. Traditional sensing systems often rely on a single sensor,
which may not provide sufficient information for effective decision-making and automation.
In a previous study [27], the authors proposed a Closed-Circuit TeleVision (CCTV) system
with integrated deep learning object detection algorithms to track specific targets such as
pedestrians, vehicles, and bicycles to assist with the prevention of accidents and fatalities.
The authors suggest that the computer vision system can be further enhanced using a
radar device to act as a fail-safe mechanism. Similarly, in the work presented by [28], the
authors propose an intelligent safety system that combines object detection and classifi-
cation methods using various image processing inputs related to railway crossings. The
system employs a Graphical Processing Unit (GPU) for accelerated image processing and
deep learning ANNs to autonomously detect potential risky situations with vehicle and
pedestrian trajectory tracking in real-time. The system can send critical safety information
to a central server for further processing and notification to railway operators and relevant
emergency services. Field-based results using the YOLOv3 tiny model achieved an average
recall of 89%, indicating the system’s efficiency in detecting objects and potential accidents
at railway crossings. As can be seen from the literature survey, there is a diverse range
of applications in which computer vision has been utilized to solve various problems in
the railway industry. To the authors knowledge, there is still a gap in the literature that
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addresses the use of image processing specific to NS voltage changeover. Therefore, the
main contributions of this paper are summarized as follows:

• We suggest the replacement of the conventional electro-mechanical system used for
switching traction supplies with a computer-based vision system. The advantage
of such a system would be that it would reduce maintenance costs and enhance the
reliability of the system. Visual detection has the potential for high accuracy and rapid
automation.

• The introduction of visual markers along the railway line as triggers for NS would
enable precise and automated control of the vacuum circuit breakers within the loco-
motive.

• Employing the Circular Hough Transform shape detection for image segmentation
enhances the accuracy of locating the markers in the captured images.

• The implementation of image classification using a Histogram of Orientation Gradient
technique and training a Liner Support Vector Machine algorithm for target image
classification are novel approaches in this context.

3. Methodology for Neutral Switching Using Image Detection

Computer vision can be defined as the perception of objects through a camera and a
computer. The camera acquires an image, and a computer processes the image, and then
classifies or interprets what the image contains. The data for this research focused on two
markers located at strategic points along the NS railway. An open signal is defined as “N”,
and a close signal is denoted by “C”. The label “I” defines an invalid model output state.
The selected criteria for the markers were pre-defined, such that they needed to be circular
in shape, have a white foreground with a black background, and conform to the South
African National Standard for safety signs (SANS1186). Additionally, it should be clearly
visible at a certain distance during varying lighting and motion blur situations. Figure 2
presents an overview of the proposed computer vision system. Each stage is described in
the subsequent sections.

3.1. Image Acquisition

Before training and testing the model, a dataset was required to store the acquired
images for further processing. Figure 3 shows the initial setup during image acquisition
for obtaining a dataset. A lighting stand was used to simulate the height of an electric
locomotive, where the camera would be mounted to capture the markers. A measuring
wheel was used to measure the capture distance, ranging from 10 m to 45 m away from
the markers. A laptop with an Intel® Core processor (i5-10210U) running at 1.60 GHz with
16 GB of RAM was used to host a Graphic User Interface (GUI) application. The purpose of
this was to conveniently capture and store the images based on the captured distance, noisy
or distorted frames caused by the train motion, weather conditions, and the time of day
(day or night). Furthermore, saving these images into a specific folder allows you to easily
split the images into training and testing images. Images were captured using a Charged
Coupled Device (CCD) camera at a resolution of 640 × 480. In [29], the selection of a CCD
camera over a Complementary Metal Oxide Semiconductor (CMOS) is motivated. Figure 4
illustrates the captured images for the varying conditions. The compiled dataset comprised
a total of 550 images of which an additional 104 were negative or invalid images. Finally,
the dataset was split between 70% and 30% and used for training and testing purposes,
respectively.
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images captured at distances of 45 m, 30 m, 25 m, 14 m, and 10 m.

3.2. Image Pre-Processing
3.2.1. RGB to Greyscale Conversion

The images are acquired in the red (R), green (G), and blue (B) channels of the RGB
colour space, and image processing was then applied to convert the images into a greyscale
colour space. The motivation for this is to convert the RGB image (where each channel can
be defined by m × n × 3 array) into a greyscale image that only has one channel that can
range from 0 to 255 (where 0 represents absolute white and 255 represents absolute black
color) for an 8-bit colour system [30]. To convert an RGB image to a greyscale image, the
updated colour space is defined by Equation (1):

Y = (0.299 × R) + (0.587 × G) + (0.114 × B) (1)

where Y denotes the resulting luminance.
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3.2.2. Bilateral Noise Filter

These acquired images undergo a noise-filtering stage to remove noise and background
artefacts. The denoising of images is an important part of image processing to eliminate
the noise embedded in the image [31]. In this study, the bilateral filter is utilized for noise
removal. The primary motivation for its use was based on its ability to smooth noisy images
while preserving edges. The Bilateral noise filter used in the pre-processing phase is given
as follows:

BF
[
Ip
]
=

1
Wp

∑q∈S Gσs(∥p − q∥)Gσr

(∣∣Ip − Iq
∣∣)Iq (2)

Wp = ∑q∈S Gσs(∥p − q∥)Gσr

(∣∣Ip − Iq
∣∣) (3)

Equation (2) defines the filtered image, with each pixel modified by applying the
bilateral filter. To ensure that the pixel weight sum does not exceed one, a normalization
factor weight Wp is used. Equation (3) defines this normalization factor that is assigned
to the neighboring pixel p and a denoise pixel located at q coordinates. The variables are
defined as:

• Iq: Original image value at pixel position q.
• Ip: Filtered image value at pixel position p.
• Wp: Spatial and range weights of the neighboring pixel p.
• p: Coordinate of the neighbouring pixel to be filtered.
• q: Coordinate of the current pixel to be filtered.
• S: Window centered in q, so p ∈ S defines another pixel.
• Gσs : Spatial Gaussian weighting (for smoothing).
• Gσr : Range Gaussian weighting (preserves contours).

Algorithm 1 describes the pseudocode to implement the image preprocessing stage.

Algorithm 1. Image conversion and filtering

Input: Greyscale marker images
Output: Grayscale noise-filtered images

1. Declare variable (numberOfImages)
2. Find the number of images in the dataset: store in numberOfImages
3. for each image in the dataset ≤ numberOfImages, do
4. Read each image
5. if an image is in RGB colour space, do
6. Convert to greyscale using Equation (1)
7. else
8. Do nothing, already in greyscale
9. end if
10. Apply a bilateral filter to remove noise using Equation (2)
11. end for

3.3. Edge Detection Using the Sobel Operator

There are several common edge detection algorithms in the literature, namely Sobel,
Canny, Laplacian of Gaussian (LoG), and Roberts. The basic operation of an edge detection
algorithm is applying a convolution mask called a kernel to an image. The kernel is
convolved into an image to identify and locate discontinuities. These discontinuities define
the boundaries of objects in an image and are detected by finding abrupt changes in pixel
intensity. In this study, the Sobel operator was employed for edge detection of grayscale
images. The selection was justified by its performance when compared with other operators
using the same dataset [3]. Subsequently, most of the background objects were removed
while preserving the predominant edges of the markers.
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Equations (4) and (5) define a Sobel operator for a 3-by-3 mask, where Gx identifies
and locates horizontal gradients, while Gy represents the vertical gradients. Equation (6)
determines the edges by computing the absolute gradient magnitude ( |G|).

Gx =

−1 0 1
−2 0 2
−1 0 1

 (4)

Gy =

 1 2 1
0 0 0

−1 −2 −1

 (5)

|G| =
√

Gx
2 + Gy

2 (6)

The direction or angle (θ) of the edges is computed by applying Equation (7):

θ = tan−1 Gy

Gx
(7)

A non-maximum suppression can then be applied to trace along the edge direction.
The latter is carried out to suppress any pixel value that is not considered an edge.

3.4. Locating the Region of Interest

A Circular Hugh Transform (CHT) algorithm is then applied to the newly generated
image after applying the Sobel operator. We apply a CHT algorithm to delineate the
coordinates of the RoI so that the OoIs of each marker can be extracted. The CHT, being
a shape-detecting algorithm, was found to be the best choice since it detects circular
shapes and is well suited to this application. To increase the efficiency of detecting more
markers, a minimum diameter of 10 pixels and a maximum diameter of 60 pixels was
chosen. The primary reason for minimum and maximum-diameter pixels is due to varying
capture distances. Images captured at 10 m will use 60 pixels due to the larger diameter
of the marker. Conversely, at 45 m, the image’s diameter is 10 pixels. These values
allow for the CHT algorithm to have a radius that has a minimum and maximum value.
Figure 5 illustrates how the CHT algorithm is effectively used to detect circular shapes
within the image. The CHT algorithm transforms a circle in the image from the two-
dimensional (x, y) cartesian plane to a three-dimensional parameter space (a, b). This
approach transforms the (x, y) into parametric space, which contains the circles radius (r)
as defined by Equation (8):

r =
√
(x − a)2 + (y − b)2 (8)

The transformation of OoI which is a circle in the dataset from (x, y) plane to a
parametric space (x, y, r) is illustrated in Figure 5.

To obtain the coordinates to crop the OoI’s, a bounding box approach is applied.
Equations (9)–(14) was used to calculate the size of the box:

x = a + rcosθ (9)

y = b + r sinθ (10)

x1 = x − r (11)

x2 = x + r (12)

y1 = y − r (13)

y2 = y + r (14)
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The steps given in Section 3.3 to Section 3.4 are summarized in the pseudocode as
illustrated by Algorithm 2.

Algorithm 2. Segmentation an RoI extraction

Input: Greyscale noise-filtered images (Algorithm 1)
Output: Cropped images with OoI’s (markers)

1. Vector variables centres, radii and circlesFound
2. for each greyscale-filtered image, do
3. Apply the Sobel operator using Equations (4)–(7)
4. Find the centres and radii using Equation (8)
5. Compute circlesFound in each image with radii.
6. for circlesFound ≥ 1, do
7. Get the radius of each circle
8. Calculate coordinates: Equations (9)–(14)
9. if (circle centre − radius) < 0, do
10. if x1 ≤ 1, do
11. x1 = 1
12. else x1 = radius − centre
13. else if (centre of each circle − r) > 0, do
14. if x1 ≤ 1, do
15. x1 = 1
16. else x1 = centre − radius
17. Repeat 9–16: assign the y1 value
18. Calculate y2 using the centre used for y1
19. if (circle centre + r) > image row size, do
20. y2 = image row size
21. else y2 = centre + radius
22. Repeat 19–21: assign the x2 value (x1 centre and r)
23. Crop image with coordinate (x1: x2, y1: y2)
24. Resize cropped images to 60 × 60 (depending on the classifier input size)
25. end for
26. end for

3.5. Image Feature Extraction

The marker features are extracted from the OoI and used for training a machine
learning classifier. Figure 6 illustrates a sample image, whereby its distinct features are
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extracted by employing a [4 × 4] cell-size Histogram of Orientated Gradient (HOG) feature
extractor and are subsequently stored in a feature vector [32]. The choice of using HOG for
this application is that it has the following attributes:
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• The features allow for a more robust image when subjected to variations in illumination
and shading.

• They are relatively invariant to small translations and rotations, which makes them
suitable for marker classification in different orientations or positions.

• Unique information about marker edges and corners is inherently encoded.
• Finally, they are computationally efficient when compared to other methods, which

would allow for efficient real-time implementation in an embedded system.

The gradient of each pixel is calculated using the HOG feature extraction algorithm,
which is governed by Equation (15):

Gh = |G|+ Gb (15)

where Gh represents the histogram gradient magnitude, and Gb denotes the contribution
pixel gradient magnitude. |G| is the absolute gradient magnitude, and the orientation
gradient is represented as θ(x,y), which was previously defined by Equations (6) and (7),
respectively.

Equation (16) is used to calculate the contribution of each pixel gradient magnitude:

Gb =

(
θ(x,y) − Bin

)
BinSize

× |G| (16)

where Bin is the value obtained next to the orientation angle defined by (x, y). The BinSize
is the number of histogram bins as defined by [33] and has a selected size of 20 based on a
trade-off between the computational cost and the number of features being extracted.

Equation (17) is the normalization feature vector employed to reduce lighting varia-
tions. The created feature vectors, or Bag of Features (BoF), are affected by the gradients of
each image since they are sensitive to ambient lighting.

VL2−norm =
v√

∥v∥2
2 + ϵ2

(17)



J. Imaging 2024, 10, 142 12 of 20

where VL2−norm is the normalised feature vector. v denotes the unnormalized feature
vector. ∥v∥2 represents the length of vector where L2-norm is used. ϵ denotes the small
normalisation constant.

The steps given in Section 3.5 are summarized in the pseudocode as illustrated by
Algorithm 3.

Algorithm 3. Feature extraction using HOG

Input: Cropped images (Algorithm 2)
Output: Concatenated feature vector

1. Resize cropped images to 60 × 60
2. Declare vector variables (trainingFeatures, trainingLabels)
3. Find the number of cropped images (numCropImages)
4. for numCropImages ≥ 1, do
5. Divide into a cell
6. for each cell, do
7. Obtain HOG for every pixel
8. Compute the magnitude and orientation using Equations (15) and (16)
9. Normalize the histogram using Equation (17)
10. end for
11. Form BoF (concatenated feature vector)
12. end for

3.6. Image Classification

Prior to training, the images are further processed to create ground-truth images used
to validate the accuracy of the model. These ground-truth images were manually created
using Paint.net software, and an illustrative example is shown in Figure 7. The delineated
RoIs in the white foreground are the ground-truth images of the markers. Classification
is then employed in the training stage to output the predicted dataset to validate the
segmentation accuracy by comparing it with the ground truth images.
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For image classification, the Linear Support Vector Machine (LSVM) is used. Figure 8
exemplifies a SVM as a classifier that separates two distinct classes by finding the optimal
hyperplane with the maximum margin that separates the features. The hyperplane linearly
separates these features into their respective classes or labels (“N: Open” and “C: Close”).
Figure 9 illustrates captured sample images of the two classes and negative samples.
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Equation (18) is the hyperplane function, defined by:

w·xi + b = 0 (18)

where w is the weight vector, xi represents the training feature vectors, where i = 1, . . . , L
training features and b denotes the bias. The classes closer to the hyperplane are the support
vectors and its implementation depends on the selection of w and b such that the training
data can be defined as:

w·xi + b ≥ +1 for yi = +1 (19)

w·xi + b ≤ −1 for yi = −1 (20)

where yi ∈ {−1,+1} being the classes for open (“N”) and close (“C”) markers.
Equations (19) and (20) can be combined and expressed as:

yi(w·xi + b)− 1 ≥ 0 (21)

The support vectors H1 and H2 are thus described by:

w·xi + b = +1 for H1 (22)

w·xi + b = −1 for H1 (23)

The margin is defined as the distance between the support vectors and the hyperplane
and are equidistance such that d1 = d2. The total margin can be expressed as 2

∥w∥ , whereby
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the minimum margin region 1
2 ∥w∥2 is solved by constrained optimization by applying

Lagrange multipliers defined as:

Lp ≡ 1
2
∥w∥2 − ∑L

i=1 aiyi(w·xi + b) + ∑L
i=1 ai (24)

where ai ≥ 0.
The LSVM image classification is summarized in the pseudocode, as shown by

Algorithm 4.

Algorithm 4. Image classification training using LSVM

Input: Training and Validation BoF (Algorithm 3)
Output: Class label for each BoF

1. Train the LSVM classifier
2. for any classes {−1, +1}, do
3. Use Equation (24) to determine the optimal hyperplane.
4. end for
5. for each feature vector in the validation dataset, do
6. With majority votes, assign the class label
7. end for
8. for each predicted image in the dataset, do
9. Compare image with ground truth image
10. Compute the similarity result into one variable
11. end for
12. Calculate the accuracy of the trained model by using the mean score
13. Repeat steps 8 to 12 for model validation

To optimize the LSVM model for the marker image dataset, the MATLAB® Statistics
and Machine Learning Toolbox™ was used. Model cross-validation was performed using
two-fold and five-fold validation passes to ensure that an accurate model was obtained.
Details of the model hyperparameters are shown in Table 1. During the training phase,
the optimization algorithm iteratively adjusts the model’s parameters to minimize the
classification error and maximize the margin between the classes.

Table 1. LSVM hyperparameter settings in the MATLAB® graphical user interface.

Kernel Function Kernel Scale Kernel Offset Box Constraint
Level

Cross Validation
Folds

Linear ‘auto’ 0 1 2 and 5

4. Results
4.1. Optimal Parameter Selection for the Bilateral Filter

The selection of an optimal bilateral filter was made through the comparison of
Gaussian spatial weighting ( σs) and Gaussian range weighting (σ r) parameters. Filters
with varying parameters were applied to a greyscale image embedded with noise. The
performance of each parameter combination is shown in Table 2. It can be noted that the
bilateral filter with weightings of σs = 1 and σr = 650.25 are the best parameters for the
application when considering correlation performance and computational time as the main
selection criteria.
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Table 2. Performance evaluation of Bilateral filter parameters.

Gaussian Weighing Correlation of the Original Image
versus the Filtered Image (%)

Time
(msec)σs σr

1 *

10 99.33 2.70

30 99.37 2.88

100 99.41 2.75

300 99.43 2.75

650.25 * 99.43 2.62

3

10 99.36 12.37

30 99.42 11.37

100 99.46 12.76

300 99.39 10.73

650.25 99.26 12.76

10

10 99.36 389.52

30 99.41 412.96

100 99.41 444.07

300 99.43 368.09

650.25 98.75 326.18
* Optimal parameter selection.

4.2. Comparison of Edge Detection Operators

The Sobel edge detection was compared to several other methods such as Prewitt,
Canny, Laplacian of Gaussian (LoG), Roberts and Zero-cross. Figure 10 illustrates the
background subtraction images for each operator. LoG, Zero-cross and Canny methods
produced significant background artefacts in the sampled images, while Sobel, Prewitt and
Roberts methods showed fewer artifacts but exhibited discontinuous edges. Correlation
experiments were performed for each operator and an F1-measure was applied to compute
the performance of each operator. Notably, the Sobel method achieved 57.81%, while Canny
and Prewitt resulted in 54.51% and 55%, respectively.

J. Imaging 2024, 10, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 10. Edge detection comparison of railway signal marker. 

4.3. Image Classification Results 
4.3.1. Evaluation Metric 

Performance analysis of the proposed system was conducted using accuracy, preci-
sion, recall and F1-score. The accuracy of the methodology has been computed utilizing 
the numerical details of True Positive (TP), False Positive (FP), True Negative (TN) and 
False Negative (FN). The details of the marker confusion matrix are given in Table 3. 

Table 3. Marker image confusion matrix 

Actual 
image  

Predicted image 
 Close ‘C’ Negative ‘I’ Open ‘N’ 

Close ‘C’ TP FP FP 
Negative ‘I’ FN TP FN 

Open ‘N’ FN FN TP 

Model accuracy is defined as: Accuracy =  𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (25)

Also, precision, recall and F1-score evaluation metrics are respectively calculated as: Precision =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (26)

Recall =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 (27)

Figure 10. Edge detection comparison of railway signal marker.



J. Imaging 2024, 10, 142 16 of 20

4.3. Image Classification Results
4.3.1. Evaluation Metric

Performance analysis of the proposed system was conducted using accuracy, precision,
recall and F1-score. The accuracy of the methodology has been computed utilizing the
numerical details of True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN). The details of the marker confusion matrix are given in Table 3.

Table 3. Marker image confusion matrix.

Actual
image

Predicted image

Close ‘C’ Negative ‘I’ Open ‘N’

Close ‘C’ TP FP FP

Negative ‘I’ FN TP FN

Open ‘N’ FN FN TP

Model accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Also, precision, recall and F1-score evaluation metrics are respectively calculated as:

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1 score =
2 × P × R

P + R
(28)

4.3.2. LSVM Model Performance

Table 4 details the performance of the LSVM classification for the two-fold and five-
fold cross-validation during the testing phase. The BoF sizes that were obtained from a
[2 × 2] cell size was 43 Mbytes, [4 × 4] cell size resulted in 10 Mbytes, [8 × 8] cell size was
2 Mbytes, and finally, [16 × 16] cell size used 211 Kbytes. The [8 × 8] cell size resulted in
the highest precision, indicating the quality of positive predictions made by the model. In
both cross-validation cases of the various HOG images, the [4 × 4] cell size resulted in the
best overall performance with a recall of 98.63% and 98.21% and an F1 score of 97.52% and
97.99%, respectively.

Table 4. Performance analysis of LSVM model for two-fold and five-fold cross-validation.

Cell Size Precision (%) Recall (%) F1 Score (%)

Two-fold
cross-validation

[2 × 2] 93.60 88.79 91.13

[4 × 4] 96.43 98.63 97.52

[8 × 8] 96.79 95.91 96.35

[16 × 16] 95.67 91.28 93.43

Five-fold
cross-validation

[2 × 2] 95.96 98.17 97.05

[4 × 4] 97.77 98.21 97.99

[8 × 8] 99.09 96.89 97.98

[16 × 16] 97.16 92.76 94.91
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4.3.3. Efficacy of the System Performance

Figure 11 shows representative image processing for each stage of the proposed system.
The classification results are based on three lighting conditions, namely, sunny, cloudy, and
dark. Figure 11a,e,i are the filtered images from the bilateral filter during sunny, cloudy,
and dark environments. The Sobel edge detector is applied to remove background artifacts,
and then the OoI’s are delineated with a CHT, which is illustrated in Figure 11b,f,j in the
different sceneries. Figure 11c,g,k are the extrapolated OoI’s from applying a bounding box
with the (x, y) coordinates obtained from the CHT method. The latter illustrates classified
and predicted OoI’s (markers); however, in Figure 11d,h,l, the images are used to measure
the prediction accuracy of the model during experimental evaluation. The performance of
the LSVM image classification was compared to that of other machine learning classification
algorithms, namely Decision Tree (DT) CART and ID3, Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Naïve Bayes, Quadratic SVM (QSVM), Cubic
SVM (CSVM), Adaptive Boosting (Adaboost), Convolutional Neural Network (CNN),
and finally K-Nearest Neighbors (K-NN). After training, each classification algorithm
was validated using a corresponding [4 × 4] HOG cell size, which results in a BoG size of
10 Megabytes. The performance of each classifier is measured by its efficacy during training,
validation, and prediction speed and is presented in Table 5. The LSVM during training
achieved 93.40% and at validation achieved 94% with a prediction speed of 75 objects per
second (obj/sec). The QSVM displayed similar validation results, but detected objects
at a lower speed of 68 obj/sec. CNN performance using one layer resulted in 90.4%
validation accuracy at a notably higher speed of 82 obj/sec. The Adaboost model resulted
in a significantly poor performance of 57.8% during validation. Furthermore, Naïve Bayes
and K-NN models displayed relatively lower obj/sec detection speeds.
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Table 5. Performance evaluation of each classification model using [4 × 4] HOG cell.

Classifier Training
Accuracy (%)

Validation
Accuracy (%)

Prediction Speed
(Objects/Second)

DT (CART) 75.4 80.7 72

DT (ID3) 74.1 77.1 73

LDA 94.7 92.8 78

QDA 85.1 81.9 71

Naïve Bayes 85.1 81.9 26

LSVM 93.4 94.0 75

QSVM 93.9 94.0 68

CSVM 93.0 92.8 74

AdaBoost 57.5 57.8 68

CNN 90.8 90.4 82

K-NN (2) * 82.0 80.7 13

K-NN (10) * 84.6 80.7 14

K-NN (20) * 83.3 90.4 12
* Selected K-values.

5. Conclusions and Recommendations

The article presents a computer vision model to switch electric locomotives traversing
through a neutral section rather than conventional methods. A detailed process, from
setting up the model to training and validation, was explored through different techniques.
Five steps were proposed for the system to be affected, namely, image acquisition, image
pre-processing, image segmentation, feature extraction, and finally classification. For each
image, a bilateral filter was utilized to eliminate image noise, while a Sobel operator and
CHT were employed to segment RoI. A bounding box extracted OoI’s from the RoI, and a
LSVM classification algorithm was then chosen to classify and predict the railway signal
markers under different lighting conditions. The HOG feature extractor was chosen based
on its performance to effectively describe the unique features of the markers.

While the overall model performance of the system using LSVM may be 94% accurate,
it may not be an acceptable result against industrial standards. However, considering the
640 × 480 camera resolution was used for acquiring the dataset images and there is limited
literature on computer vision for automatic switching of electric locomotives, it can be
considered an acceptable result. However, there is still room for improving the model
by increasing the dataset along with higher-resolution images that can provide greater
marker clarity at further distances and employing ensemble techniques with other methods
to achieve higher model accuracy. Furthermore, a night vision camera could be used to
capture images under low lighting conditions.
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