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Abstract: Hematology plays a critical role in diagnosing and managing a wide range
of blood-related disorders. The manual interpretation of blood smear images, however,
is time-consuming and highly dependent on expert availability. Moreover, it is particu-
larly challenging in remote and resource-limited settings. In this study, we present an
AI-driven system for automated blood cell anomaly detection, combining computer vision
and machine learning models to support efficient diagnostics in hematology and telehealth
contexts. Our architecture integrates segmentation (YOLOv11), classification (ResNet50),
transfer learning, and zero-shot learning to identify and categorize cell types and abnormal-
ities from blood smear images. Evaluated on real annotated samples, the system achieved
high performance, with a precision of 0.98, recall of 0.99, and F1 score of 0.98. These results
highlight the potential of the proposed system to enhance remote diagnostic capabilities
and support clinical decision making in underserved regions.

Keywords: artificial intelligence; blood cell analysis; machine learning; hematology; medical
imaging; telehealth; anomaly detection

1. Introduction
This section introduces the context, challenges, and key contributions of an AI-driven

system for automated blood cell anomaly detection, with a focus on hematology and
telehealth applications.

1.1. Context

Hematological evaluations are critical in diagnosing a wide range of blood disorders
through the analysis of key components such as red blood cells (RBCs), white blood cells
(WBCs), and platelets [1]. These evaluations enable early diagnosis of conditions, such as
anemia, leukemia, and various immune disorders, serving as reliable indicators of overall
health [2,3]. In recent years, advanced artificial intelligence (AI) techniques have shown
promise in automating blood cell analysis, enhancing diagnostic accuracy and efficiency,
particularly in telemedicine environments [4].

1.2. Challenges

The limited availability of hematology specialists in remote or under-resourced areas
often results in delayed diagnoses, which can be critical in time-sensitive medical cases [5].
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Patients in regional healthcare centers frequently face long wait times—sometimes weeks—
for their results to be validated by experts, who are typically concentrated in urban hos-
pitals [6]. Moreover, the deployment of high-precision diagnostic tools in every medical
facility is neither practical nor economically feasible. These challenges highlight the urgent
need for an automated system capable of delivering rapid and accurate diagnostics in
underserved regions.

1.3. Key Contributions

This work presents a fully automated blood cell anomaly detection system that in-
tegrates machine learning and computer vision techniques. The system incorporates
YOLOv11 for segmentation and ResNet50 for classification. The main contributions of this
work are as follows:

• Development of a unified pipeline that combines segmentation, classification, transfer
learning, and zero-shot learning (ZSL) techniques.

• Integration of telehealth-oriented features to enable remote diagnostics and support
for medical professionals.

• Validation of the system on real-world blood smear images, achieving high diagnostic
performance with a precision of 0.98, recall of 0.99, and an F1 score of 0.98.

1.4. Paper Organization

The remainder of this paper is structured as follows: Section 2 provides a background
on hematology and the machine learning techniques used in this study. Section 3 reviews
related work. Section 4 details the proposed system architecture, data preparation, and
model design. Section 5 presents the experimental setup and evaluation results. Section 6
discusses the findings, limitations, and implications. Finally, Section 7 concludes this paper
and outlines future research directions.

2. Background
2.1. Hematology Overview

Hematology focuses on the study of blood and its components—red blood cells (RBCs),
white blood cells (WBCs), and platelets. WBCs (leukocytes) are essential for immune
defense and are generally classified into polymorphonuclear cells (such as neutrophils and
eosinophils) and mononuclear cells (such as lymphocytes and monocytes) [7].

2.1.1. Blood Components

Blood is composed of the following:

• Plasma (55%)—the liquid portion of blood.
• Blood Cells (45%)—which includes red blood cells (RBCs), white blood cells (WBCs)—

as shown in Figure 1—and platelets.

(a) Basophil (b) Neutrophil (c) Eosinophil (d) Monocyte

Figure 1. Types of white blood cells observed under a microscope at 1000× magnification (oil
immersion). A scale bar of 10 µm is included for reference.
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Blood serves various critical functions, including transporting oxygen, nutrients, and
hormones, while also helping to remove waste products and support immune defense [8].

As outlined in Table 1, WBCs are divided into the follow cells:

1. Polymorphonuclear (PMN) Cells: These cells are key components of innate immunity,
including neutrophils, basophils, and eosinophils.

2. Lymphocytes and Monocytes: These cells mediate acquired immune responses and
pathogen destruction.

Table 1. Overview of white blood cells (WBCs) and their characteristics.

Category Details

Role in Immunity WBCs are the primary effectors of immunity, acting as protective
cells against various forms of aggression.

Alternative Name White blood cells are also known as leukocytes.

Classification WBCs are classified into the following cells:
• Polymorphonuclear (PMNs) cells;
• Monocytes and lymphocytes.

Origin All blood cells originate from a single multipotent cell in the
bone marrow.

Development Process Maturing cells acquire structural and functional properties dur-
ing hematopoiesis.

2.1.2. Blood Tests and Smear Imaging

Blood tests provide valuable insights into overall health by analyzing elements such
as red and white blood cells, hemoglobin, and enzymes. These tests help

• Evaluate organ function (e.g., kidneys, liver, heart).
• Diagnose infections, anemia, and chronic conditions.
• Monitor disease progression or treatment effectiveness.

Common tests include

• Complete blood count (CBC).
• Blood chemistry and enzyme analysis.
• Risk markers for cardiovascular diseases.

Blood Smear Imaging Procedure:

1. A drop of blood is spread thinly on a glass slide.
2. The slide is examined under an optical microscope.
3. A digital camera captures high-resolution images of blood cells.
4. The images are saved and analyzed for abnormalities (see Figure 2).

Figure 2. Blood smear image capture process and analysis.
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2.2. Machine Learning Techniques
2.2.1. Segmentation Models

Segmentation models partition images into distinct regions, enabling applications in
medical imaging and autonomous driving [9]. These models assign class labels to each
pixel, performing either semantic (region categorization) or instance (individual object
distinction) segmentation.

YOLO models (Figure 3) integrate segmentation into object detection by extending
bounding-box predictions to include mask outputs [10]. Their unified framework maintains
real-time processing speeds, making them ideal for applications like medical imaging and
video surveillance.

Figure 3. YOLO architecture [11].

2.2.2. Classification Models

Classification models categorize data into predefined classes using algorithms like
SVMs or neural networks (e.g., ResNet50 in Figure 4). Performance is evaluated via
different metrics, such as accuracy and F1 score, with applications in medical diagnosis
and image recognition [12,13].
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Figure 4. ResNet50 architecture [14].

2.2.3. Transfer Learning

Transfer learning (TL) leverages pre-trained models (e.g., VGG16, ResNet) to address
limited medical datasets. Key architectures include the following:

• VGG16: Deep convolutional layers for detailed feature recognition [15].
• ResNet: Residual connections to train deep networks effectively [16].
• MobileNet/EfficientNet: Optimized for resource-constrained environments [17].

TL enhances blood cell analysis by combining pre-trained features with domain-
specific fine-tuning.

2.2.4. Zero-Shot Learning (ZSL)

ZSL predicts unseen classes using auxiliary information (e.g., semantic descriptions)
rather than labeled training data (Figure 5). Frameworks like CLIP align visual/textual
representations for applications in rare disease diagnosis [18,19].

Figure 5. Zero-shot learning architecture [20].
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2.2.5. Geometry Learning

Geometry learning studies shapes, spatial relationships, and transformations, fostering
skills applicable to engineering and computer graphics [21,22]. Modern approaches use
digital tools to enhance engagement and spatial reasoning.

2.2.6. Transformer Models

Transformer-based models (e.g., BERT, GPT) extract insights from unstructured medi-
cal data, improving tasks like diagnosis prediction [23]. Platforms like Transformers that
use scikit-learn integrate these models for clinical decision making.

3. Related Work
Recent advances in artificial intelligence have revolutionized hematological analysis,

enabling automated diagnosis of conditions like anemia, infections, and leukemia through
blood cell image analysis. This section reviews key contributions in the field and highlights
our novel approach compared to existing methods.

3.1. Related Works

• Hegde et al. (2019) [24] developed a deep learning model for white blood cell (WBC)
classification using transfer learning, achieving 90% accuracy in categorizing six WBC
types. Although effective for large datasets, the approach lacks real-time capabilities
and focuses solely on WBC analysis.

• Kutlu et al. (2020) [25] proposed a CNN-based system achieving 94.3% accuracy
in recognizing partially visible WBCs, demonstrating improved performance for
overlapping cell scenarios. However, the method shows limited generalization to
abnormal cell morphologies.

• Akalin et al. (2022) [26] introduced a hybrid YOLOv5-Detectron2 framework for WBC
detection, showing 3.44–14.7% accuracy improvements over individual models. The
system enables real-time analysis but requires significant computational resources.

• Rahman et al. (2021) [27] developed a morphology-based technique for red blood cell
(RBC) anomaly detection using color and shape features. Although effective for RBC
analysis, the method does not incorporate temporal or multi-modal data.

• Gill et al. (2023) [28] created a VGG19-based model for malaria detection with 90%
accuracy, demonstrating effective transfer learning applications. The approach is
limited to malaria diagnosis and does not address other RBC abnormalities.

• Pasupa et al. (2023) [29] addressed class imbalances in canine RBC morphology using
CNNs with focal loss, achieving superior F-scores through fivefold cross-validation.
The method requires careful hyperparameter tuning for optimal performance.

• Khan et al. (2024) [30] developed an RCNN-based model that achieved 99% train-
ing and 91.21% testing accuracy for RBC classification, outperforming ResNet-50
by 10–15%. The approach handles cell overlaps effectively but demands exten-
sive preprocessing.

• Onakpojeruo et al. (2024) [31] pioneered Conditional DCGAN-generated synthetic
data for brain tumor classification, achieving 99% accuracy with their novel C-DCNN
model. Although their approach demonstrated exceptional performance on synthetic
neuroimaging data, it requires validation for hematological applications.

• Onakpojeruo et al. (2024) [32] developed a Pix2Pix GAN framework for MRI augmen-
tation, achieving 86% classification accuracy across four tumor types. Their conditional
DCNN architecture shows promise for medical image analysis, but it has not been
tested on blood cell datasets.
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Table 2 provides a comprehensive comparison of these approaches, highlighting their
methodologies, strengths, and limitations.

Table 2. Comparison of related works.

Study Approach Advantages Limitations/Interpretability

Hegde et al. (2019) [24] Transfer learning for
WBC classification

90% accuracy; scalable for
large datasets

No real-time analysis;
WBC-only focus

Kutlu et al. (2020) [25] CNN for partial
WBC recognition

94.3% accuracy; handles
overlapping cells

Limited to normal
WBC morphologies

Akalin et al. (2022) [26] YOLOv5-Detectron2
hybrid model

3.44–14.7% accuracy gain;
real-time capable Computationally intensive

Rahman et al. (2021) [27] Morphological
RBC analysis

Effective color/shape-
based detection Single-modality approach

Gill et al. (2023) [28] VGG19 for
malaria detection

90% accuracy;
automated diagnosis

Malaria-specific
application

Pasupa et al. (2023) [29] CNN with focal loss Handles class imbalance;
high F-scores

Requires hyperparameter
optimization

Khan et al. (2024) [30] RCNN for
RBC classification

99% training accuracy;
handles cell overlaps

Computationally
demanding

Onakpojeruo et al.
(2024) [31]

Conditional DCGAN +
C-DCNN

99% accuracy;
privacy-preserving

Neuroimaging-specific
validation

Onakpojeruo et al.
(2024) [32]

Pix2Pix GAN
augmentation

86% accuracy;
multi-class capability

Untested for
hematological analysis

3.2. Novelty of the Proposed System

Limitations in prior AI-driven blood cell analysis studies are addressed by the pro-
posed system, which introduces several advancements tailored for hematological diagnos-
tics and telehealth applications.

• Real-Time Processing: Unlike existing systems with high computational demands,
real-time analysis is enabled through optimized models like YOLOv11, achieving an
inference latency of 50 ms per image, suitable for telehealth settings [26].

• Unified RBC and WBC Analysis: While many models focus solely on RBCs or WBCs,
both cell types and platelets are integrated into a single pipeline, improving diagnostic
accuracy across diverse blood components [30].

• Robustness to Data Variability: Generalization to diverse datasets is ensured by
training on 28,532 real blood smear images from varied sources, enhancing reliability
in heterogeneous clinical environments [25].

• Interpretability and Efficiency: Explainable AI techniques, such as Grad-CAM, are in-
corporated to provide transparent decision making for clinicians, while computational
efficiency is maintained using MobileNet adaptations [33].

• Support for Remote Diagnostics: Telehealth-focused reporting is introduced to ad-
dress the shortage of hematology experts in remote areas, though clinical validation is
needed to confirm real-world efficacy [5].

A unified system combining YOLOv11, ResNet50, and zero-shot learning (ZSL) is
presented, delivering precise and efficient blood cell anomaly detection for improved
diagnostic support.
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4. Proposed Approach
This section describes the system pipeline for automated blood cell anomaly detection,

detailing the models, datasets, and interpretability mechanisms employed.
The pipeline, shown in Figure 6, processes blood smear images captured by a con-

nected microscope. These images are analyzed using machine learning models for detection,
segmentation, classification, and anomaly detection, with results validated by experts for
telehealth applications.

Step 1 Step 2 Step 3 Step 4

Correction Model
using Zero Shot

Learning 

Feature
 Extraction Model

using Transfer
Learning    

Segmentation 
and Detection

Model

P
r
e

d
ic

t
io

n
s

Classification
Model

Detection of shape
anomalies Model
using Geometre

Learning

Backpropagation
Count Cells

Anomaly
Detection Model

Anomaly Type
Classification

Probability Model
using Deep

Learning

Step 5

Generation
Report

Step 0

Figure 6. Overall process description.

4.1. Step 0: Virtual Histological Staining Using Deep Learning

Virtual histological staining is performed to enhance blood cell visualization, replacing
traditional methods with a deep learning approach. A generative adversarial network
(GAN) transforms grayscale images into stained equivalents, reducing laboratory costs
and time [34]. The generator G maps grayscale images x to stained images G(x), while the
discriminator D distinguishes real stained images y from generated ones. The loss function
is defined as

LGAN(G, D) = Ey[log D(y)] +Ex[log(1 − D(G(x)))] + λEx,y[∥G(x)− y∥1]

where λ = 10 balances adversarial and L1 losses. Preprocessing standardizes pixel intensi-
ties as follows:

xpre =
x − µx

σx
, where µx, σx are the mean and standard deviation of x

The GAN is trained on paired grayscale and stained images for 100 epochs using the
Adam optimizer, with a learning rate of 0.0002 and batch size of 32.

4.1.1. Development of a Virtual Staining Model

A virtual staining model is developed through supervised learning, utilizing the
GAN framework described above. Data collection ensures paired images are aligned,
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addressing the domain shift through preprocessing. The model achieves robust staining
transformations (Figure 7) for diverse blood cell datasets [34].

Figure 7. Histological staining process.

4.1.2. Training and Inference of Transformation Networks

Transformation networks convert images from one stain to another, enhancing blood
cell analysis in hematology. A deep learning approach is employed, fine-tuning the GAN to
transform stain appearances. The transformation minimizes the pixel-wise loss as follows:

Ltransform =
1

H × W ∑
i,j

|G(x)i,j − yi,j|

where H × W is the image resolution. Inference generates equivalent stained images for a
comparison with minimal computational overhead.

4.1.3. Network Architecture and Training Strategies

The network architecture leverages paired images after preprocessing to address the
domain shift. Preprocessing normalizes pixel values to [0, 1] as follows:

xnorm =
x − min(x)

max(x)− min(x)

Cross-registration aligns input–target pairs, mitigating variations in image acquisition.
Training optimizes the GAN loss over 100 epochs, ensuring robust virtual staining for
diverse datasets.

4.2. Step 1: Segmentation and Detection Model

Blood cell segmentation and detection are performed using YOLOv11, isolating RBCs,
WBCs, and platelets with a precision of 0.98 [9]. The model outputs

Output = {(bi, mi, ci)}N
i=1, bi = (xi, yi, wi, hi), mi ∈ {0, 1}H×W

where bi is the bounding box, mi is the segmentation mask, and ci is the class label.
YOLOv11 is trained for 200 epochs using the Adam optimizer, with a learning rate of
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0.001 and batch size of 16. Grad-CAM visualizations highlight key regions, enhancing
transparency for clinicians [33].

4.3. Step 2: Classification Model

A Keras-based classification model categorizes WBCs as mononuclear or polynuclear,
achieving a precision of 0.97. The model minimizes the cross-entropy loss as follows:

LCE = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

Training uses 50 epochs, a learning rate of 0.001, and a batch size of 32. SHAP values
are computed to explain feature importance, supporting rapid and interpretable diagnosis
in telehealth settings [33].

4.4. Step 3-1: Correction Model Using Zero-Shot Learning

Zero-shot learning (ZSL) corrects data inconsistencies by predicting unseen classes
(e.g., lymphocyte subclasses) using attribute embeddings (e.g., nucleus shape, cell size).
The compatibility function is

f (x, y) = θ(x)Tϕ(y), where θ(x) = Wx, ϕ(y) = ay

where ϕ(y) is derived from a semantic knowledge base comprising 50 morphological de-
scriptors, including geometric features (e.g., cell area, perimeter, circularity, eccentricity,
nucleus area, perimeter, circularity, eccentricity, cytoplasm area, thickness, aspect ratio,
elongation, compactness, convex hull area, solidity, Feret diameter, minimum Feret diame-
ter, major and minor axis lengths, orientation angle); nuclear and cytoplasmic attributes
(e.g., chromatin density, nuclear shape factor, cytoplasmic ratio, lobe count, nuclear texture
variance, cell and nuclear volume estimates, symmetry, roundness); texture properties (e.g.,
entropy, contrast, correlation, energy, homogeneity, edge gradient, boundary roughness,
nuclear edge contrast); color characteristics (e.g., red, green, and blue intensities, hue,
saturation, value intensity); and specialized hematology metrics (e.g., granularity index,
vacuolation level, inclusion presence, membrane integrity, cytoplasmic granularity). This
knowledge base was validated with a top-1 accuracy of 0.85 on unseen classes [18]. ZSL
enhances robustness to diverse blood samples, reducing false positives.

4.5. Step 3-2: Feature Extraction Using Transfer Learning

Feature extraction is conducted using ResNet50 and fine-tuned on blood cell images
to extract features like size and texture [35]. The feature vector is

f (x) = ResNet50(x) ∈ R2048

ResNet50 is fine-tuned for 20 epochs with a learning rate of 0.0001 and a batch size of 64.
This step accelerates processing, enabling timely diagnostics in resource-limited settings.

4.6. Step 4: Anomaly Detection Using Geometric Learning

Anomalies in RBCs and WBCs are detected using geometric learning. RBC shape
irregularities are quantified via eccentricity:

e =

√
1 −

(
b
a

)2
, where a, b are major and minor axes
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WBC activity is assessed using intensity gradients, flagging anomalies if e > 0.8.
This step supports the early detection of various conditions, like leukemia, though further
validation across diverse diseases is needed.

4.7. Step 5: Report Generation Using Machine Learning Methods

Diagnostic reports are generated using RandomForestClassifier, DecisionTreeClassifier,
and GradientBoostingClassifier, summarizing RBC anomalies, WBC activity, and diagnostic
metrics. The training minimizes

LRF =
1
T

T

∑
t=1

E(x,y)∼D [I(ht(x) ̸= y)]

Models are trained with n_estimators = 100, ensuring consistent reports for tele-
health applications.

5. Experimentation and Validation
We conducted structured experiments to evaluate our blood cell segmentation, detec-

tion, and classification models using various datasets and advanced preprocessing tech-
niques. Models assessed include YOLOv10, YOLOv11, ResNet50, and zero-shot learning.
The subsections below describe the datasets, experimental setup, and performance results.

5.1. Used Datasets

We used both proprietary and public datasets to train and test the models, covering
diverse blood cell types and imaging conditions. The main dataset was supplemented
with a public benchmark to ensure robustness. Preprocessing was applied to improve
data quality.

5.1.1. Primary Dataset Description

The primary dataset comprises blood smear images annotated by hematologists from
multiple medical institutions. These images originate from three sources:

• Histology slides prepared for electron microscopy;
• Human blood samples collected through clinical procedures;
• Curated images from established online medical repositories.

This comprehensive dataset supports multi-class segmentation and classification
across ten distinct blood cell categories:

• Basophil, eosinophil, lymphocyte, monocyte, myelocyte, and neutrophil;
• Erythroblast and red blood cell (RBC);
• Intrusion (imaging artifacts) and platelet.

Table 3 details the dataset distribution across training, validation, and test partitions.

Table 3. Dataset composition across partitions.

Segmentation Type Partition Images Classes/Image

Multi-class Training 8380 2–10

Multi-class Validation 2600 2–8

Multi-class Test 1100 1–6
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5.1.2. Public Benchmark Dataset: ALL-IDB

To ensure methodological rigor and enable comparative analysis, we incorporated the
Acute Lymphoblastic Leukemia Image Database (ALL-IDB) [36]. This widely recognized
benchmark consists of two subsets:

• ALL-IDB1: A total of 108 images containing 390 annotated cells for segmentation tasks
• ALL-IDB2: A total of 260 images with balanced healthy/leukemic samples for classification.

Table 4 provides a systematic comparison between our primary dataset and ALL-IDB.

Table 4. Comparative dataset characteristics.

Characteristic Primary Dataset ALL-IDB

Samples 12,080 (pre-augmentation) 368

Classes 10 (cell types) 2 (normal/leukemic)

Demographics Multi-source Pediatric focus

Annotation Quality 99.5% complete 100% complete

Task Type Multi-class segmentation Binary classification

5.1.3. Data Preparation Pipeline

The data preprocessing pipeline incorporated five critical stages:

• Duplicate elimination: Removed 142 redundant samples using perceptual hashing.
• Class rebalancing: Applied synthetic minority oversampling to under-represented classes.
• Annotation standardization: Converted all labels to YOLO-compatible text format,

where each image is associated with a .txt file containing one line per object in the
format <class_id> <x_center> <y_center> <width> <height>, with coor-
dinates normalized to [0, 1] relative to the image dimensions and class_id corre-
sponding to the 10 blood cell categories (e.g., 0 for basophil, 1 for eosinophil, etc.).

• Geometric augmentation: Generated variations through flips (horizontal/vertical),
rotations (±15◦), and shear transformations (0.2 rad).

• Pixel normalization: Scaled intensities to the [0, 1] range per channel.

Figure 8 shows a representative input sample, while Figure 9 demonstrates the aug-
mentation outcomes. This process expanded the dataset from 12,080 to 28,532 samples,
with detailed class distributions in Table 5.

Figure 8. Representative blood smear image pre-augmentation.
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Figure 9. Augmentation examples showing flips and rotations.

Table 5. Class distribution before and after augmentation.

Cell Type Original Samples Augmented Samples

Basophil 4200 7590

Eosinophil 3032 6804

Erythroblast 2050 6390

Intrusion 1590 5200

Lymphocyte 3620 6980

Monocyte 5307 8352

Myelocyte 4165 7490

Neutrophil 5270 8298

Platelet 4986 7916

RBC 8706 10,380

5.2. Experimental Protocol

To ensure statistical rigor and reproducibility, we implemented the following evalua-
tion framework, addressing the reviewer’s request for a robust validation strategy:

• Fivefold Stratified Cross-Validation:

– Fixed random seed (42) for reproducible splits.
– Stratification by cell types to maintain class balance across 10 categories (e.g.,

basophil, eosinophil, etc.).
– A 80:20 train/validation ratio per fold (e.g., 6704 training and 1676 validation

images per fold for the private dataset pre-augmentation; 22,826 training and
5706 validation images post-augmentation).

• L2 Regularization (λ = 0.01):

– Applied to both CNN and Transformer components (e.g., in YOLO and
ResNet50 models).

– Penalty strength tuned via grid search on validation folds.
– Normalized by feature counts to ensure consistency across. models.

• Held-out Test Set:

– A total of 1100 images (private dataset) and 20% of ALL-IDB (e.g., 74 images:
22 from ALL-IDB1, 52 from ALL-IDB2) were reserved for a final evaluation.

– Balanced across cell types (10 classes for the private dataset, 2 classes for
ALL-IDB).

– Never used during training or hyperparameter tuning.
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• Statistical Testing:

– Paired t-tests (α = 0.05) on fold-wise metrics (accuracy, F1 score).
– Bonferroni correction for multiple comparisons.
– Effect sizes reported via Cohen’s d.

All results report a mean ± standard deviation across folds, ensuring robust evaluation.
For consistency with the experimental setup, we also performed 10-fold cross-validation in
specific experiments (e.g., final model evaluations), as detailed in subsequent sections.

5.3. Model Evaluation
5.3.1. Threshold Optimization

Threshold optimization is a common technique used in binary classification to improve
the accuracy of model prediction. It involves finding the optimal threshold that maximizes
a given performance metric, such as AUC-ROC or precision. At this stage, Voxel51 was
used. It offers several tools for model optimization, such as the grid search and Bayesian
optimization. These techniques help find optimal hyperparameters for a given model by
exploring a search space defined by the user. The optimization results using Voxel51 on a
Tesla T4 are summarized in Table 6, highlighting the performance improvements across
key metrics.

Table 6. Optimization results using Voxel51 on Tesla T4.

Metric Original Model Optimized Model Improvement

Latency 0.0199 s/batch 0.0035 s/batch 3.13×
Throughput 91.66 data/s 286.69 data/s 3.13×
Model Size 44.98 MB 32.37 MB −28%

Metric Drop - 0.0363 -

5.3.2. Segmentation and Detection Model

Our segmentation and detection model allowed us to count and identify 10 different
types of blood cells. We trained and evaluated two models, YOLOv10 and YOLOv11, to
compare their performance. The training and validation performance for both models
was monitored over 200 epochs, with key metrics such as box loss, segmentation loss,
classification loss, DFL loss, precision, recall, and mAP recorded at the final epoch. Table 7
provides a side-by-side comparison of these metrics at the end of training, highlighting the
improvements achieved with YOLOv11 over YOLOv10.

Table 7. Comparison of YOLOv10 and YOLOv11 training and validation metrics after 200 epochs.

Metric YOLOv10 Train YOLOv10 Val YOLOv11 Train YOLOv11 Val

Box Loss 1.0 0.9 0.8 0.7

Segmentation Loss 1.5 1.2 1.2 1.0

Classification Loss 0.5 0.6 0.4 0.5

DFL Loss 0.9 1.0 0.7 0.8

Precision (B) 0.8 0.7 0.99 0.98

Recall (B) 0.7 0.6 0.98 0.97

mAP@50 (B) 0.7 0.6 0.95 0.94

mAP@50:95 (B) 0.5 0.4 0.75 0.73
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Table 7. Cont.

Metric YOLOv10 Train YOLOv10 Val YOLOv11 Train YOLOv11 Val

Precision (M) 0.7 0.6 0.98 0.97

Recall (M) 0.6 0.5 0.97 0.96

mAP@50 (M) 0.6 0.5 0.94 0.93

mAP@50:95 (M) 0.4 0.3 0.72 0.70

The final evaluation metrics on our dataset show that YOLOv10 achieved a precision of
0.87, recall of 0.80, and F1 score of 0.75, while YOLOv11 significantly improved performance
with a precision of 0.98, recall of 0.99, and F1 score of 0.98. This improvement highlights
YOLOv11’s more optimized architecture for blood cell detection and segmentation.

To achieve optimal performance with YOLOv10 and YOLOv11, we prepared dedicated
working notebooks to create and train each model with specific hyperparameters tailored
to our dataset. Table 8 lists the key hyperparameters used for YOLOv10 and YOLOv11,
respectively, ensuring reproducibility and optimal performance for blood cell segmentation.

Table 8. YOLOv10 and YOLOv11 training hyperparameters.

Hyperparameter Value

Learning Rate 0.001
Batch Size 16
Optimizer Adam
Epochs 200
Momentum 0.9
Weight Decay 0.0005

To further evaluate performance, we analyzed the normalized confusion matrices for
both models, shown in Figures 10 and 11. These matrices provide a detailed breakdown
of the classification results for each type of blood cell, with values normalized between 0
and 1 to represent the proportion of predictions. Higher values along the diagonal indicate
correctly classified instances, reflecting strong performance for specific classes, while off-
diagonal values highlight misclassifications. For example, in the YOLOv10 confusion
matrix (Figure 10), classes like basophil and erythroblast are classified with perfect accuracy
(1.00). However, there are notable misclassifications, such as 28% of RBCs being classified
as background. The YOLOv11 confusion matrix (Figure 11) shows improved performance
across most classes, with fewer off-diagonal misclassifications. These analyses enable
targeted refinement of the models to further enhance detection accuracy.

5.3.3. Classification Model

To classify blood cells into poly-nuclear and mono-nuclear categories, we developed
a deep learning model using the Keras library—an intuitive, high-level API built on top
of TensorFlow. The model follows a convolutional neural network (CNN) architecture,
optimized for image-based feature learning.

Table 9 provides the detailed hyperparameters used for training the CNN classifier.
The dataset was split into training (80%) and validation (20%) subsets. Each sam-

ple was manually annotated to ensure class accuracy. The model demonstrated strong
performance (Figure 12):

• Precision: 0.97.
• Recall: 0.96.
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• F1 score: 0.97.

Figure 10. Normalized confusion matrix for YOLOv10, showing the proportion of predicted labels
against true labels for blood cell classification.

Figure 11. Normalized confusion matrix for YOLOv11, showing the proportion of predicted labels
against true labels for blood cell classification.
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Table 9. Hyperparameters used for training the CNN-based classification model.

Hyperparameter Value

Learning rate 0.001
Batch size 32
Number of epochs 50
Optimizer Adam
Loss function Binary Cross-Entropy
Activation function ReLU (hidden layers), Sigmoid (output)
Dropout rate 0.5
Number of convolutional layers 3
Kernel size 3 × 3
Pooling type MaxPooling (2 × 2)
Early stopping Enabled (patience = 5)

Figure 12. Precision and recall across epochs for the classification model.

5.3.4. Transfer Learning: ResNet50-Based Classification

The ResNet50 model, a state-of-the-art deep learning architecture, is widely adopted
for image classification and feature extraction tasks. Leveraging transfer learning enables
the model to utilize pre-trained weights from large-scale datasets, such as ImageNet, and
adapt them to domain-specific datasets of a limited size. This approach significantly reduces
the training time and computational load while improving performance on specialized
tasks, such as multi-class classification of blood cells.

Table 10 summarizes the key hyperparameters used to fine-tune the ResNet50 model
for our classification task on the private dataset.

The ResNet50 model achieved an accuracy of 0.96, with a training loss of 0.12 and
a validation loss of 0.15 on our private dataset. These results are consistent with the
training behavior illustrated in Figure 13, which shows the progression of both loss and
accuracy over 200 training epochs. In the initial stages, the training loss decreases rapidly,
demonstrating the model’s capacity to learn meaningful patterns from the data. The
validation curves further confirm the model’s ability to generalize, with stable performance
observed on unseen samples as training progresses.
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Table 10. Hyperparameters used for fine-tuning the ResNet50 model.

Hyperparameter Value

Pre-trained weights ImageNet
Learning rate 0.0001
Batch size 32
Epochs 200
Optimizer Adam
Loss function Categorical Cross-Entropy
Activation (dense layers) ReLU
Final activation Softmax
Dropout rate 0.5
Trainable layers Top 50% of the model
Early stopping Enabled (patience = 10)
Data augmentation Enabled (rotation, flip, shift)

Figure 13. The evolution of training and validation loss as well as accuracy during the fine-tuning
of ResNet50.

5.3.5. Zero-Shot Learning Model for Subclass Creation

The ZSL model was trained using a combination of labeled data for known classes
and semantic embeddings to infer unseen subclasses [37]. Table 11 summarizes the hyper-
parameters used for training the ZSL model.

A top-1 accuracy of 0.88 was achieved on the private dataset, with validation per-
formed on a held-out test set. Generalizability was further assessed on the ALL-IDB
dataset, as detailed in Section 5.2, where a top-1 accuracy of 0.85 ± 0.03 was recorded. The
analysis of misclassifications indicated that “Lymphocyte T” and “Promyelocyte-N” exhib-
ited higher false negative rates due to their morphological similarity to other subclasses,
posing a challenge in distinguishing subtle differences without additional training data.
To illustrate these findings, Figure 14 displays the top-1 accuracy on the private dataset
and ALL-IDB, highlighting the model’s performance across datasets; it also presents the
false negative rates for the identified subclasses, emphasizing the elevated error rates for
“Lymphocyte T” and “Promyelocyte-N”.
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Table 11. Hyperparameters used for training the zero-shot learning model.

Hyperparameter Value

Learning rate 0.001
Batch size 16
Epochs 100
Optimizer Adam
Loss function Cross-Entropy
Embedding dimension 300 (GloVe)
Dropout rate 0.3
Regularization L2 (λ = 0.01)
Early stopping Enabled (patience = 5)

Figure 14. Zero-shot learning subclasses.

5.3.6. Geometry Learning Model

Geometry learning, an emerging field in machine learning, focuses on exploiting
geometric structures in data to enhance model performance. The “Scattering Networks on
the Sphere for Scalable and Rotationally Equivariant Spherical CNNs” algorithm [38] was
employed to detect and extract shape anomalies in red blood cells (RBCs) within the private
dataset. This algorithm applies a scattering transformation to spherical data, ensuring
rotational equivariance, which is particularly well suited for analyzing RBC shapes that
may vary in orientation across images.

Table 12 summarizes the hyperparameters used for the geometry learning model.
The model’s performance was validated using the private dataset’s test set, with a fur-
ther evaluation being carried out on ALL-IDB reported in Section 5.2, demonstrating its
generalizability to external data.

Shape anomalies were identified for RBCs, such as in Figure 15, resulting in the detec-
tion of 15 distinct types, including Elliptocyte, Fragments, Heinz bodies, Hemoglobin-C,
Howell–Jolly, Hyperchromasia, Macrocyte, Microcircle, Normal, Oval, Pencil, Pikilocyte,
Spleen, Stomatocyte, and Target. The criteria for anomaly detection were based on geomet-
ric properties such as cell perimeter, area, and eccentricity, which were compared against
standard ranges for normal RBCs (e.g., diameter: 6–8 µm, circularity: >0.9). Anomalies
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were flagged when these properties deviated significantly (e.g., elliptocytes with eccentric-
ity > 0.5, stomatocytes with circularity < 0.7). A detection accuracy of 0.92 was achieved
on the private dataset. However, false positives were observed for “Target” and “Heinz
bodies” due to overlapping geometric features with normal RBCs, indicating a challenge in
distinguishing these anomalies without additional contextual features.

Table 12. Hyperparameters used for the geometry learning model.

Hyperparameter Value

Learning rate 0.0005
Batch size 32
Epochs 150
Optimizer Adam
Loss function Mean Squared Error
Scattering layers 3
Wavelet filters 8
Dropout rate 0.4
Regularization L2 (λ = 0.01)
Early stopping Enabled (patience = 8)

(a) Sample RBC image with anomaly annotations

(b) Distribution of eccentricity vs. circularity for RBCs (c) Comparison of normal and anomalous RBCs

Figure 15. Geometry learning prediction examples: (a) A sample RBC image from the private
dataset with annotations indicating detected shape anomalies, such as elliptocyte (eccentricity > 0.5)
and stomatocyte (circularity < 0.7), highlighting the model’s ability to identify deviations from
normal RBC geometry. (b) A scatter plot showing the distribution of eccentricity versus circularity
for RBCs in the test set, where clusters deviating from normal ranges (circularity > 0.9) indicate
potential anomalies like target and Heinz bodies, which exhibited false positives. (c) A side-by-side
comparison of a normal RBC (diameter 6–8 µm, circularity > 0.9) with an anomalous stomatocyte
(circularity < 0.7), illustrating the geometric differences detected by the model.
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5.3.7. Machine Learning-Based Classification and Preprocessing Techniques

To distinguish between normal and abnormal white blood cells, we trained eight
machine learning classifiers using the Scikit-learn library: k-Nearest Neighbors (KNN),
Decision Tree (DTC), Random Forest (RFC), Support Vector Machine (SVM), Gaussian
Naive Bayes (GNB), Gradient Boosting (GBC), AdaBoost (ABC), and Multilayer Perceptron
(MLPC). These models were trained on extracted cellular features, such as area, diameter,
perimeter, sphericity, homogeneity, and lobe count [39], and collectively demonstrated
reliable classification performance.

To improve data quality and model robustness, we applied several preprocess-
ing techniques:

Outlier Detection:

Two unsupervised outlier detection methods, Isolation Forest and Elliptic Envelope,
were implemented. Anomalies are isolated by the Isolation Forest through the construction
of random trees, with the average path length being measured to identify outliers. Gaussian-
like distributions are assumed by the Elliptic Envelope, and robust covariance estimation is
utilized to detect anomalies. The performance evolution of both methods is illustrated in
Figures 16 and 17.

Figure 16. Loss and accuracy of Isolation Forest outlier detection.

Discretization:

We also applied K-Bbins discretization to transform continuous features into discrete
intervals, using a k-means-based binning strategy. This preprocessing step introduced
useful non-linearity, improved model interpretability, and helped manage small, noisy
datasets. The performance improvement is shown in Figure 18.

5.4. Statistical Validation

To ensure the reliability of the results, we conducted rigorous statistical validation
through fivefold cross-validation on our private dataset. Paired t-tests (α = 0.05) comparing
each model against the ResViT baseline [40] (accuracy: 0.82) yielded statistically significant
improvements (p < 0.01) with large effect sizes (Cohen’s d: 0.9–1.5). Table 13 provides a
comprehensive performance comparison across datasets and architectures.
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Figure 17. Loss and accuracy of Elliptic Envelope method.

Figure 18. Loss and accuracy of K-Bbins discretization method.

To further validate the models’ generalizability, their performance was evaluated on
the public ALL-IDB dataset, as referenced in Section 5.2. Figure 19 below generates a bar
chart comparing the accuracy of all models on both the private dataset and ALL-IDB, with
error bars for ALL-IDB results being present where variability was reported (e.g., ZSL:
0.85 ± 0.03). This comparison highlights the models’ robustness across datasets, with
YOLOv11 maintaining the highest accuracy on both datasets, followed by ResNet50, geom-
etry learning, ZSL, and YOLOv10. The slight performance drop on ALL-IDB underscores
the challenge of generalizing to external datasets with different imaging conditions.

5.5. Results’ Comparison
5.5.1. Segmentation and Detection Performance

We evaluated our multi-label segmentation models using comprehensive metrics,
including precision, recall, and F1 score. Figure 20 demonstrates the comparative perfor-
mance across training epochs.
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Table 13. Comparative model performance analysis.

Model Private Dataset ALL-IDB Effect Size (d) Key Advantage Limitation

YOLOv11 (Ours) 0.98 0.95 1.5 Real-time
processing

Requires GPU
acceleration

ResNet50 (Ours) 0.96 0.92 1.3 Transfer learning
capability

Moderate
compute
requirements

Geometry
Learning (Ours) 0.92 0.89 1.1 Shape feature

extraction
Specialized for
RBC analysis

ZSL (Ours) 0.88 0.85 ± 0.03 1.0 Novel subclass
detection

Needs semantic
embeddings

YOLOv10 (Ours) 0.87 0.82 0.9 Balanced
speed/accuracy

Lower rare-class
recall

Onakpojeruo
et al. (2024a) [31] 0.99 * - - Synthetic data

generation
Neuroimaging
focus

Onakpojeruo
et al. (2024b) [32] 0.86 * - - Multi-class

augmentation
Untested for
hematology

ResViT [40] 0.82 0.78 - Baseline
comparison Lower accuracy

* Reported accuracies from original studies (brain tumor datasets).

Figure 19. Model accuracy comparison.

The performance of YOLOv10 and YOLOv11 was evaluated on the primary dataset
using precision, recall, and F1 score after 200 training epochs. These metrics reflect the
models’ accuracy in segmenting and detecting 10 blood cell types. As shown in Table 14,
YOLOv11 outperformed YOLOv10, especially in recall and overall F1 score.
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Table 14. Performance comparison of YOLOv10 and YOLOv11 on the primary dataset.

Metric YOLOv10 YOLOv11

Precision 0.87 0.98
Recall 0.80 0.99
F1 Score 0.75 0.98

Figure 20. Performance curves: (Top) YOLOv10 F1 score and recall metrics. (Bottom) Comparison
enhancement results.

Table 15 presents a comprehensive comparison with state-of-the-art approaches:

Table 15. Comparative analysis of blood cell analysis models.

Model Methodology Precision F1 Score Key Advantage

YOLOv10 (Ours) Multi-label segmentation 87% 0.75 Balanced speed/accuracy
YOLOv11 (Ours) Advanced object detection 98% 0.98 State-of-the-art performance
Hegde et al. [24] CNN with transfer learning 90% - WBC classification
Kutlu et al. [25] Partial WBC recognition 94.3% - Handles overlapping cells
Akalin et al. [26] YOLOv5-Detectron2 hybrid 91.2% * - Real-time capability
Khan et al. [30] RCNN with augmentation 99% ** - Touching cell resolution

* Maximum improvement over baseline. ** Training accuracy.
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Key observations:

• YOLOv11 outperforms all comparative models in precision (98%) and F1 score (0.98).
• Our approach maintains advantages in both detection accuracy (surpassing [25] by

3.7%) and computational efficiency.
• The model shows superior generalization compared to specialized approaches like [28]

(malaria-only) and [29] (canine RBCs).

5.5.2. Machine Learning Methods’ Performance

To train our classification model, we considered several methods, namely k-Nearest
Neighbors (KNN), Decision Tree Classifier (DTC), Random Forest Classifier (RFC), Support
Vector Machine (SVM), Gaussian Naive Bayes (GNB), Gradient Boosting Classifier (GBC),
AdaBoostClassifier (ABC) and Multilayer Perceptron Classifier (MLPC). We then ranked
these models based on their performance by selecting the top three most performant models
among them. To do this, we compared the models using precise metrics such as accuracy,
F1 score, and precision in Tables 16–18.

Automatic Outlier Detection Method:

Table 16. Evaluation of models using automatic outlier detection method.

Model Model Precision F1 Score Decision Time

RandomForestClassifier 0.977778 0.977778 0.002229

DecisionTreeClassifier 0.952778 0.937778 0.039439

GradientBoostingClassifier 0.930006 0.915556 0.047807

Elliptic Envelope Method:

Table 17. Evaluation of models using Elliptic Envelope method.

Model Model Precision F1 Score Decision Time

AdaBoostClassifier 1.000000 1.000000 0.035010

GradientBoostingClassifier 0.977778 0.971429 0.041291

DecisionTreeClassifier 0.977778 0.971429 0.049943

Discretization Method:

Table 18. Evaluation of models using discretization method.

Model Model Precision F1 Score Decision Time

GradientBoostingClassifier 0.952778 0.904762 0.037799

RandomForestClassifier 0.952778 0.904762 0.049618

MLPClassifier 0.952778 0.904762 0.086684

6. Discussion
The proposed AI-driven system demonstrated robust performance in automated

blood cell anomaly detection, achieving a precision of 0.98, recall of 0.99, and F1 score of
0.98 on our proprietary dataset. A comparative evaluation on the ALL-IDB benchmark
yielded consistent results (YOLOv11: 0.96 ± 0.02), indicating strong potential for clinical
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deployment. The integrated pipeline combining YOLOv11 for segmentation, ResNet50
for classification, and zero-shot learning (ZSL) for novel subclass detection represents a
significant advancement over prior works, such as Hegde et al. [24] (90% precision) and
Kutlu et al. [25] (94.3% precision), both in terms of accuracy and functional scope.

To address interpretability challenges in medical AI, we incorporated explainable
techniques including Grad-CAM visualizations and SHAP value analysis, aligning with
recent advances in XAI for healthcare [33]. The Grad-CAM heatmaps consistently high-
lighted morphologically significant regions (e.g., nuclear morphology in leukocytes) as
key detection features, while SHAP analysis identified critical cellular characteristics (e.g.,
perimeter-to-area ratio, sphericity) driving classification decisions. However, certain edge
cases—particularly the differentiation between “Lymphocyte T” and “Promyelocyte-N”
subclasses—revealed persistent challenges in model interpretability, as evidenced by ele-
vated false negative rates in ZSL predictions (Section 5).

While our curated dataset of 28,532 augmented images represents a substantial re-
source for hematological AI research, two limitations merit discussion. First, the absence
of detailed inter-rater reliability metrics and institutional review board approvals for all
data sources (noted in Review 2) suggests opportunities to strengthen methodological rigor.
Second, the current validation framework, while incorporating fivefold cross-validation,
would benefit from the inclusion of additional external datasets beyond ALL-IDB to more
comprehensively assess generalizability (Review 4). The observed misclassifications in rare
erythrocyte variants (e.g., “Target” cells) underscore the ongoing challenges posed by class
imbalance and imaging artifacts in clinical samples.

From a computational perspective, the system’s optimized inference latency (50 ms/image
on Tesla T4 hardware) demonstrates technical feasibility for point-of-care deployment.
However, as noted in Review 4, the absence of real-world clinical validation against manual
microscopy remains a critical gap. Future comparative studies should quantify diagnostic
concordance rates with hematologists across diverse healthcare settings. Similarly, while
statistical validation confirmed significant improvements over baseline models (p < 0.01,
Cohen’s d: 0.9–1.5), the clinical relevance of these effect sizes requires further investigation
through controlled trials.

7. Conclusions and Future Work
This study presents an integrated AI framework for automated hematological analysis,

combining state-of-the-art computer vision architectures (YOLOv11, ResNet50) with zero-
shot learning capabilities. The system achieves high diagnostic accuracy (F1 score: 0.98)
while maintaining computational efficiency suitable for resource-constrained environments.
Key innovations include the following:

• A unified pipeline addressing segmentation, classification, and novel anomaly detection.
• Implementation of explainable AI techniques for clinical interpretability.
• Optimization for rapid inference (50 ms/image) without sacrificing accuracy.

Three primary limitations guide our future research directions:

1. Clinical validation: Pending trials comparing system performance against board-
certified hematologists across diverse healthcare settings.

2. Technical enhancements: Integration of focal loss approaches [29] to address class
imbalance and lightweight architectures like EfficientNet [17] for edge deployment.

3. Data diversity: Expansion of training corpora to include (a) broader demographic
representation and (b) standardized ethical documentation.
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The system’s current capabilities, while promising, represent an initial step toward AI-
augmented hematology. Subsequent development will focus on three key areas: (1) imple-
mentation of natural language interfaces for automated report generation, (2) multi-center
validation studies, and (3) integration with emerging telehealth platforms. These advances
will be guided by the principle that diagnostic AI should enhance, rather than replace,
clinician expertise—particularly in underserved regions where our technology may have
the greatest impact.
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