
Academic Editor: Alois Herkommer

Received: 22 November 2024

Revised: 19 February 2025

Accepted: 21 February 2025

Published: 26 February 2025

Citation: Muñoz, J.D.;

Ruiz-Santaquiteria, J.; Deniz, O.;

Bueno, G. Concealed Weapon

Detection Using Thermal Cameras. J.

Imaging 2025, 11, 72. https://doi.org/

10.3390/jimaging11030072

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Concealed Weapon Detection Using Thermal Cameras
Juan D. Muñoz , Jesus Ruiz-Santaquiteria * , Oscar Deniz and Gloria Bueno

VISILAB, Escuela Técnica Superior de Ingeniería Industrial, University of Castilla-La Mancha, 13071 Ciudad Real,
Spain; juandaniel.munoz@uclm.es (J.D.M.); oscar.deniz@uclm.es (O.D.); gloria.bueno@uclm.es (G.B.)
* Correspondence: jesus.ralegre@uclm.es

Abstract: In an era where security concerns are ever-increasing, the need for advanced tech-
nology to detect visible and concealed weapons has become critical. This paper introduces
a novel two-stage method for concealed handgun detection, leveraging thermal imaging
and deep learning, offering a potential real-world solution for law enforcement and surveil-
lance applications. The approach first detects potential firearms at the frame level and
subsequently verifies their association with a detected person, significantly reducing false
positives and false negatives. Alarms are triggered only under specific conditions to ensure
accurate and reliable detection, with precautionary alerts raised if no person is detected but
a firearm is identified. Key contributions include a lightweight algorithm optimized for
low-end embedded devices, making it suitable for wearable and mobile applications, and
the creation of a tailored thermal dataset for controlled concealment scenarios. The system
is implemented on a chest-worn Android smartphone with a miniature thermal camera,
enabling hands-free operation. Experimental results validate the method’s effectiveness,
achieving an mAP@50-95 of 64.52% on our dataset, improving state-of-the-art methods. By
reducing false negatives and improving reliability, this study offers a scalable, practical
solution for security applications.

Keywords: weapon detection; person detection; CCTV; handgun; thermal camera;
Android application

1. Introduction
In today’s increasingly complex security landscape, the need for robust and effective

measures to detect weapons has never been more critical. As threats to public safety
evolve (whether from terrorism, organized crime, or mass shootings, as shown in Figure 1,
the shooting that took place on 20 April 1999 at Columbine High School [1]), security
professionals face the daunting task of preventing potential disasters while balancing
efficiency and practicality.

The rising sophistication of weapon concealment tactics, combined with the increasing
ease of access to dangerous weapons, calls for a new wave of detection technologies that
can adapt to these emerging threats. Traditional methods, such as metal detectors and X-ray
scanners, are often limited by their scope and are not always effective in detecting non-
metallic or cleverly disguised weapons. This has led to a growing demand for advanced
systems that can offer higher accuracy, faster response times, and greater adaptability to
different environments and threat levels.

To address these challenges, this paper delves into the synergistic convergence of two
powerful technologies: thermal imaging and deep learning. Thermal imaging operates
passively by capturing infrared radiation naturally emitted by objects, ensuring safety for
both subjects and operators. Its ability to detect temperature variations allows thermal
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cameras to identify concealed firearms, which exhibit distinct thermal signatures compared
to the human body or clothing. Deep learning, on the other hand, offers the ability
to analyze large datasets and automatically recognize complex patterns, reducing false
positives (and false negatives, which is key in this field) and improving detection accuracy.
The combination of these technologies provides a powerful solution that addresses the
limitations of traditional methods.

Figure 1. CCTV camera capturing the shooters of the Columbine High School tragedy that occurred
on 20 April 1999.

Thermal imaging is particularly advantageous due to its non-intrusive nature, preserv-
ing privacy better than methods that generate detailed anatomical outlines (see Figure 2).
It also operates effectively in low visibility conditions, including total darkness, making it
suitable for diverse security scenarios. The initial investment may be significant, but its
durability and low operational costs make it a cost-effective choice over time, particularly
for applications requiring frequent and rapid screening. By augmenting thermal imaging
with deep learning, systems can enhance weapon detection by quickly analyzing heat
signatures with high precision while adapting to new threats.

(a) (b)

Figure 2. (a) Example of an X-ray scanner used to detect concealed objects on a person [2]. (b) Example
of an infrared camera used to detect concealed objects on a person [3].

This combination represents a cutting-edge approach to concealed weapon detection
that holds the potential to revolutionize security measures across a variety of sectors,
including airports, public transportation hubs, government buildings, and other high-
security areas. Our method is based on two detection stages: frame-level handgun detection
and frame-level person detection. First, the handgun detector decides whether there is a
gun in the processed frame or not, discarding it if nothing is detected. Nevertheless, if a gun
is detected, then a person detector is applied and it is checked if the previously detected



J. Imaging 2025, 11, 72 3 of 25

gun is contained in the person’s area. If no person is detected, an alarm is triggered either
way, just in case; if a person is detected and the gun is contained in that area, an alarm is
triggered; if a person is detected and the gun is not contained in that area, the alarm is not
triggered, as the gun detection is not considered to be legit.

2. Previous Work
Thermal imaging technology has played a significant role in surveillance and secu-

rity systems, particularly for detecting concealed threats. The following studies high-
light relevant advancements in the field and provide context for the contributions of the
present work.

In 2010, Kastek et al. [4] explored the use of infrared cameras for sniper detection,
demonstrating the capability of thermal imaging to identify muzzle flashes and camou-
flaged snipers. While this application differs from concealed weapon detection under
clothing, it highlighted the potential of infrared technology for identifying threats in vi-
sually obscured scenarios. Their work also revealed the limitations of thermal imaging
at long distances, emphasizing the need for high-performance sensors, which remains a
consideration in modern applications. The focus of this study on sensor selection and
operational challenges influenced our approach to optimize detection performance for
shorter distances using compact and affordable thermal cameras.

Building on this foundation, Jedrasiak et al. [5] proposed a prototype for concealed
weapon detection (CWD) in 2012 that integrated infrared and visual cameras with a fast
image fusion algorithm. Their work demonstrated the feasibility of combining thermal
and visible-light imaging to enhance detection performance. However, the system faced
limitations in terms of scalability, real-time processing, and deployment practicality due
to its reliance on custom hardware. This highlights the importance of designing systems
compatible with readily available components, which we address by leveraging off-the-
shelf thermal cameras and Android-based smartphones in our work.

In 2017, Nashwan et al. [3] introduced a hybrid algorithm combining discrete wavelet
transform and shape-matching-based Support Vector Machine (SVM) classification [6].
Their approach improved image quality through sensor fusion, aiding in concealed weapon
detection from a standoff distance. However, the reliance on handcrafted features and
limited datasets constrained the scalability and adaptability of the method. In contrast,
our study employs deep learning-based approaches capable of end-to-end learning, re-
ducing dependence on manual feature engineering and improving performance on di-
verse datasets.

More recently, Gaurav et al. [7] in 2019 applied Faster Region-based Convolutional
Neural Network (Faster R-CNN) [8] for concealed weapon detection using thermal and HD
cameras integrated with Raspberry Pi and Intel Movidius accelerators. While their system
achieved a commendable 93.6% accuracy, its reliance on specific hardware accelerators and
limited dataset diversity posed challenges for broader deployment. Our work addresses
these limitations by focusing on lightweight neural network architectures that operate
efficiently on low-power, widely available embedded devices.

In 2022, Hema and Subramanian [9] proposed an infrared-imaging-enabled drone
for weapon detection, emphasizing autonomous surveillance. Despite its potential, the
approach was hindered by distance limitations, making it unsuitable for scenarios re-
quiring close-range detection. Additionally, the cost and maintenance of autonomous
drone systems limit their practicality. In contrast, our work prioritizes compact, wear-
able solutions optimized for close-range applications, aligning better with real-world
operational requirements.
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More recently, in 2023, Veranyurt et al. [10] proposed a deep learning-based system
for detecting and locating concealed pistols in thermal images for real-time surveillance,
combining two models: one for classification and another for detection. Using a self-created
dataset of 600 images [11], along with the Trimodal [12] and Linköping Thermal InfraRed
(LTIR) [13] datasets, the method preprocesses thermal images to enhance sharpness and
contrast before classifying the presence of a weapon. If detected, the system generates
a bounding box to locate the pistol and uses a security counter to trigger alarms after
consecutive detections. The best results were achieved with a fine-tuned Visual Geometry
Group 19 (VGG19) model [14] for classification (85% accuracy, 85% precision, F1-score of
0.84) and a fine-tuned You Only Look Once version 3 (YOLOv3) model [15] for detection
(a mean Average Precision, or mAP, of 95% at 10 Frames Per Second (FPS) and a 92% mAP
for classification). Despite promising results, the authors suggested improvements such as
adopting newer architectures, increasing FPS by using enhanced hardware configurations
to avoid missed detections, expanding datasets for varied conditions, and considering
multi-person scenarios for greater system robustness.

With that all said, the present paper paper makes several significant contributions
to the field of concealed weapon detection, specifically focusing on the use of thermal
imaging technology. Our main contribution is the algorithm presented, as we propose
a straightforward yet effective method for detecting concealed weapons. Our approach
is designed to be computationally efficient, allowing it to be implemented on low-end
embedded devices, which are increasingly prevalent in mobile security applications. This
is particularly important because security personnel often require portable solutions that
can function in various environments without relying on high-power computing resources.
By optimizing the algorithm for performance on less powerful hardware, we enhance
accessibility and practicality for real-world applications. Along with that main objective,
we also introduce a thermal image dataset tailored explicitly for concealed handgun de-
tection at relatively short distances. Our dataset includes a diverse range of samples that
represent different types of clothing and concealment techniques, making it a valuable
resource for training and testing detection algorithms. Finally, we implement and evaluate
our detection method using a chest-worn Android smartphone connected to a miniature
thermal camera. This setup allows for hands-free operation, enabling security personnel to
maintain situational awareness while monitoring concealed weapons. As far as the authors
are aware, this is the first study to address concealed handgun detection using this specific
combination of a self-made thermal imaging dataset, efficient algorithm, and wearable
technology. Our results indicate promising detection performance, demonstrating that
the method can effectively identify concealed weapons while maintaining a manageable
computational burden. This balance between detection accuracy and processing efficiency
opens the door to potential real-world applications, such as airport security, public event
monitoring, and law enforcement operations.

3. Materials and Methods
3.1. Datasets

Before delving into the explanation of the proposed method, it is important to describe
how the method is going to be tested. In this case, along with an Android app implementa-
tion, results have been extracted from testing two different datasets: the “Concealed Pistol
Detection Dataset” [11], which is an extract from study [10], consisting of 358 non-annotated
images (since concealed objects were not annotated in the available dataset, it was necessary
to manually annotate all of the images containing concealed handguns within them. This
dataset contains only one type of concealed object (thus one class): “Handgun”), and the
“UCLM Thermal Imaging Dataset”, by Muñoz et al. [16], which is a dataset introduced
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in this paper consisting of 102 annotated thermal videos, categorized into four classes:
“Handgun”, “Smartphone”, “Keys” and “Person”. The videos were collected using the
TOPDON TC001 thermal camera, produced by TOPDON Technologies [17].

For both datasets, the ground truth needed to be generated (in this paper, for evaluation
purposes, only the “Handgun” class annotations were considered). This was carried out
by an expert, who manually annotated each frame using two tools: for the “Concealed
Pistol Detection Dataset”, the Computer Vision Annotation Tool (CVAT) [18], and for the
“UCLM Thermal Imaging Dataset” ground truth, the Image Labeler from MATLAB [19] (the
version of MATLAB used was the R2023a, the 9.14). The criterion followed by the expert
was to visually identify, by inspecting each image, whether the individual was carrying a
concealed object in a pocket or under other garments or not. This visual inspection is feasible
due to the thermal camera’s temperature sensor, which highlights concealed objects like
weapons made of metal by generating distinct shapes caused by their lower temperature.
These shapes enable the identification of hidden objects and their corresponding classes.
Although the images were not categorized by difficulty of identification, some cases are
inherently easier to label than others. For instance, if the object of interest (in this case, the
weapon) has recently come into contact with the body, there may not be enough time for
the garment to cool as a result of the concealed object’s temperature, reducing the visible
temperature contrast. Also, if a concealed handgun has been in contact with the body for
an extended period, it may warm up, reducing the thermal contrast required for reliable
detection. Another challenging scenario arises when the weapon is concealed beneath thick
or insulating clothing, which prevents the weapon from being visualized. Implementing
data augmentation techniques in the dataset could help increase the variety of images and
improve the identification of concealed objects across a wider range of scenarios.

Images of both datasets are shown in Figure 3. Moreover, to demonstrate that the
results obtained improve generally when applying our proposed method and not only in
specific cases, for each dataset five experimental runs per method were performed. Each run
varies based on the dataset variant selected. In the case of the “Concealed Pistol Detection
Dataset”, due to the limited number of images, all images were selected, and for each run, a
random split of the dataset into training/validation/test sets was carried out, always with a
60/10/30 ratio, respectively. For the “UCLM Thermal Imaging Dataset”, it was first reduced
by selecting one out of every five images, resulting in a total of 2402. This was carried out to
avoid overfitting due to the high similarity of consecutive images. With these 2402 images,
five runs were carried out, randomly splitting them into training/validation/test sets,
maintaining a 60/10/30 ratio for each set, respectively. Note that although we reduced
our dataset to obtain metrics to avoid overfitting, the dataset was created with a specific
scenario in mind: a police officer wearing a mobile phone on his chest connected to a
thermal camera that, via a real-time application (described in Section 4.5), receives an alert
if a concealed weapon is detected on the individual in front of the camera.

3.2. Proposed Method

The method proposed is described in Figure 4. This method aims to improve existing
methods by reducing false positives (unreal guns detected as real) along with reducing
false negatives (missed real guns). In most cases, a firearm is carried by an individual;
therefore, considering only handgun detections within the region corresponding to a person
identified in the image helps mitigate false positives outside the area of interest. Moreover,
in instances where a handgun is detected during the initial step of the method but no person
is identified, an alarm is triggered as a precautionary measure to account for potential
failures in the person detection process. A more detailed explanation is provided below.
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(a) (b)
Figure 3. (a) Sample image of the “UCLM Thermal Imaging Dataset” where there is a concealed
handgun. (b) Sample image of the “Concealed Pistol Detection Dataset” where there is a con-
cealed handgun.
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Preprocessing. To initiate the process, a frame from the thermal camera feed is first
extracted. We tested our method in two configurations: one using the described datasets
and another by integrating it into an Android app. For the datasets, images were converted
to grayscale. Aside from this conversion, no additional preprocessing, such as contrast
adjustment, was applied. For the Android app implementation, the camera outputs
grayscale images directly, making further preprocessing unnecessary. Taking heed of
the conversion of the images of the datasets to grayscale (the only preprocessing operation
carried out), this was only needed in the case of the “UCLM Thermal Imaging Dataset”, as
the “Concealed Pistol Detection Dataset” images were already in grayscale. The conversion
was performed in Python in its 3.10 version [20] with the OpenCV library [21]. After
loading the original images, which had a hot colormap applied [22] to them, we used the
cv2.COLOR_BGR2GRAY option to convert them into grayscale. COLOR_BGR2GRAY color
mode applies the Equation (1) to convert from any three-channel image to a one-channel
image. See Figure 5 as an example of the conversion operation of a frame from the “UCLM
Thermal Imaging Dataset”.

Y = 0.299 · R + 0.587 · G + 0.114 · B (1)

(a) (b)

Figure 5. (a) Example of an original frame (hot colormap) from the “UCLM Thermal Imaging
Dataset”. (b) Frame of the “UCLM Thermal Imaging Dataset” after being converted from hot
colormap to grayscale.

Handgun detection. Once the image is obtained, we perform frame-level handgun detec-
tion using a trained object detection model. This step confirms the presence of a concealed
handgun within the frame. If a handgun is detected, the bounding box coordinates of each
detected concealed handgun are recorded for further analysis. If no handgun is detected,
the current frame is discarded, and the next frame is processed.

The chosen architecture to perform this task was a YOLOv3 [15], more specifically the
YOLOv3u version (YOLOv3u architecture in Figure 6), which is an updated version of
YOLOv3-Ultralytics that incorporates the anchor-free, objectness-free split head used in
YOLOv8 [23] models (YOLOv8 version x architecture in Figure 7). YOLOv3u maintains the
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same backbone (Darknet53 [24]) and neck architecture as YOLOv3 but with the updated
detection head from YOLOv8.

Figure 6. Simplified architecture of YOLOv3u obtained using Graphviz [25] in its 0.20.3 version. The
backbone (Darknet53 [24]) is responsible for feature extraction and consists of a series of convolutional
(abbreviated as “Conv” in the figure) layers and bottlenecks, which are blocks designed to learn and
capture abstract feature representations of the input data while reducing computational complexity.
The neck includes upsampling layers (which double the input dimensions without weights) and
concatenation operations that fuse multi-scale features to improve the model’s detection capabilities.
The head is responsible for generating detections at three different scales (P3, P4, P5). Moreover, in
the figure, “Concat” refers to concatenation.
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Figure 7. Simplified architecture of YOLOv8x obtained using Graphviz [25]. The backbone is respon-
sible for feature extraction and consists of a series of convolutional (abbreviated as “Conv” in the
figure) layers and C2f blocks. Each C2f block involves a convolutional layer, where the resulting
feature map is split. One part goes through a Bottleneck block, and the other is directly passed to a
Concat block, with the two outputs being combined before a final convolution. The backbone also
includes an Spatial Pyramid Pooling-Fast (SPPF) block, which applies pooling operations at multiple
scales to capture multi-scale information and handle images of different resolutions more effectively.
The neck includes upsampling layers (which double the input dimensions without weights) and
concatenation operations to fuse multi-scale features. Finally, the head generates detections at three
different scales (P3, P4, P5). Moreover, in the figure, “Concat” refers to concatenation.
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We chose to use a YOLO mainly because of its ability to make predictions about object
locations and classes quickly in a single pass over the image, unlike other object detection
methods that require multiple stages or “passes” of the image. YOLO divides the input
image into a grid of S × S cells. Each cell is responsible for predicting whether an object
exists in that region of the image or not. As newer versions were developed, mechanisms
were improved to detect multiple objects per cell and better handle small objects. Each cell
in the grid generates several bounding boxes, which are rectangles that could potentially
contain an object. Each bounding box includes the coordinates (x, y) for the center of
the object; the width and height of the box; a “confidence score”, which represents the
probability that there is actually an object in that box. For each bounding box, YOLO also
predicts a set of classes (e.g., “person”, “dog”, “car”) with associated probabilities. Finally,
YOLO uses a method called Non-Maximum Suppression (NMS) [26] to reduce redundant
predictions. The general process followed by a YOLO model is shown in Figure 8.

Figure 8. The process followed by YOLO to classify and localize objects within an image. The
model divides the input image into a grid and assigns each grid cell the responsibility of predicting
objects that fall within its boundaries. Each grid cell predicts a fixed number of bounding boxes
along with class probabilities and objectness scores. The network then processes these predictions
through the model’s layers, producing the final object classifications and accurate localization through
bounding-box coordinates for each detected object in the image.
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Person detection. Upon confirming the presence of a concealed handgun within the frame,
the person detection process is initiated. The person detection model identifies individuals
within the image and selects the bounding box the model is most confident in (considering
only one person for simplicity). Using the coordinates of the detected handgun(s) from the
prior step, the system checks whether the detected handgun is located within the bounding
box of the identified person. To ensure a more reliable assessment and reduce the risk
of false positives, the sides of the person’s bounding box are initially expanded by 15%,
allowing a margin for detection. Following this adjustment, a straightforward comparison
is made between the coordinates to verify whether a handgun lies within the person’s
bounding box. However, in the absence of any detected persons, the firearm with the
highest confidence score (reflecting the model’s highest level of certainty) shall still be
considered valid, provided that the handgun detector has identified at least one firearm.

In this case, we used a pretrained YOLOv8, specifically the YOLOv8x version, which is the
best Ultralytics version; it is also the one that requires the most capacity but works better
than the others. The model was pretrained to detect 80 classes, but only the “Person” class
was considered to carry out the experiments.

Alarm. Finally, if at least one handgun detection meets the criteria (either located within
the expanded bounds of a person’s bounding box or detected independently of a person),
the system triggers an alarm.

3.3. Setup

In order to carry out the proposed method, some aspects need to be considered.

Experimental setup. Training and testing were performed on an Intel® Xeon(R) CPU
E5-2620 (produced by Intel) computer with a NVIDIA Quadro P4000 GPU (produced by
NVIDIA). We chose to use the TOPDON TC001 thermal camera [17], which was selected
due to its small size and reduced cost. The camera was directly connected to a HUAWEI
P30 Lite Android smartphone (produced by HUAWEI) and videos for the “UCLM Thermal
Imaging Dataset” were collected (later, images were extracted from these) using the TC001’s
official Android app. Later, the same thermal camera and the same smartphone were used
in order to test the Android app.

Metrics. To evaluate the methods, considering that they are primarily detectors, the
mean Average Precision (mAP) [27] has been extracted, which is a widely used metric
to evaluate the performance of object detection models, such as YOLO or Faster R-CNN.
To fully understand mAP, we need to break down the fundamental concepts it builds
upon [28]: true positives (TPs), false positives (FPs), false negatives (FNs), true negatives
(TNs), precision, recall, Intersection over Union (IoU), and finally, Average Precision (AP)
and mAP. In object detection, predictions are evaluated based on their alignment with
ground truth (information that is known to be real or true) objects. This is done using the
following definitions:

• True Positive (TP). A detection is considered a true positive when the predicted
bounding box correctly identifies an object and sufficiently overlaps with the ground
truth bounding box. Before explaining the next concepts, it is key to understand what
“overlapping” means in this context, and that is the Intersection over Union (IoU).
In the object detection scope, the IoU measures the overlapping area between the
predicted bounding box B_p and the ground truth bounding box B_gt divided by the
area of union between them (see Equation (2)). By comparing the IoU with a given
threshold t, we can classify a detection as being correct or incorrect. If IoU ≥ t then the
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detection is considered as correct. If IoU < t the detection is considered as incorrect.
For a better understanding, the IoU concept is graphically described in Figure 9.

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(2)

Figure 9. Intersection over Union (IoU) [28]. The figure graphically illustrates this concept with
two squares, representing the predicted and ground truth bounding boxes, highlighting both the
overlapping region and the union of the two areas to show how IoU is calculated.

• False Positive (FP). A detection is considered a false positive when the model predicts
a bounding box that does not correspond to any actual object, or when the bounding
box overlaps insufficiently with a ground truth box.

• False Negative (FN). A false negative occurs when the model fails to detect an object
that is present in the image.

• True Negative (TN). This term is less relevant in object detection as it refers to correctly
identifying the absence of objects, which is not explicitly evaluated.

Using the above definitions, we can derive two core evaluation metrics: precision
and recall. Precision measures the proportion of correctly predicted objects (true positives)
relative to the total number of predictions made (true positives + false positives). It is
calculated as shown in Equation (3). A high precision indicates that the model makes few
incorrect predictions (false positives). Recall measures the proportion of real objects that
were successfully detected by the model (true positives) relative to the total number of
actual objects (true positives + false negatives). It is calculated as shown in Equation (4). A
high recall means that the model detects most of the objects present in the image.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

To evaluate a model across different thresholds for classification confidence, we calcu-
late precision and recall for various confidence levels and plot a precision–recall (PR) curve.
The PR curve shows how precision and recall trade off as the model’s confidence threshold
changes. The AP summarizes the PR curve into a single number by calculating the area
under the curve (AUC). It is computed as shown in Equation (5).

AP =
∫ 1

0
Precision(R)dR (5)

where R represents recall.
Finally, the mAP extends the concept of AP to evaluate the model’s performance

across all object classes. For a model that detects N object classes, mAP is calculated as in
Equation (6).
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mAP =
1
N

N

∑
i=1

APi (6)

where AP_i is the average precision for class i. To account for varying detection strictness,
mAP can be evaluated at different IoU thresholds, i.e., the overlapping concept explained
above (e.g., 0.5, 0.75, or averaged over a range like [0.5:0.95]). In this paper, the mAP has
been extracted in the range [0.5:0.95].

In this paper, the metrics were extracted by considering the results from five runs
of each dataset per method (i.e., one mAP@50-95 value per run). The final result for
each method is reported as the average of these five runs, along with the corresponding
standard deviation.

When extracting the metrics, it is necessary to assign a confidence threshold to the
detectors (handgun and person). This confidence threshold is independent of the IoU
threshold, as it is not used to compare predictions with ground truth. The confidence
threshold represents the probability score that the detector assigns to the presence of an
object in a given bounding box. A lower confidence threshold is less restrictive, resulting
in the model detecting more objects in a frame, albeit at the cost of more false positives.
Conversely, a higher confidence threshold is more restrictive, yielding fewer detections but
with greater precision and fewer false positives.

To calculate the mAP metric, we opted for a low confidence threshold for the handgun
detector (set at 0.0001) to include all potential detections. Selecting a low detector threshold
is essential for accurately extracting the mAP metric. It ensures that all potential detections,
including those with low confidence, are considered during evaluation, allowing for a
complete analysis of the precision–recall trade-off across all confidence levels. Using a
higher threshold would exclude many valid but low-confidence detections, leading to
incomplete precision–recall curves and an inaccurate assessment of model performance.
By adopting a low threshold, the evaluation better reflects the model’s comprehensive
detection capabilities. Similarly, for the person detector, the confidence threshold was also
set to 0.0001. However, in this case, only the highest-confidence detection per frame was
considered, as the goal was not to maximize the number of detected individuals (the method
is proposed to detect guns, not people, and thus metrics refer to final gun detections).

Finally, it should be noted that the use of low confidence thresholds is strictly for
metric extraction purposes. In a real-time system, these thresholds would be set to higher
values to reduce the occurrence of false positives.

Detection Task. Once the datasets, the proposed method, the experimental setup, and the
evaluation metrics are defined, the question arises regarding the objective to be achieved.
On one hand, the proposed method has been developed with the aim of minimizing false
positives, as weapons are encapsulated within the person. On the other hand, the primary
and most critical objective is to ensure that no detection is missed, as detecting hidden
weapons is of utmost importance. Therefore, a balance is sought between avoiding missed
detections while filtering out unnecessary ones. For this reason, in cases where no person
is detected, the method triggers an alarm regardless, provided a weapon has been detected
at the frame level.

Training Process. Once the architectures and the metrics used have been explained, before
the testing process they had to be trained. The chosen YOLOv8x to perform the person
detection task was pretrained, so only the YOLOv3u needed to be trained. It is important
to note that, when training a YOLO model, it internally resizes image data to a range
[0, 1] by dividing each pixel value by 255 to work more efficiently. Moreover, a default
data augmentation is performed during the YOLO training, which helps the architecture
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in detecting better in difficult situations. This default data augmentation consists of the
following: color augmentations involve random adjustments to hue (±1.5%), saturation
(up to ±70%), and brightness (up to ±40%); geometric transformations include random
translation (±10%), scaling (up to ±50%), and horizontal flipping with a 50% probability;
mosaic augmentation, a key feature in YOLO models that combines four images into one,
is enabled; random erasing with a 40% probability is applied to improve robustness, and
auto-augment with the RandAugment policy introduces further random transformations;
and the crop fraction is set to 1.0, ensuring no cropping is applied.

Now, delving into the datasets and hyperparameter details, see Table 1 for more
information. Furthermore, in order to split the datasets into train/val/test, stratified
shuffling has been used (60%/10%/30%, respectively).

Table 1. Summary of the dataset split and chosen hyperparameters to train the YOLOv3u handgun
detector for the proposed method.

Architecture Dataset # Images Classes Train/Val/Test Images

YOLOv3u

UCLM Thermal
Imaging Dataset 2402 “Handgun” 1441/239/722

Concealed Pistol
Detection Dataset 358 “Handgun” 214/35/109

Note that, within each dataset, each run has been trained using the same hyperparam-
eters. In addition to what is shown in Table 1, the YOLOv3u was trained chosing, for both
datasets, the same number of epochs (15), the same input size for the images (128× 128), the
same optimizer (AdamW with a 0.9 momentum) and the same initial learning rate (0.002).

The metrics reported for the trained models were obtained using the validation option
in the Ultralytics framework, specifying the path to the test dataset. These metrics represent
the average performance over five runs. For the “UCLM Thermal Imaging Dataset”, the
model achieved a precision and recall of 94.58%, with an mAP@50 (IoU = 0.50) of 95.08%
and an mAP@50-95 (IoU from 0.50 to 0.95) of 65.44%. On the “Concealed Pistol Detection
Dataset”, the model recorded a precision of 50.62%, recall of 70.48%, an mAP@50 of 55.40%,
and an mAP@50-95 of 22.35%. These metrics help determine whether further training is
required. The results are presented separately here, as they reflect the performance of the
trained models in detecting the specific classes they were trained on. They are independent
of the method’s results and are not included within them.

4. Results
4.1. Complete Method Results

Now that the architecture has been carefully trained, not allowing overfitting to
happen, a Python code is developed (not publicly available) and executed to test the
complete method, which is described in Figure 4. In order to obtain the results, a ground
truth for each run has been created (a JavaScript Object Notation file, more commonly
known as JSON, in COCO standard format). Then, the complete method code is executed,
storing the detections of the test set in another JSON file. Finally, the results for each
run (object detection metrics, mAP varying the Intersection Over Union, or IoU, from
0.50 to 0.95) are obtained by comparing the JSON files. As previously explained, all
handgun detections have been considered and the results have been extracted setting a
0.0001 confidence threshold for both architectures. Nevertheless, results considering only
the best handgun detection (meaning only including the bounding box with the greatest
score among all) have also been included to add more information. Apart from this, JSON
files only contain “Handgun” detections. This means that when showing the mAP metric,
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it is equal to the AP value, as there is only one final class. Results are shown in Table 2.
Moreover, an ablation experiment is shown in Section 4.2 to realize the impact of the person
detector in the proposed method.

Table 2. Table showing the main metrics extracted from testing the complete proposed method on
the “UCLM Thermal Imaging Dataset” and “Concealed Pistol Detection Dataset” datasets. The mean
and the standard deviation of the five runs considered for each dataset are shown; 0.0001 confidence
score threshold for each architecture.

Dataset Detections Average Precision
(IoU = 0.50:0.95, Area = All) Standard Deviation

UCLM Thermal
Imaging Dataset [16]

All 64.52% 0.0603
Best score 64.30% 0.0606

Concealed Pistol
Detection Dataset [11]

All 27.78% 0.0781
Best score 27.70% 0.0843

First, note that in Table 2, when considering only the best score detection per frame,
the results are worse. This is due to the fact that by selecting only the highest-scoring
detection per frame, you are potentially discarding other valid detections that may have a
lower score but are still accurate. In some cases, the model may produce multiple detections
for the same object with varying confidence levels, and by only considering the highest
confidence, you may miss out on the overall accuracy of the model. Additionally, this
approach may reduce the diversity of detections across frames, which could impact the
mAP@50-95 performance, particularly in challenging detection scenarios where multiple
objects are close together or occluded.

To compare with other state-of-the-art methods, we replicated [10] and tested it with
both datasets. Results show that our method consistently improves on ≈1% all metrics. For
instance, an mAP@50-95 of 27.18% is achieved when testing [11] considering all handgun
detections per frame. In this way, our method achieves better our goals because mAP@50-95
measures the balance between precision (reducing false positives) and recall (reducing false
negatives) across a range of IoU thresholds (0.5 to 0.95). Then, a higher mAP indicates that
the our method achieves a more effective trade-off between these two goals, consistently
performing better at detecting true positives while avoiding false detections (see Figure 10).
The improvement, however, is not great. This is primarily because of the use of the
same trained handgun detector (YOLOv3u) because we wanted to demonstrate that the
improvement comes from the method itself and not the architecture selected. Additionally,
our dataset, the “UCLM Thermal Imaging Dataset”, has limitations. It includes only a
few scenarios with minimal variation, such as consistent lighting conditions, the same
individual, and the same room throughout. This is a first approach and this data could
be improved. Nonetheless, this dataset was created with the intention of helping a police
officer to detect hidden weapons when facing a person, so the situations do not vary too
much (there is no movement in the scene and the person will always face or have their back
to the officer).

Note also that when considering the “Concealed Pistol Detection Dataset”, results are
worse in general due to the lack of images of the dataset, along with a lot of variability
among them, thus leading to a worse training of the model and a worse performance.
Nevertheless, by testing on a “worse” dataset, we aim to demonstrate that our method
improves results, regardless of the data quality. The datasets themselves are not being
compared, nor should they be, as the goal is not to compare datasets but to show how our
method improves results in comparison to existing methods.



J. Imaging 2025, 11, 72 16 of 25

(a) (b)

Figure 10. (a) Result with the method proposed in [10]. (b) Same image, result with the proposed
method. “Concealed Pistol Detection Dataset”. All detections considered. Models’ min confidence
value: 0.0001.

To see it clearer and graphically, precision–recall curves (varying IoU) for the first run
of each dataset tested with the proposed method have been extracted so that it is easier to
understand the mAP results. See Figures 11 and 12.

Figure 11. Precision–recall curves for IoU = [0.50, 0.75, 0.90] obtained from testing the proposed
method on the “UCLM Thermal Imaging Dataset”.

4.2. Ablation Experiment

In order to realize how important is to have the person detector in terms of what we
want to achieve, we can extract mAP metrics by removing this architecture, thus testing the
model only with the handgun detector. Results are shown in Table 3.

Comparing with results shown in Table 2, these in Table 3 are a bit lower, meaning
that the person detector influences the discarding of many false positives, which is one of
the main aims of the proposed method.
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Figure 12. Precision–recall curves for IoU = [0.50, 0.75, 0.90] obtained from testing the proposed
method on the “Concealed Pistol Detection Dataset”.

Table 3. Table showing the main metrics extracted from ablation experiment (i.e., removing the person
detector from the proposed method) on the “UCLM Thermal Imaging Dataset” and “Concealed Pistol
Detection Dataset” datasets. The mean and the standard deviation of the five runs considered for
each dataset. 0.0001 confidence score threshold for the handgun detector are shown.

Dataset Detections Average Precision
(IoU = 0.50:0.95, Area = All) Standard Deviation

UCLM Thermal
Imaging Dataset [16]

All 64.38% 0.0596
Best score 64.20% 0.0601

Concealed Pistol
Detection Dataset [11]

All 27.57% 0.0761
Best score 27.62% 0.0838

4.3. Classification Metrics

Also, classification metrics of the proposed method have been extracted varying the
confidence of the detectors (these are not the IoU thresholds but the architecture’s threshold
to consider detections). These metrics (shown values are the mean of the runs) represent
when the proposed method determines “Handgun” or not when there is a gun within the
image (true positive or false negative, respectively). They also represent when the method
detects “Handgun” or not when there is actually not a gun in the image (false positive or
true negative, respectively).

These are not detection metrics. This means that if a gun is present and “Handgun”
is detected, it will be counted as a true positive. However, this is the case even if the
bounding box of the detection does not align with the ground truth annotation. Also,
to stick as much as possible to a real situation, only the detection with the highest score
per frame has been considered. All detections are not needed because mAP is not being
extracted. See Tables 4 and 5. To facilitate a comparison with other state-of-the-art methods,
classification metrics were also obtained for the approach presented in [10]. The results
indicated a higher occurrence of both false positives and false negatives in that method,
thereby demonstrating the superior performance of our proposed approach in achieving
the intended objectives.
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Table 4. Table showing classification metrics extracted from testing the proposed method on the
“UCLM Thermal Imaging Dataset”. Only the detection with the highest score was considered
per frame.

Classification Metrics: UCLM Thermal Imaging Dataset

Confidence Value 0.0001 0.1 0.5 0.75

True Positives (TP) 353 346 339 269
False Positives (FP) 252 42 15 4
True Negatives (TN) 117 327 354 365
False Negatives (FN) 0 7 14 84
Accuracy (%) 65.10 93.21 95.98 87.81
Precision (%) 58.35 89.18 95.76 98.53
Recall (%) 100.00 98.02 96.03 76.20
F1-score 0.74 0.93 0.96 0.86

Table 5. Table showing classification metrics extracted from testing the proposed method on the
“Concealed Pistol Detection Dataset”. Only the detection with the highest score was considered
per frame.

Classification Metrics: Concealed Pistol Detection Dataset

Confidence Value 0.0001 0.1 0.5 0.75

True Positives (TP) 52 45 7 0
False Positives (FP) 35 2 0 0
True Negatives (TN) 22 55 57 57
False Negatives (FN) 0 7 45 52
Accuracy (%) 67.89 91.74 58.72 52.29
Precision (%) 59.77 95.74 100.00 0
Recall (%) 100.00 86.57 13.46 0
F1-score 0.75 0.91 0.24 0

4.4. Comparison with State-of-the-Art Method

With all metrics calculated and having shown some metrics resulting from testing
with the method described in [10], an exhaustive comparison between this and our method
is shown in Tables 6–8. This supplementary section aims to demonstrate that our method
outperforms existing state-of-the-art approaches in achieving our primary objective: mini-
mizing false positives while effectively reducing false negatives.

As evidenced by the results in Table 6, our proposed method achieves approximately
1% higher precision across both datasets. This reflects its ability to reduce false positives.
The inclusion of a person detector in our approach plays a critical role, validating handgun
detections within a person’s bounding region and reducing false alarms.

Additionally, the recall values in Tables 7 and 8 consistently match or surpass those
reported in [10]. This demonstrates the robustness of our method in identifying concealed
handguns, even under challenging conditions. Our conservative approach, where alarms
are triggered if no person is detected but a handgun is identified, ensures that critical
threats are not overlooked. This addresses a key limitation of false negatives, which could
compromise security.

These results underline the effectiveness of our two-stage detection approach. The
combination of a handgun detector and a person detector enhances accuracy while provid-
ing a balanced solution that prioritizes safety and reliability. Compared to [10], our method
demonstrates a superior trade-off between precision and recall, making it highly suitable
for real-world security applications where minimizing false positives and reducing false
negatives are critical.
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Table 6. Table showing the main metrics extracted from testing the complete proposed method along
with the ones extracted from testing the method described in Veranyurt et al. [10]. The mean and the
standard deviation of the five runs considered for each dataset are shown.

Method Dataset Detections
Average Precision

(IoU = 0.50:0.95,
Area = All)

Standard Deviation

Proposed Method

UCLM Thermal
Imaging Dataset

All 64.52% 0.0603
Best score 64.30% 0.0606

Concealed Pistol
Detection Dataset

All 27.78% 0.0781
Best score 27.70% 0.0843

Veranyurt et al. [10]

UCLM Thermal
Imaging Dataset

All 64.32% 0.0604
Best score 64.10% 0.0601

Concealed Pistol
Detection Dataset

All 27.18% 0.0737
Best score 27.32% 0.0806

Table 7. Table showing classification metrics comparing between the method described in Veranyurt
et al. [10] and the proposed method. “UCLM Thermal Imaging Dataset”, only considering the
detection with the highest score.

Classification Metrics: UCLM Thermal Imaging Dataset

Confidence Value 0.0001 0.1 0.5 0.75

Method Veranyurt et al. [10] Proposed Veranyurt et al. [10] Proposed Veranyurt et al. [10] Proposed Veranyurt et al. [10] Proposed

True Positives (TP) 353 353 346 346 333 339 254 269
False Positives (FP) 343 252 6 42 0 15 0 4
True Negatives (TN) 26 117 363 327 369 354 369 365
False Negatives (FN) 0 0 7 7 20 14 99 84
Accuracy (%) 52.49 65.10 98.20 93.21 97.23 95.98 86.29 87.81
Precision (%) 50.72 58.35 98.30 89.18 100.00 95.76 100.00 98.53
Recall (%) 100.00 100.00 98.02 98.02 94.33 96.03 71.85 76.20
F1-score 0.67 0.74 0.98 0.93 0.97 0.96 0.84 0.86

Table 8. Table showing classification metrics comparing between the method described in Veranyurt
et al. [10] and the proposed method. “Concealed Pistol Detection Dataset”, only considering the
detection with the highest score.

Classification Metrics: Concealed Pistol Detection Dataset

Confidence Value 0.0001 0.1 0.5 0.75

Method Veranyurt et al. [10] Proposed Veranyurt et al. [10] Proposed Veranyurt et al. [10] Proposed Veranyurt et al. [10] Proposed

True Positives (TP) 52 52 45 45 7 7 0 0
False Positives (FP) 57 35 2 2 0 0 0 0
True Negatives (TN) 0 22 55 55 57 57 57 57
False Negatives (FN) 0 0 7 7 45 45 52 52
Accuracy (%) 47.71 67.89 91.74 91.74 58.72 58.72 52.29 52.29
Precision (%) 47.71 59.77 95.74 95.74 100.00 100.00 0 0
Recall (%) 100.00 100.00 86.57 86.57 13.46 13.46 0 0
F1-score 0.65 0.75 0.91 0.91 0.24 0.24 0 0

4.5. Demo

In addition to the study carried out, an Android app implementing the proposed
method has been developed: CamoVision. It has been created using Android Studio and
tested in a Huawei P30 Lite (Android 10). To test the method, only one model was used, the
YOLOv8n, trained to detect two classes: “Handgun” and “Person”. The model was trained
using the “UCLM Thermal Imaging Dataset”. The aim is to use only one model instead of
the two architectures in order to perform better in embedded devices. The hyperparameters
used to train the model are shown in Table 9.
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Table 9. Summary of the dataset split and chosen hyperparameters to train the YOLOv8n detector
(with two classes: “Handgun”, “Person”) used to test the proposed method in real-time through an
Android app. “UCLM Thermal Imaging Dataset”.

Architecture Dataset # Images Classes Train/Val/Test Images Epoch Input Size Optimizer Learning Rate

YOLOv8n Ours (UCLM Thermal
Imaging Dataset) 12,006 “Handgun”,

“Person” 10,805/1201/0 5 640 × 640 AdamW
(0.9 momentum)

0.001667
(initial)

The code implements the proposed method considering only the case where the
detection with the highest score for each class is selected. The app consists of two main
screens (see Figure 13): a menu, where the user can click on a button that redirects him/her
to our website (https://visilab.etsii.uclm.es/?page_id=1029, accessed on 5 October 2024),
or a button to click to access the detector. This detector constitutes the second main screen
of the app. It starts as a black screen with three buttons on it. One button is to open
the thermal camera once it is attached via Universal Serial Bus (USB) to the smartphone;
another one is to close the camera; the third one is to reflect the image over the vertical axis
(depending on where the thermal camera is facing). Now, the thermal camera needs to be
connected and, by clicking on the “open cam” button, permissions are requested, and, if
conceded, the camera opens and the detector starts working.

(a) (b)

Figure 13. (a) CamoVision app menu. (b) CamoVision demo working with the TOPDON TC001
attached to the phone via USB bottom part of the image.

The app shows an alarm message whenever a concealed handgun is found within the
image. Also, if four consecutive images contain a concealed handgun in them, an alarm
sounds. We used a minimum confidence threshold of 0.1 for the detector, in order not to
miss detections (then the one with the highest score is selected). The app runs at 2 FPS.

https://visilab.etsii.uclm.es/?page_id=1029
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Finally, an image showing how the camera could be placed in a real situation is shown in
Figure 14.

Figure 14. Example of how the CamoVision app would work for a policeman. Thanks to the small
size of the TOPDON TC001 camera, it can be easily attached to the officer’s chest while moving
naturally. The camera is highlighted with a red rectangle.

5. Discussion
5.1. Strengths of the Proposed Method

The proposed method offers several strengths that make it an effective solution for
concealed weapon detection. It employs a two-stage process involving handgun and
person detection, which reduces both false positives and false negatives—key objectives
for ensuring detection reliability. False positives are minimized by integrating a secondary
person detection step that validates handgun detections within a person’s region, thus
reducing unnecessary alarms. On the other hand, false negatives are minimized by not
discarding handguns detected in frames where no person is identified by the detector. In
such cases, it is preferable to allow for potential false positives rather than risk missing
actual handguns, as the primary goal is to prioritize safety and prevent critical threats. This
conservative approach enhances the system’s reliability, particularly in scenarios where
detection errors could have serious consequences.

Another strength is the creation of the “UCLM Thermal Imaging Dataset”, which
provides a valuable resource tailored for concealed handgun detection. This dataset sup-
ports further research and development, helping to refine and test detection algorithms
under realistic conditions. Additionally, the method is integrated into the Android app
CamoVision, demonstrating its practicality for real-world applications. The app supports
real-time operation using a chest-mounted thermal camera, enabling hands-free usage and
enhancing field usability (see Figure 14).

The method’s recall-oriented design prioritizes detecting handguns over avoiding
false positives, which is crucial for security applications. Despite this focus, efforts are
made to strike a balanced solution to maintain practical usability. Furthermore, the use
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of affordable thermal cameras and compatibility with smartphones makes the solution
scalable and cost-effective, facilitating broader deployments in diverse environments.

5.2. Weaknesses of the Proposed Method

Despite its strengths, the proposed method also has some limitations. It depends
heavily on the quality of the dataset, and while the “UCLM Thermal Imaging Dataset”
was created for this study, it lacks diversity in environmental settings, lighting conditions,
and subject demographics. These limitations may affect performance in more complex or
unseen scenarios, as the system could struggle to generalize beyond the training data.

Another limitation is the speed of the method. The real-time implementation achieves
only 2 FPS, which may be insufficient for high-traffic environments where faster processing
and higher frame rates are required. Enhancing computational efficiency or leveraging
sophisticated hardware could address this issue in future iterations.

The method is also currently focused on detecting a single person within the frame,
limiting its effectiveness in crowded settings or scenarios involving multiple individuals.
Incorporating multi-person detection capabilities could make the system more versatile
and better suited for real-world applications involving larger groups.

Thermal cameras may face challenges in detecting objects concealed under thick or
insulated clothing, as such materials can reduce the temperature contrast needed for detec-
tion. This limitation may hinder the method’s reliability in certain conditions and could
be addressed by integrating multi-spectral imaging technologies or advanced preprocess-
ing techniques.

Additionally, the method’s performance is influenced by confidence and IoU thresh-
olds. During testing, low thresholds were used to maximize recall, but real-world deploy-
ments may require careful tuning to balance precision and recall, minimizing false positives
while ensuring critical detections are not missed.

Finally, the architectures have been trained to detect only concealed handguns. Ex-
panding the detection scope to include other concealed objects, such as knives or explosives,
could significantly improve usability and versatility, broadening the range of applications
for the proposed method.

5.3. Future Improvements and Conclusions

Several enhancements can be made to address the identified weaknesses and further
improve the method’s performance.

• Expanding the dataset with more diverse scenarios, including variations in clothing,
lighting, and environments, can improve generalization and adaptability. This would
help the model better handle challenging and unseen situations, ensuring robustness
across diverse settings.

• Incorporating multi-person detection capabilities will increase the system’s applica-
bility in crowded spaces, enabling it to process more complex scenarios involving
multiple individuals. Such an enhancement could make the method more practical
for environments like airports, train stations, and large public gatherings.

• Improving the algorithm’s computational efficiency can significantly enhance its FPS,
supporting faster real-time processing. This optimization would enable smoother
operation in high-traffic areas where rapid decision-making is crucial.

• To address limitations in detecting objects under thick clothing, advanced thermal
imaging techniques, such as multi-spectral imaging, can be integrated. These tech-
niques can enhance detection performance by leveraging additional spectral data,
making the system more reliable under challenging conditions.
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• Adaptive thresholding, which dynamically adjusts detection parameters based on
environmental conditions, can further balance precision and recall. This approach
could ensure optimal performance even in varying lighting and thermal environments.

• Expanding the detection scope to include other concealed weapons or objects, such as
knives and explosives, will enhance the system’s versatility and broaden its range of
applications. This improvement would increase its utility in various security scenarios
beyond handgun detection.

• Improving embedded system performance through hardware upgrades or algorithm
optimizations can enhance usability, particularly for real-time applications. Faster
hardware and more efficient algorithms would make the method more responsive
and scalable.

• Finally, enhancing the Android app’s user interface by adding features such as cloud
storage, remote monitoring, and integration with security networks can increase
operational effectiveness. These upgrades would provide a more seamless experience
for security personnel, enabling better data management and situational awareness.

Apart from the explained weaknesses and its possible future improvements, the pro-
posed method represents a significant advancement in concealed weapon detection by
combining thermal imaging and deep learning. It offers efficiency, portability, and accu-
racy, addressing many limitations of traditional detection methods. While the method
demonstrates promising results (in terms of our aim), further improvements in datasets,
algorithms, and capabilities can enhance its effectiveness. This research provides a foun-
dation for developing scalable, real-world security solutions for non-invasive, real-time
detection applications.
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