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Abstract: This study focuses on semantic segmentation in crop Opuntia spp. orthomosaics; this is a
significant challenge due to the inherent variability in the captured images. Manual measurement of
Opuntia spp. vegetation areas can be slow and inefficient, highlighting the need for more advanced
and accurate methods. For this reason, we propose to use deep learning techniques to provide a
more precise and efficient measurement of the vegetation area. Our research focuses on the unique
difficulties posed by segmenting high-resolution images exceeding 2000 pixels, a common problem in
generating orthomosaics for agricultural monitoring. The research was carried out on a Opuntia spp.
cultivation located in the agricultural region of Tulancingo, Hidalgo, Mexico. The images used in this
study were obtained by drones and processed using advanced semantic segmentation architectures,
including DeepLabV3+, UNet, and UNet Style Xception. The results offer a comparative analysis of
the performance of these architectures in the semantic segmentation of Opuntia spp., thus contributing
to the development and improvement of crop analysis techniques based on deep learning. This work
sets a precedent for future research applying deep learning techniques in agriculture.

Keywords: artificial intelligence in agriculture; precision agriculture; vegetation detection; analysis
of aerial images; crop monitoring; drones in agriculture

1. Introduction

The United Nations 2030 Agenda establishes a global imperative to reconfigure our
society, guided by 17 Sustainable Development Goals (SDGs). These goals, from poverty
eradication to sustainable agricultural practices, outline a path toward a more equitable and
resilient future. In particular, SDG 2 emphasizes the need to eradicate hunger, ensure food
availability, improve nutrition, and promote sustainable agriculture [1]. This goal highlights
the importance of implementing productive and sustainable agricultural practices resilient
to climate variations. In this framework, the Opuntia spp. (nopal) emerges as a paradigmatic
crop. Native to Mexico and prevalent in arid and semi-arid regions, this Opuntia spp. is
an essential source of nutrition for many communities and symbolizes resilience and
adaptability in the face of climate challenges [2], making its sustainable cultivation crucial
in feeding countless people and preserving vulnerable ecosystems.

The cultivation of Opuntia spp. stands out for its resistance to adverse conditions
and its versatility in food and industry; its cultivation is a traditional practice in several
regions, especially in Mexico, thanks to its multiple uses and benefits [3]. Opuntia spp. are
essential as food, fodder, and industrial products; they play a crucial role in soil and water
conservation, carbon fixation, and biodiversity [4]. With the growing interest in products
derived from Opuntia spp., farmers and researchers seek to optimize their production
and management.
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In 2022, in Mexico, the annual per capita consumption of Opuntia spp. was 6.2 kg. A total
of 12,491 hectares were cultivated, with a production of 872 thousand tons and an average
yield of 70.5 tons per hectare, generating a value of MXN 2981 million (USD 175.3 million) at
an average price of MXN 3417 per ton. Additionally, 7.4% of the production was exported,
reaching a value of USD 26.2 million [5].

In agriculture, precision and efficiency in measuring vegetation area are crucial for
optimal crop management. Although Opuntia spp. cultivation is known for its resistance
and versatility, its effective management requires precise monitoring. Traditional manual
techniques, while effective, are laborious and prone to errors. In contrast, emerging
technologies such as remote sensing and artificial intelligence offer promising solutions
to overcome these limitations. Integrating high-resolution orthophotos with advanced
semantic segmentation techniques promises to revolutionize how we measure and manage
vegetation area in Opuntia spp. cultivation. This research seeks to explore and validate
the effectiveness of these advanced techniques, specifically in the agricultural region of
Tulancingo, Hidalgo, Mexico.

The integration of advanced technologies allows agricultural practices to be adapted
to the specific conditions of each plot, thus optimizing resource use and improving produc-
tivity. Remote sensing, an essential tool for this approach, facilitates the monitoring of the
health and condition of vegetation through remote sensors.

Precision agriculture (PA) has been established as a promising solution for increasing
crop efficiency and productivity. Based on observation, measurement, and action on
intra-field variability, precision agriculture seeks to optimize crop yields and minimize
production costs [6].

Using platforms such as satellites, airplanes, and unmanned aerial vehicles (UAVs),
remote sensing has proven a valuable tool in quantifying vegetation for precision agricul-
ture [7,8]. These sensors collect data in various spectral bands, allowing detailed analysis
of plant health, water content, and plant density, among other critical factors [9].

In viticulture, for example, developing specific vegetation index has revolutionized
how we monitor vineyard health and optimize vineyard management [8]; with the data,
winegrowers can make informed decisions about critical practices such as irrigation, fertil-
ization, and pest control.

A study by Sebastian Candiago et al. [10] highlights the value of UAVs for rapidly
collecting field data in precision agriculture applications. Equipped with multispectral
cameras, these UAVs produce high-resolution images that, once processed, result in precise
orthoimages of the studied areas. Such orthoimages facilitate the extraction of vegetation
indices (VI) that evaluate the vigor of vegetation in various crops, thus demonstrating the
considerable potential of high-resolution data from UAVs and photogrammetric techniques
in agriculture.

Furthermore, integrating machine learning techniques with remote sensing has sig-
nificantly strengthened the ability to predict and manage agronomic aspects with greater
precision [11]. These modern methods, in conjunction with data obtained from remote sen-
sors, provide a more detailed and quantitative perspective of agricultural fields, facilitating
more effective and sustainable management of agriculture.

Advanced hyperspectral technologies have enabled innovative studies and practical
applications in agriculture, ranging from regional scales through satellite platforms to
the field level, using airplanes, drones, and ground platforms [12]. Integrating AI into
these systems has further revolutionized the field of remote sensing and smart agriculture,
opening new avenues to optimize agricultural production.

Moreover, the combination of AI and remote sensing has emerged as an effective
technological solution to support the improvement of agricultural yields, offering advanced
methods for data analysis to increase productivity, anticipate possible threats, and alleviate
the workload of farmers [13]. In this environment, image analysis has become an invaluable
tool, allowing farmers to access detailed information about their crops and supporting
them to make data-driven decisions.
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The application of advanced technologies in agriculture, as demonstrated in recent
studies on broccoli growth monitoring, underlines the importance of adaptability and
precision in crop management [14]. The present Opuntia spp. study seeks to expand the
application of these technologies, demonstrating how the integration of UAV imagery
and deep learning can optimize precision agriculture for specific crops. The ability to
accurately identify the status and growth of individual plants can revolutionize cactus
pear management, enabling a more informed response to environmental variations and
improving sustainability and efficiency.

Traditional vegetation segmentation methods, while widely used, present several
significant limitations that need to be urgently addressed for more effective solutions in
agricultural research. For example, threshold-based methods are susceptible to lighting
conditions and plant color and texture variations, resulting in inaccurate segmentations
under different environmental conditions [15]. Furthermore, manual segmentation and
semi-automatic methods require much time and human effort, making them unfeasible for
large crop areas. On the other hand, methods that use specific image characteristics, such as
texture and color, may not generalize well to different types of crops and different growth
phases of the same plant, limiting their applicability to various agricultural situations [16].
Compared to more advanced deep learning techniques, these methods may not be robust
enough to handle the complexities and variability of crops [17]. Although convolutional
neural networks (CNNs) have proven to be very effective for image segmentation, they re-
quire a significant amount of computational resources for training and inference, including
the need for high-end GPUs, which may not be accessible to all farmers [18]. Additionally,
CNNs and other deep learning techniques require large volumes of labeled data to train
adequately. Collecting and labeling this data can be expensive and time-consuming [19].
Another significant area for improvement is that methods developed in a specific context
may not directly apply to other regions with different soil conditions, climates, and crop
types. Generalizability is a significant challenge [20]. Furthermore, many studies are
conducted in controlled environments or with limited datasets, which may not fully reflect
the diversity and complexity of real-world agricultural scenarios [21].

Semantic segmentation, an image processing technique that partitions an image into
segments corresponding to objects or specific semantic categories, is particularly rele-
vant in agriculture, which can be used to identify and quantify different elements in a
field, such as individual plants, areas affected by diseases or pests, and areas that require
irrigation [22,23].

In the realm of semantic segmentation, models such as DeepLabV3+ [24], UNet [25],
and UNet Style Xception [26] have proven to be highly effective, not only in medical
and agricultural applications, thanks to its ability to capture characteristics at different
scales. These models generally combine convolutional dilation and decoding techniques to
improve segmentation accuracy, and they are widely adopted for their effectiveness.

The advantages of AI and semantic segmentation in agriculture are notable. These
technologies provide a detailed and quantitative interpretation of agricultural data, allow-
ing farmers to make decisions based on accurate information [23]. Additionally, image
interpretation automation minimizes manual inspections, representing significant savings
in time and resources.

Recent research on plant counting using aerial imagery offers a helpful parallel to
our study. This approach—initially applied to tobacco crops—combines deep learning
techniques and semantic segmentation to count plants from aerial images accurately, thus
demonstrating the efficiency of this technology in optimizing agricultural management [27].

Another notable study used UAVs to capture images and applied the UNet Style
Xception model to successfully segment the parasitic species Cuscuta spp. in chili tree
crops. This method improved the accuracy in identifying affected areas and facilitated the
creation of orthomosaics useful for decision making in crop management [28]. Although
the results from using UAV data were promising, it is essential to note that the study did
not include a validation of these findings. This limitation highlights the need to perform a
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more thorough validation of the model, encompassing not only individual images but also
a broader view of the entire crop to ensure the applicability and accuracy of the method in
broader agricultural contexts.

The versatility of these techniques to adapt to different crop types highlights their po-
tential to improve accuracy in measuring and managing vegetation areas, a crucial aspect of
precision agriculture. In particular, precision agriculture can help identify areas of optimal
growth, optimize resource use, and improve both the quality and quantity of production
for Opuntia spp. cultivation. In this context, the present study contributes significantly to
advancing precision agriculture. The main contributions of this research include:

• Detailed comparison: A comprehensive comparison of the performance of different
semantic segmentation architectures is provided, including DeepLabV3+, UNet, and
UNet Style Xception.

• Validation in a specific context: The research validates the effectiveness of advanced
deep learning techniques in the particular context of the agricultural region of Tu-
lancingo, Hidalgo, Mexico.

• Optimization of vegetation measurement: The study proposes a methodology to carry
out a more precise and efficient measurement of the Opuntia spp. vegetation area,
overcoming the limitations of traditional manual techniques.

• Integration of orthophotos and AI: The combination of high-resolution orthophotos
obtained by UAV with advanced semantic segmentation techniques stands out.

• Contribution to crop analysis techniques: This study significantly contributes to
developing and improving deep-learning-based crop analysis techniques.

One of the main innovations of this work lies in overcoming the difficulty of segment-
ing images with resolutions greater than 2000 pixels, especially in orthomosaics, using
well-known segmentation methods. This is a significant contribution, given that no studies
or previous methods have addressed this problem. Likewise, we highlight the need for man-
ual quantification for pixel counting, given that current neural networks have limitations in
handling extremely large images; this aspect is crucial to guarantee precision in measuring
the area of pixels and vegetation and underlines the relevance of our proposed methods.
The advances presented not only improve the accuracy and efficiency of vegetation analysis
but also open new possibilities for agricultural management and monitoring.

With these contributions, a technological tool is presented to carry out measure-
ments that facilitate the analysis, measurement, and management of the vegetation area
in Opuntia spp. cultivation to promote a more sustainable and efficient agriculture. The
following sections will detail the study area, data acquisition, and the most-used semantic
segmentation techniques. In the Section 3, we describe the processing of Orthomosaic
images of Opuntia spp. cultivation and deep learning techniques to segment areas of
interest. In the Section 4, we present a comparative analysis of the architectures in semantic
segmentation and the measurement of the Opuntia spp. vegetation area. Finally, we report
the conclusions of the study.

2. Materials and Methods
2.1. Study Area

The object of study focuses on a nopal cultivation (Opuntia spp.) located at the
geographical coordinates 20.12555 latitude and −98.37867 longitude, in the municipality of
Tulancingo, state of Hidalgo, Mexico. The exact location is illustrated in Figure 1. The crop
field is located near the Tulancingo–Huauchinango highway, approximately 1 km from the
Polytechnic University of Tulancingo.
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Figure 1. Geographic location of the study area.

The investigation focuses on a specific crop area comprising around 539 m2. This
delimitation is established to have a representative sample that enables an exhaustive
evaluation of data acquisition and processing techniques.

Accessibility and proximity to the laboratory justify the location selection, thus opti-
mizing the logistics for data collection and subsequent analysis. Furthermore, this proximity
allows for a detailed characterization of soil, vegetation, and other relevant elements. There-
fore, choosing a representative area ensures the research findings significantly impact
Opuntia spp. crops in the Tulancingo region.

2.2. Data Acquisition

Meticulous and detailed data acquisition is essential to thoroughly understanding the
development of Opuntia spp. cultivation from its initial stage to maturity. This process
allows us to capture the crop’s physical evolution and identify the management practices
that optimize its growth and health. In practice, the stems are arranged in central furrows
during planting, facilitating their growth and management. As the stems take root, they
develop shoots that become new cladodes. Furthermore, the technical management of
Opuntia spp. cultivation involves various field practices, mainly focused on maintaining
the health of the plantation; this includes pruning, sprouting, and rejuvenation training
to improve the quality and quantity of products available for the market [29,30]. All
considerations mentioned are essential for the success of Opuntia spp. cultivation in several
regions, including Tulancingo.

Integrating advanced technology in this process emphasizes choosing tools and tech-
nologies that allow processes to be carried out with maximum efficiency and precision,
considering the ability to capture fine details of the crop and its adaptability to specific field
conditions. We used the DJI Mavic 2 Mini (DJI, Shenzhen, China) drone for data acquisition,
which weighs just 249 g. The drone is equipped with a 1/2.3′′ 12-megapixel CMOS image
sensor, capable of capturing high-quality images. Its compact design is ideal for flights
near structures and vegetation. Plus, it features multiple sensors, including GPS, for precise
navigation; the battery offers up to 25 min of continuous flight, while its intuitive remote
control and Dronelink mobile app (Dronelink, Austin, TX, USA) simplify flight mission
planning and execution.

Combining high resolution with maneuverability and adaptability becomes essential
in research methodology. The flight plan is meticulously executed over the area of interest
at a height of 4 m, with the primary objective of evaluating and validating the robustness
of the semantic segmentation models used in this research. The chosen height significantly
improves the quality and reliability of the results obtained in the study. Figure 2 shows a
diagram of the flight carried out over the crop.
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Figure 2. Flight plan at 4 m height.

Precise flight trajectory plans are designed with Dronelink software (Version 3.4.0)
with 75% lateral and 70% vertical overlap, ensuring comprehensive coverage of the area of
interest. All flights take place around 11:00 a.m. to ensure stable lighting conditions.

Furthermore, three flight missions are carried out with different configurations to
capture images from various angles and perspectives. Settings include a vertical orientation
of 90° directly above the crop, a tilt of 45° to obtain lateral images of the crop, and a tilt of
135° to capture a more perspective and facilitate a more complete and detailed evaluation
of the Opuntia spp. crop, adequately documenting all relevant characteristics. During
the flights, 443 high-resolution aerial photographs were taken. Table 1 details the images
captured for each flight.

Table 1. Different configurations of flights, total images captured, and division of sets to evaluate the
Opuntia spp. segmentation models.

Angle Images Captured Training Test

90° 147 98 49

45° 150 98 52

135° 146 98 48

Total 443 294 149

2.3. Semantic Segmentation

Semantic segmentation constitutes one of the main techniques in image analysis,
allowing the identification and classification of each pixel according to predefined semantic
categories. This approach is particularly valuable in photogrammetric studies aimed at
distinguishing between different features and objects present in aerial images, especially in
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applications related to managing and exploiting plantations. In the present research, leading
architectures in semantic segmentation are implemented, such as UNet, DeepLabV3+, and
UNet Style Xception. The following subsections concisely describe these architectures,
highlighting their contributions and applicability in semantic segmentation.

2.3.1. UNet

The UNet architecture for segmentation has its characteristic “U”-shaped design, in-
tegrating encoding and decoding sections to process and reconstruct images with high
precision [25]. It excels at detecting fine details, which are crucial for identifying affected
crop areas. Its distinctive design, depicted in Figure 3, is based on a symmetric topol-
ogy with an encoder (contraction path) and a decoder (expansion path) connected by
a central bridge.

The encoder is composed of repetitive blocks of two 3 × 3 convolutions followed by
a ReLU (rectified linear unit) activation function and a 2 × 2 max pooling operation with
stride 2, which progressively reduces the dimensionality of the feature space, allowing the
network to learn more abstract and robust representations of the input data.

In contrast, the decoder is structured by blocks of 2 × 2 up-convolutions that increase
the resolution of the mapped features, followed by concatenations with the correspond-
ing encoder features, technically called “copy and trim”. This process recovers location
information lost during clustering and combines it with higher-level features to facilitate
accurate segmentation.

Finally, each expansive step is completed with two 3× 3 convolutions and ReLU, and
the sequence culminates in a 1 × 1 convolution layer that maps the high-dimensional features
to the desired classification per pixel, resulting in the segmentation prediction image.

Figure 3. UNet structure for the segmentation of the Opuntia spp. vegetation area.

The strength of UNet lies in its ability to operate with a limited number of training
samples and still produce highly accurate segmentations, highlighting its usefulness in
applications where data can be sparse or extremely varied.



J. Imaging 2024, 10, 187 8 of 20

2.3.2. DeepLabV3+

The DeepLabV3+ [24] architecture, illustrated in Figure 4, is a significant innova-
tion for semantic segmentation, designed to improve accuracy at object edges, and in
small-scale regions. This network expands the context capture capability and enhances
the contour accuracy by implementing atrous convolution modules in its encoder and
decoder structure.

Figure 4. Structure of DeepLabV3+ for segmenting the Opuntia spp. vegetation area.

The DeepLabV3+ encoder starts with an atrous convolution that adjusts the network’s
field of view to the image features and continues with parallel atrous convolution blocks
with different dilation rates (ratios), allowing the network to capture contexts in multiple
scales without losing image resolution. These atrous convolutions, also known as dilated
convolutions, process the image at various spatial scales and allow you to explicitly control
the resolution at which the feature operation is carried out, preserving the edge information
of the objects.

The decoder uses ‘upsampling’ operations to increase the resolution of the extracted
features. These extended features are concatenated with the encoder’s high-level features
through a ‘concatenation’ procedure to preserve detailed image information. Then, a series
of 3 × 3 convolutions are applied to refine the combined features, followed by a second
‘upsampling’ operation to achieve the resolution of the original image.

Finally, the architecture applies a 1 × 1 convolution to obtain the segmentation pre-
diction. This last layer projects the multidimensional feature tensor into the segmentation
label space, producing the final prediction image.

The architecture is distinguished by its ability to handle objects of various scales and
its efficiency in precisely segmenting fine and complex details, as required in detecting
specific areas of vegetation in Opuntia spp., making it a preferred option for applications
that demand high fidelity in segmentation.

2.3.3. UNet Style Xception

In the development of advanced techniques for image segmentation, the UNet Style
Xception architecture is presented as a significant innovation. Combining UNet with the
Xception architecture, using separable convolutions [31], results in a highly efficient and
accurate system that improves the network’s encoding, decoding, and feature detection.
The original UNet is characterized by its contraction path, which captures the overall
context of the image, and an expansion path that reconstructs the segmentation output
from those encoded features. Xception, for its part, introduces separable convolution
modules, which allow more efficient handling of spatial and channel characteristics.
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In the contraction path, the Xception-Style architecture improves context capture by
efficiently processing low- and high-dimensional features. This results in an improved
ability to identify and encode relevant image information. On the other hand, the expansion
path benefits from the accuracy of separable convolutions, which leads to a more accurate
reconstruction of the segmented image. Additionally, feature detection is refined, allowing
finer segmentation and greater model generalization.

The Xception architecture indicates that its integration with UNet is theoretically sound
and empirically validated. Such fusion expands the capabilities of the UNet convolutional
neural network and inaugurates new possibilities in remote sensing and geospatial analysis.
Figure 5 exposes the structure of UNet Style Xception in the segmentation of Opuntia spp.
vegetation, emphasizing its effectiveness in the face of the complexity of aerial images.

Figure 5. Structure of the UNet Style Xception for segmenting the Opuntia spp. vegetation area.

2.4. Generation of Orthomosaics

Implementing advanced technologies has emerged as a fundamental pillar for opti-
mizing crop production and management in agriculture. One of these technologies is the
generation of orthomosaics, which has transformed the perception and understanding of
agricultural land.

Among these innovations, orthomosaics have emerged as a transformative tool that
revolutionizes how farmers visualize and understand their farmland. Orthomosaics are
the result of processing and integrating aerial images, offering a detailed and panoramic
perspective of the terrain, thus allowing informed and accurate decision making.

An orthomosaic is a georeferenced and orthorectified image, the result of the integra-
tion of multiple aerial photographs. Mathematically, orthorectification can be described as
a transformation T that corrects the geometric distortions of an image I to obtain a planar
representation I′:

I′ = T(I) (1)

The orthomosaic generation process stands out for its structure and precision, covering
several essential stages to produce a high-quality final result. Initially, we capture images
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using aerial platforms like drones. Aerial photographs ensure adequate overlap on the x
and y axes, thus ensuring complete terrain coverage.

After capturing, we proceed to image processing. This step is characterized by metic-
ulous alignment and correction, where key point-matching algorithms identify similar
regions between neighboring images. In this process, tools such as WebODM (Version 2.5.0,
Open Drone Map, open-source) software specialized in aerial image processing play a
crucial role in facilitating the generation of orthomosaics, 3D models, and elevation maps.
These tools’ web-based interface simplifies project management and visualization, while
their modular architecture promotes integration with a variety of tools and plugins [32].

Finally, we integrate the georeferenced images to create a continuous orthomosaic.
The process eliminates redundancies and ensures a smooth transition between images,
producing a cohesive and detailed orthomosaic. Figure 6 illustrates image captures taken
over a specific area and the corresponding orthomosaic generated with WebODM.

Figure 6. (a) Images captured of the study area with the Dji Mavic 2 mini drone; (b) orthomosaic
generated from the captured images.

This example illustrates how we transformed individual aerial images into a unified
orthomosaic representation. This transformation provides a detailed, panoramic view
of the crop field, enabling applications such as plant health monitoring, crop planning,
resource management, and canopy disease detection. In addition, it enables the training
of machine learning algorithms to identify growth patterns or detect variations in veg-
etation. With technological advances and the continuous improvement of aerial image
capture and processing techniques, orthomosaics are consolidated as essential tools in
modern agriculture.

3. Methodology

In the current agricultural landscape, adopting advanced technologies is emerging as
an indispensable strategy to face the challenges inherent to efficient and environmentally
sustainable production. Remote sensing using UAVs and integrating AI techniques emerge
as key tools for optimizing agricultural management. The primary objective of this study
is to provide farmers with an advanced analytical tool designed to improve accuracy in
the identification and management of vegetation zones, facilitating the implementation of
sustainable cultivation practices, and the adoption of optimized agricultural management
strategies. The developed methodology is articulated around a detailed process of seven
stages, each aiming to maximize the effectiveness of analyzing data obtained through
high-resolution images captured by UAVs.

1. Image acquisition via UAV: A flight mission using unmanned aerial vehicles (UAV)
is scheduled and conducted to capture high-resolution images of the Opuntia spp.
cultivation. The mission considers parameters such as altitude, image overlap, and
atmospheric conditions to guarantee the quality and precision of the acquired images.

2. Image size reduction: Given the original dimensions of the images captured by
the UAV, it is crucial to reduce their size to facilitate and speed up the semantic
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segmentation process. Reduction must be performed carefully so as not to compromise
the quality and essential information of the image.

3. Semantic segmentation: With the reduced images, the corresponding binary masks
are obtained using pre-trained semantic segmentation models, such as DeepLabV3+,
UNet, and UNet Style Xception, to segment the Opuntia spp. areas, differentiating
them from the background and other elements present.

4. Mask size augmentation: When obtaining the mask, an up-sizing process is performed
to ensure that it has the exact dimensions of the original image and that the segmented
areas match the real areas in the crop.

5. Coloring of Opuntia spp. areas: The areas identified as Opuntia spp. on the masks are
colored blue to facilitate analysis and clear distinction between the areas of interest.

6. Orthomosaic generation: The acquired images generate an orthomosaic to offer a
panoramic and detailed view of the Opuntia spp. cultivation, allowing the farmer to
obtain a general perspective of the affected and unaffected areas. A natural extension
of this work is the implementation of automatic plant counting algorithms using
neural networks or other automatic methods; while the current focus is on semantic
segmentation to detect vegetative areas, we are developing additional models that
will allow the number of plants directly in segmented images to be counted. The
integration will provide a more complete and accurate crop measurement and improve
agricultural management efficiency by automating crucial monitoring tasks.

7. Quantification and analysis: Finally, using the generated masks and the ortho-
mosaic, a quantitative analysis is carried out, determining the total extent of the
vegetation area and providing precise metrics to guide agricultural decisions and
necessary interventions.

The proposed methodology seeks to provide farmers with precise and practical tools
for managing, exploiting, and maintaining fields with Opuntia spp. cultivation. Combining
high-quality images with advanced image processing techniques and AI guarantees reliable
and actionable results. Figure 7 shows a diagram of the main steps of the proposed method.

Figure 7. Step diagram of the proposed methodology for quantifying Opuntia spp. vegetation area.

3.1. Dataset Generation

Constructing a robust and representative dataset was crucial for developing the model.
Given the high computational cost associated with processing high-resolution images, we
adopted an efficient methodology based on reducing the size of the images before their
introduction into the model, following the recommendations of Gutiérrez-Lazcano et al. [28].

The process begins with acquiring original images with dimensions of 4000× 2250 pixels.
Each image was divided into four equal segments of 2000 × 1125 pixels, aiming to more
efficiently manage computational resources without sacrificing data integrity. Subsequently,
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these segments were scaled to a uniform dimension of 160× 160 pixels to facilitate memory
management during model training and ensure processing speed.

A data augmentation scheme is implemented on the scaled images to increase the
diversity and data available for training. The augmentation includes transformations such
as flip and 90- and 180-degree rotation. Figure 8 shows some examples of transformations.

Figure 8. Image transformations for data augmentation.

From the 294 images taken from the three flights as training images (Table 1), with
augmentation and division into four images, we have 4704 images. Data augmentation
techniques are essential for training robust AI models, as they allow the model to learn
from a wider variety of perspectives and conditions, improving its generalization ability
and performance on previously unseen data.

3.2. Application of Deep Learning Techniques

The efficient application of deep learning techniques in semantic segmentation entails
a set of stages, from the capture and adaptation of the data to the refinement and evaluation
of the generated models. This work uses deep learning models, specifically DeepLabV3+,
UNet, and UNet Style Xception. The models are selected for their demonstrated effective-
ness in semantic segmentation tasks and their easy adaptability to identify and analyze
Opuntia spp. vegetation within high-resolution images acquired by UAVs.

The models were implemented in Python 3.8, using TensorFlow 2.5 within PyCharm as
an IDE to facilitate building and tuning the models on a Windows 10 system. The hardware
includes an Intel Core i7-9700 CPU, with 32 GB of memory, and an NVidia GeForce GTX
1660 SUPER GPU with 6 GB.

Model training uses a properly labeled orthophoto dataset, applying a loss function
based on cross entropy and the Adam optimizer for refinement. To ensure replicability
and preservation of progress, we store the weights of the best-performing model in the
validation set.

This practice allows for a consistent assessment of segmentation accuracy; we use the
intersection over union (IoU) metric, defined as

IoU =
Areao f Intersection

GroundTruthArea + PredictedBoxArea − Areao f Intersection
(2)

where the Intersection Area represents the overlap between the model prediction and the
true label, and the Ground Truth Area is the actual area of Opuntia spp. vegetation marked
on the images. Finally, the Predicted Box Area corresponds to the area of Opuntia spp.
vegetation that the model identifies in the image.
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Furthermore, the root mean square error (RMSE) is used to assess the precision of the
estimates of the vegetation area. The metric reflects the discrepancies between the observed
values and those predicted by the model, defined as

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3)

where n is the total number of observations, yi represents the observed value, and ŷi denotes
the value predicted by the model for the ith observation.

The metrics used provide a quantitative basis to evaluate the ability of deep learning
models to accurately segment and quantify areas of Opuntia spp. vegetation, facilitating
comparison between different models and underscoring the effectiveness of deep learning
techniques in precision agriculture.

4. Results
4.1. Comparison of Semantic Segmentation Architectures

The study performs a detailed evaluation of three architectures—UNet, DeepLabV3+,
and UNet Style Xception—with a specific focus on the Opuntia spp. semantic segmentation
task. Performance measurement is performed using RMSE and IoU metrics, and each
architecture trains multiple models to obtain a robust evaluation to ensure a complete
and reliable understanding of its performance. Of the three models evaluated, UNet Style
Xception is the most effective in accurately identifying Opuntia spp. plants based on the
metrics presented in Table 2. The results offer valuable guidance for the informed selection
of the most appropriate architecture in contexts that require precise semantic segmentation
for Opuntia spp. identification.

Table 2. Comparative performance analysis of UNet, DeepLabV3+, and UNet Style Xception architec-
tures for image segmentation.

Architecture RMSE IoU Time GPU Time CPU

UNet 1758.0079 0.6657 0.04242 s 0.12059 s
DeepLab3+ 1779.3001 0.6562 0.03733 s 0.06073 s
UNet Style
Xception 1696.5831 0.6733 0.03038 s 0.06013 s

One consideration in evaluating semantic segmentation architectures is analyzing
computation times on GPU and CPU, as shown in Table 2. Computation times indicate each
model’s operational efficiency, with significant implications for its practical application in
real-time scenarios and limited computing environments. In this study, it is observed that
UNet Style Xception not only excels in accuracy, as indicated by the RMSE (1696.5831) and
IoU (0.6733) metrics, but it also excels in efficiency, exhibiting the lowest processing times on
GPU (0.03038 s) and CPU (0.06013 s). The comparison details that, while DeepLabV3+ and
UNet offer competitive times, the optimization of UNet Style Xception positions it as the
preferred architecture for contexts that demand high precision and operational efficiency.

Figure 9 shows the orthomosaics generated from segmented images using the three
architectures proposed in this research work. The generation of orthomosaics is carried out
using the open-source WebODM platform, where the results reveal not only the ability of
each architecture to capture precise details of the Opuntia spp. but also their uniqueness in
spatial representation and texture fidelity. The DeepLabV3+ application exhibits coherence
in the three-dimensional reconstruction of the Opuntia spp., highlighting its efficiency in
capturing details. On the other hand, the UNet architecture, with its layers of contraction
and expansion, demonstrated the ability to preserve the topology of the Opuntia spp. in the
resulting orthomosaic. Likewise, the UNet Style Xception variant presents an orthomosaic
that combines the high precision of predictions with the ability to discern subtle nuances in
the structure of the Opuntia spp.
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Figure 9. Segmentation in orthomosaics. (a) UNet; (b) DeepLabV3+; (c) UNet Style Xception.

In this work, the generation of binary masks from orthomosaics is considered very
useful for the precise quantification of the plant mass of the Opuntia spp. cultivation
because they show a general context of the study area. Figure 10 shows the results of the
binary masks of the three study architectures.

Figure 10. Masks obtained from each orthomosaic. (a) UNet; (b) DeepLabV3+; (c) UNet Style Xception.

The masks are the direct result of the semantic segmentation of the images, which
become essential tools to carry out the pixel count and, therefore, quantify in detail the
presence of Opuntia spp. in the region of interest to carry out a quantitative analysis and
obtain approximate measurements of the Opuntia spp. plant cover.

4.2. Measurement of the Plant Mass Area of the Opuntia spp. Cultivation

The measurement from an orthomosaic is challenging because they are generally large
images that exceed 4K resolution, so they cannot be introduced to a deep neural network
for semantic segmentation due to storage and processing capacity issues. Therefore, we
take strategies such as the one presented in the work of Gutierrez-Lazcano et al. [28], which
divides the image into four and is subsequently reduced to a size of 160 pixels, which
facilitates the implementation and training of different semantic segmentation models.
However, it is essential to measure segmentation performance with orthomosaics since
we have a general view of the crop area we want to analyze for decision making. Our
analysis proposal uses the LabelMe software (Version 5.4.1) to manually segment the
original orthophoto. Figure 11 shows the results of the reference segmentation from the
original orthophoto image. This process allowed the generation of a detailed binary mask,
essential for accurately quantifying the Opuntia spp. area in the region of interest.
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Figure 11. Manual segmentation. (a) Original orthomosaic generated in WebODM; (b) manual
segmentation with LabelMe software; (c) binary mask obtained from the segmentation to quantify
reference Opuntia spp. coverage.

Manual segmentation guarantees a careful and precise delimitation of the areas occu-
pied by the Opuntia spp. in the orthophoto, thus providing a reliable basis for comparing
the regions obtained through the three models analyzed. By using a manually segmented
mask, you not only establish a reliable benchmark for evaluating automatic segmentation
techniques but also enable the validation of the accuracy and effectiveness of such architec-
tures in identification and quantification. This methodological approach provides a solid
basis for comparing and critically analyzing the results obtained by automatic segmentation
architectures against a manual reference standard.

The models are evaluated in detail to quantify the area of Opuntia spp. vegetation in
each orthomosaic. Table 3 presents the quantitative results, where a significant agreement
between the automatic measurements and manual quantification is evident. However,
the UNet Style Xception architecture stands out notably, as it exhibited greater preci-
sion in the delimitation and quantification of Opuntia spp. areas compared to the other
two architectures. This finding suggests adaptability and generalization capacity in the
semantic segmentation task of Opuntia spp. vegetation.

Table 3. Comparative performance analysis of UNet, DeepLabV3+, and UNet Style Xception architec-
tures for vegetation area quantification in orthomosaics.

Architecture Pixel Count Vegetation (m2) IoU RMSE

UNet 127,536 53.5970 m2 0.3106 89.2447
DeepLabV3+ 124,451 52.3005 m2 0.4755 77.6231
UNet Style
Xception 128,194 53.8735 m2 0.5051 83.1994

Reference 128,959 54.1950 m2 1.00 0.00

In the existing literature [33–38], various semantic segmentation models based on deep
learning have been applied to identify vegetation in aerial images. However, these studies
are generally limited to smaller images and must address large orthomosaics segmentation.
Our approach, instead, introduces an innovative methodology that allows the accurate and
efficient segmentation of large orthomosaics, which is crucial for the extensive management
of crops such as Opuntia spp. Table 4 compares recent approaches to segmenting vegetation
areas, highlighting the resolution of the segmented images and their architectures, showing
no high-resolution segmented images.
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Table 4. Comparison of recent approaches in segmenting vegetation areas using semantic segmenta-
tion and deep learning architectures.

Proposal Approach Method Metrics Segmented
Image Size (px) Orthomosaics Limitations

Sa et al. [33]

Large-scale
weed mapping

in precision
agriculture

Deep Neural
Network
SegNet

Precision and
Recall 480 × 360 Yes

Reliable
spatio-temporal

models for
complex plants

and fields

Ayhan et al. [34]

Compare deep
and

conventional
methods

DeepLabV3+
and custom

CNN
IoU and RMSE 512 × 512 No

Large data,
image

differences,
channel

restrictions,
imbalance

Zhang et al. [35]
Multi-scale

context
aggregation

HRNet Precision and F1 512 × 512 No

Computational
needs,

scalability,
generalization

validation

Lan et al. [36] Real-time weed
identification

U-Net,
MobileNetV2-

UNet,
BiSeNetV2 and
FFB-BiSeNetV2

Accuracy and
IoU 650 × 800 No

Data, variability,
channels,
resources

Xiao et al. [37]

Segmentation
adaptation to

different
domains

WildNet IoU, F1 Score 512 × 512 and
896 × 896 No

Dataset
dependency,

computational
needs,

generalization,
complexity

Zhu et al. [38]
Handling
temporal
sequences

xLSTM Accuracy and
IoU 512 × 512 No

Subpar
performance,
unidirectional
scanning, data
requirements,
computational

complexity

4.3. Discussion of Results

The results obtained show the potential that deep learning architectures possesses,
specifically DeepLabV3+, UNet, and UNet Style Xception, for semantic segmentation and
quantification of vegetative areas in Opuntia spp. cultivation. Through comparative analy-
sis, this work highlights the significant advantages of these technologies over traditional
manual methods, offering a more precise and efficient approach. However, selecting the
optimal model depends on several factors, including desired accuracy and resource lim-
itations; while UNet is distinguished by its ability to segment fine details, DeepLabV3+
and UNet Style Xception demonstrate greater adaptability to scale variations. Despite their
strengths, these architectures face challenges due to the resolution imagery, application
context specificity, and operational complexity.

The comparative analysis of the orthomosaics generated by the UNet, DeepLabV3+,
and UNet Style Xception architectures, presented in Figure 9a–c, allows us to have a visual
reference in terms of detail and edge accuracy. Meanwhile, Figure 10a–c use binary masks
to quantify the vegetation area. The precision of UNet Style Xception is reflected in a higher
agreement with the manual segmentation presented in Figure 11b and the binary mask
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in Figure 11c, showing that the UNet Style Xception architecture results are very close to
the manual segmentation. The analysis highlights the ability of the UNet Style Xception
architecture to handle large images and achieve accurate results.

The comparative analysis of the performance of the trained models of UNet, DeepLabV3+,
and UNet Style Xception architectures for image segmentation is presented in Table 2, the
IoU (>0.5) and RMSE values in a homogeneous range allow us to establish that the three
models can effectively segment small images with variations in performance and execution
times. The best results were from the UNet Style Xception architecture.

Table 3 presents the results of the comparative analysis of the performance of the
trained models of the UNet, DeepLabV3+, and UNet Style Xception architectures for the
quantification of the vegetation area in the orthomosaic. The RMSE values of the three
architectures are homogeneous and allow us to establish that the three models achieve the
automatic quantification of vegetation area, while the value IoU = 0.5051 and greater than
0.5, allows us to recognize that the UNet Style Xception model has the best performance for
this task.

The study analyzes the architectures of DeepLabV3+, UNet standard, and UNet Style
Xception. Although these methods showed competitive performance, the UNet Style Xcep-
tion architecture excelled in accuracy and computational efficiency. The quantitative results
presented in Table 2 indicate that UNet Style Xception obtained a lower RMSE (1696.5831)
and a higher IoU (0.6733), demonstrating its robustness in handling fine details and com-
plex structures within the vegetation. Furthermore, it presented the lowest processing
times on GPU (0.03038s) and CPU (0.06013s), demonstrating its superiority in the specific
Opuntia spp. segmentation task.

The superior performance of the UNet Style Xception architecture in this study can
be attributed to its integration of separable convolutions (SeparableConv), which improve
efficiency and accuracy. SeparableConv operators decompose a standard convolution
into two simpler operations: a spatial convolution and a depth convolution, significantly
reducing the number of calculations required and allowing faster processing without
compromising accuracy [31]. This additional efficiency is essential in segmenting vegetation
areas, where it is crucial to distinguish between different plant textures and details. This
results in better detection and segmentation of complex structures within orthomosaic
images, facilitating greater precision in the delimitation of vegetative areas.

A significant limitation of the proposed method is its dependence on the resolution and
quality of the captured images. The accuracy of semantic segmentation can be negatively
affected by low-resolution images, complicating the identification and quantification of
small vegetative areas due to the loss of fine details that are essential for segmentation
accuracy. Models such as UNet, DeepLabV3+, and UNet Style Xception present variations
in their performance depending on the resolution of the images; UNet stands out for
its ability to segment fine details, while DeepLabV3+ and UNet Style the environmental
and climatic conditions can significantly affect the results of semantic segmentation and
quantification of vegetative areas. The variability in lighting conditions and the presence
of shadows represent a challenge for the generalization of the models. The air flights
were scheduled around 11:00 a.m. to ensure stable lighting conditions and minimize the
impact of shadows on images. However, the adaptability of the proposed method to
different agricultural conditions is a key strength that provides reassurance for its potential
in precision agriculture.

Additionally, weather conditions, such as cloud cover and wind, can influence the
quality and clarity of captured images. To mitigate these effects, flight plans were designed
with 75% lateral overlap and 70% vertical overlap, ensuring exhaustive coverage of the
study area. Furthermore, the proposed approach of validating the results with ortho-
mosaics, not only with images, allows for correcting possible errors caused by non-ideal
capture conditions, providing a reliable basis for comparing and analyzing the segmenta-
tion models. Although these models have proven effective in the specific region studied,
their applicability to other agricultural conditions requires additional validation. Computa-
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tional efficiency is another crucial significant consideration when scaling to larger datasets.
Advanced data augmentation and processing techniques are essential to maintaining data
integrity and balancing computational efficiency with the quality of results. Furthermore,
it is necessary to consider the complexity and operational costs to implement the proposal
on a larger scale in precision agriculture. Validation using orthomosaics is essential to
confirm the accuracy of the segmentation and correct possible errors caused by non-ideal
capture conditions.

Furthermore, despite this study’s relatively small dataset, several strategies have been
implemented to mitigate bias and enhance the model’s generalization ability. The data
augmentation scheme, which includes a wide range of transformations such as flips and
rotations, has significantly increased the diversity of the training images, thereby bolstering
the robustness of the model. Moreover, detailed manual segmentation of the original
orthophotos has been used as a reference to validate the accuracy of the automatic models,
providing a solid basis for evaluating the effectiveness of semantic segmentation techniques.
These combined approaches ensure that the results are consistent and reproducible while
improving the model’s ability to generalize under previously unseen conditions.

On the other hand, future research can explore other advanced segmentation models,
such as Segment Anything, an emerging methodology in the field of segmentation that
promises greater adaptability and accuracy in various segmentation tasks. This methodol-
ogy is based on the ability to segment any object in an image without needing to train a
specific model for each object class; this can be advantageous in agricultural contexts where
the variability of vegetative characteristics can be high. The flexibility and generalizability
of Segment Anything could provide a robust framework for orthomosaic segmentation
in diverse agricultural settings, potentially offering improvements in the accuracy and
efficiency of the segmentation process.

5. Conclusions

In the present study, the semantic segmentation architectures UNet, DeepLabV3+, and
UNet Style Xception are evaluated and applied to measuring areas of Opuntia spp. vegetation
through orthomosaics. The research highlights the superiority of UNet Style Xception in terms
of precision, adaptability, and generalization capacity for the delimitation and quantification
of Opuntia spp. areas, underlining the relevance of choosing the most appropriate architecture
according to the specific needs of precision and operational efficiency.

The results indicate that, although DeepLabV3+ and UNet have competitive pro-
cessing times, UNet Style Xception stands out for its notable optimization. This aspect
is essential in applications that demand high precision and speed, which are essential
elements within the framework of precision agriculture. Furthermore, the study evidences
the superiority of deep learning techniques compared to traditional manual methods in
managing Opuntia spp. cultivation, although it also recognizes the inherent operational
and economic challenges. Therefore, the need to develop pragmatic solutions to implement
precision agricultural practices effectively is highlighted.

Significant progress is evident toward incorporating innovative solutions based on
deep learning to manage Opuntia spp. cultivation. Multidisciplinary collaboration and a
focus on resource optimization are key to overcoming barriers and maximizing the impact
of these technologies in precision agriculture, guiding toward the sustainable management
of Opuntia spp. crop.
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