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Abstract: Cognitive modeling studies in adults have established that visual working memory (WM)
capacity depends on the representational precision, as well as its variability from moment to moment.
By contrast, visuospatial WM performance in children has been typically indexed by response
accuracy—a binary measure that provides less information about precision with which items are
stored. Here, we aimed at identifying whether and how children’s WM performance depends on the
spatial precision and its variability over time in real-world contexts. Using smartphones, 110 Grade
3 and Grade 4 students performed a spatial WM updating task three times a day in school and at
home for four weeks. Measures of spatial precision (i.e., Euclidean distance between presented and
reported location) were used for hierarchical modeling to estimate variability of spatial precision
across different time scales. Results demonstrated considerable within-person variability in spatial
precision across items within trials, from trial to trial and from occasion to occasion within days and
from day to day. In particular, item-to-item variability was systematically increased with memory
load and lowered with higher grade. Further, children with higher precision variability across items
scored lower in measures of fluid intelligence. These findings emphasize the important role of
transient changes in spatial precision for the development of WM.

Keywords: working memory updating; spatial precision; intra-individual variability; cognitive
development; micro-longitudinal design; ambulatory assessment; hierarchical modeling

1. Introduction

Working memory (WM) refers to the temporal storage and manipulation of sensory information
online [1]. It is considered to be a core cognitive process that is severely limited in capacity [2–5].
WM for visuospatial information supports mental arithmetic [6–8], spatial thinking [9,10] and fluid
intelligence [11–13]. Such higher cognitive functions are implicated to be essential for learning and
development [14] but the specific factors that contribute to visual WM limitations in children are still
not clear. Here, we aimed at identifying a cognitive component, spatial precision, that contributes
to developmental changes and limitations in children’s visuospatial WM updating performance in
natural everyday life contexts.

1.1. Models of Visual Working Memory Capacity

Visual WM capacity can be measured by varying the number of objects that have to be
remembered [2,3]. Fixed capacity or ‘slot’ models of visual WM suggest a limit of three to four
storage slots, one of each object held in WM [2]. It has been criticized that slot models do not account
for the presence of internal noise in memory which increases with increasing load [3,4]. Thus, WM
may not store a limited number of discrete representations but rather consists of a flexible resource:
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the more of this resource is allocated to an item, the less noise is present in its representation and
the more reliable is the recall of that item [4,15]. Responses during recall could be corrupted by
many sources of noise including sensory, perceptual, mnemonic, and/or motor noise [3,4]. More
recently, cognitive modeling studies in human adults have established that visual WM capacity is
constrained by the precision with which items are stored [15,16]. In particular, visual WM capacity has
been formalized through distinct components such as the probability to guess at random [2,16], the
probability of misremembering features of non-target items or binding errors [17,18], the precision
of memory representation and its decline with load [15,16,19] and the variability of precision [20,21],
rather than through a fixed limit to the number of objects that can be stored [3]. Importantly, most
recent versions of flexible resource models suggest that WM resource is not equally but variably
distributed across items and trials. Thus, precision itself is allowed to vary over time, across objects
and across conditions within individuals [20,21]. To test these assumptions, different models were
compared and fit to errors in recall (i.e., the difference between the participant’s estimate and the
true stimulus value) [22] measured with delayed-estimation tasks [19]. Results showed that model
variants with a combination of several components, including a variable precision parameter, were
most successful and outperformed models that did not consider variability in precision [22].

1.2. Variability in Working Memory Performance

The comparison of visual WM models revealed that human adults show substantial variability
in WM precision across trials within a testing session, which is implicated to strongly contribute to
capacity limitations [20–22]. Based on findings that visual cues during stimulus encoding can increase
WM precision, shifts of attention could constitute a possible source of variability in precision [23].
By contrary, precision variability could result from random fluctuations in attention, when multiple
items have to be remembered [21]. Further, variability in WM performance has been linked to
dopamine activity [24], whereby dopaminergic stimulation in the prefrontal cortex can modulate
visuospatial WM [25,26]. In addition to such rapid trial-to-trial variability in WM separated by
milliseconds or seconds [20–22,27], intra-individual WM variability has also been reported for slower
time scales, such as across sessions within days or even from day to day [28–32]. In these studies,
memory span, updating, or delayed spatial recognition tasks were repeatedly administered to younger
and older adults embedded in intensive microlongitudinal designs [32]. In this way, it has been
demonstrated that WM fluctuations from day to day are related to fluctuations in motivation [33],
mood states [29] and affect [34]. Moreover, trial-to-trial variability in measures of reaction time was
shown to follow a u-shaped function across the lifespan where children and older adults were more
variable in their WM performance than younger adults [35]. When evaluating day-to-day variability
and measures of WM accuracy, however, older adults showed lower variability compared to younger
adults and thus more stable performance [31]. Together, these findings highlight the importance
to consider different time scales and different cognitive measures when evaluating intra-individual
variability in WM functioning [31].

1.3. Development of Children’s Working Memory

Studies on children’s WM variability are scarce [35–39]. Moreover, thus far, only a few studies
have investigated the contribution of children’s WM precision for age- and load-related performance
changes [40–45]. For example, Burnett Heyes and colleagues (2012) observed developmental increases
in visual WM precision (the reciprocal of the standard deviation of a continuous response distribution)
in 7 to 13 years old boys [40]. In comparison, Sarigiannidis and colleagues (2016) found reduced
guessing behavior (i.e., height parameter of a discrete probability distribution) in older (aged 10–12)
compared to younger (aged 7–9) children, rather than improvements in precision [42]. In addition to
these mixed results, so far, it is not clear how WM precision and in particular the moment-to-moment
variability of this precision changes across development. In a recent study from our own lab,
fluctuations in children’s WM updating performance were assessed over a period of four weeks
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in the school context. Results revealed that WM accuracy systematically fluctuates across and within
days and across moments. Here, children strongly differed in their amount of reliable variability in
accuracy at these different time scales whereby third graders were more variable within days than
fourth graders [37].

1.4. Research Questions and Approach

Taken together, the existing research emphasizes a critical role of distinct WM components for
visual WM capacity limitations in adults and children (e.g., [22,37,40,42]). Beyond temporally holding
sensory information in visual WM, spatial WM updating requires children to constantly update the
locations of multiple items. A precise representation of each item’s location may be beneficial to
successfully solve the task. However, updating performance has been typically indexed by response
accuracy–a binary measure that only provides information whether children have correctly recalled the
item or not. In addition, while environmental contexts and life conditions doubtlessly affect cognitive
development [46], limitations in children’s WM precision have been typically studied in the laboratory.
Thus, an ecologically valid assessment of children’s WM precision and its variability over time is still
missing but may reveal further insights into cognitive processes in everyday contexts. To investigate
such processes, microgenetic approaches and intensive longitudinal designs allow the assessment of
rapidly changing processes with high density of observations within a given period of time [47]. In this
regard, intensive longitudinal designs in combination with ambulatory assessment has proven to be
a fruitful approach to measure WM updating fluctuations at different time scales in children’s daily
lives [37,38]. By adopting cognitive tasks for mobile devices, dynamics of behavior and developmental
processes can be examined in a reliable and feasible way [48]. Based on these considerations, here we
aimed at further identifying and comparing distinct components that limit visuospatial WM updating
in children’s natural environment. Because WM has been demonstrated to be an important predictor
of academic attainment (e.g., [14,37]) and variance in WM performance related to age and years of
schooling is expected to overlap considerably in the present study, we focused on grade differences
instead of age-related changes. In particular, we measured spatial precision and estimated variability
in spatial precision at different time scales in Grade 3 and Grade 4 students who performed a sequential
visuospatial updating task three times daily over a period of four weeks using smartphones.

By taking into account recent developmental findings on visual and spatial WM capacity [40–44],
we assumed that spatial precision declines as load on WM updating increases (i.e., from a memory
load of two to a load of three) and that spatial precision increases with level of education (Grade 3
vs. 4). Following recent findings of variability in updating accuracy [37] and cognitive modeling of
precision in adults [20,21], we tested whether spatial precision of WM updating systematically varies
within children by considering different time scales (i.e., items, trials, occasions and days), effects of
load and level of education. Specifically, by considering recent theoretical considerations of variable
precision models [20,21], we assumed that the amount of rapid fluctuations in spatial precision may
increase with load due to an increased level of children’s internal noise. Finally, we explored individual
differences in fluid intelligence and its relation to different variance components of spatial precision.

2. Materials and Methods

The present study is based on data from the FLUX project (‘Assessment of Cognitive Performance
FLUctuations in the School ConteXt’) of the Individual Development and Adaptive Education (IDeA)
Center in Frankfurt, Germany. The project followed an intensive microlongitudinal design with
four daily assessments over a period of four weeks (28 or 31 consecutive days including weekend
days) embedded in a pre- and posttest protocol. Within this project, cognitive performance [37,38],
motivation, affect [49], sleep [38,50] and physical activity [51], amongst other variables, were assessed
on a daily basis via smartphones (Dell Streak 5, with Android 2.2 operation system). In this study,
we considered daily measures from a visuospatial WM updating task and background measures
from a pretest session such as demographic variables, fluid intelligence (i.e., CFT 20-R, [52]) and
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school achievement including a mathematics test (i.e., DEMAT, [53] and reading comprehension test
(i.e., ELFE, [54]). Pretest assessment took place in the classroom in groups of up to 20 students and
started one week before the longitudinal study phase (see [37], for a description of study protocol).

2.1. Participants

Participants were 110 third- and fourth-graders aged between 8 and 11 years (65 boys,
M = 9.88 years, SD = 0.61, range = 8.1). Fifty children of the sample were enrolled in Grade 3 (26 boys, M
= 9.40 years, SD = 0.46, range = 2.3) and 60 in Grade 4 (39 boys, M = 10.27 years, SD = 0.39, range = 1.6).
Children’s fluid intelligence was in an average range with M = 106.9 (SD = 12.8) and M = 109.3
(SD = 17.3) for Grade 3 and Grade 4 students, respectively. Grade 4 students significantly differed
in fluid intelligence from Grade 3 students (CFT 20-R raw scores: Grade 4: M = 33.59 (SD = 7.31) >
Grade 3: M = 29.84 (SD = 5.37), t = 3.05, df = 103.12, p < 0.05). They were recruited from seven classes
in one public elementary school in an average urban neighborhood in Frankfurt am Main, Germany.
Participation was voluntary and could be canceled anytime without giving reasons. The children
received a gift certificate or money for participation. Informed consent was obtained in accordance
with a protocol approved by the local ethics review board.

2.2. Procedure

Children completed a visuospatial WM updating task on three daily sessions over a period of
four weeks. WM performance was tested in the morning during class (Occasion 1), at noon at the
end of school (Occasion 2) and in the afternoon (Occasion 3). School sessions were scheduled to fixed
times for all children, afternoon sessions could be scheduled individually within a time window of
±2 h and sessions were available up to 60 min. Within each occasion, the spatial updating session
followed a numerical updating session in which children had to remember and update numbers in
WM (cf. [37]). The spatial WM updating task comprised eight trials per session. Each session started
with four trials of memory Load 2 (=2 items), followed by four trials of memory Load 3 (=3 items).
Children’s responses were consecutively measured for each item held and updated in WM. In each
trial, two or three responses could be obtained for a manipulation of memory Load 2 or 3, respectively.
Thus, in one session (occasion), children were able to give 20 responses in total. In the course of study
period, a maximum of 91 sessions (Grade 3) or 84 sessions (Grade 4) could be completed. Thus, in total,
a maximum of 364/336 responses (Grade 3/Grade 4) to the first, second, or third item within trials
could be collected for each child.

2.3. Spatial Working Memory Updating Task

Children had to memorize and update locations of differentially colored and shaped cartoon
creatures (=items) presented in a 4 × 4 grid. During the encoding phase, two or three items were
presented simultaneously at different locations in the grid for 3000 ms. After an inter-stimulus-interval
(ISI) of 500 ms, three or four updating cues were presented for Load 2 and Load 3 conditions,
respectively. Updating cues were shown in the center of the grid and were presented sequentially. Each
cue was shown for 2500 ms with an ISI of 500 ms. Each item of the sample display was assigned to one
respective cue. Cues were cartoon arrows that matched the item’s colors where the respective item
was placed at the center of an arrow. The direction of the arrow prompted children to mentally shift
the spatial position of the respective item to the adjacent location in the grid (= updating operation).
Directions of arrows were horizontal (left, right), vertical (upper, below), or diagonal. No item’s
position could be updated twice in a row. Intermediate and end positions were never doubly assigned.
After updating, children had to retrieve updated positions for each item within a trial. They responded
by consecutively touching the remembered item location. Target locations were indicated by the
corresponding item and a question mark sign that were shown left to the grid. A feedback followed by
showing color-coded crosses at correct locations after the final response was given (Figure 1) (cf. [37];
task was adopted from [55]).
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within trials (Level 2), measures across trials, in turn, were nested within occasions (Level 3) and 
assessment at occasions were nested within days (Level 4) (Figure 2a). Item responses were measured 
in terms of continuous spatial precision (i.e., Euclidean distance) in addition to discrete accuracy (i.e., 
correct vs. incorrect) (cf. Section 2.5). The hierarchical data structure allowed for decomposing the 
four different variance components of spatial precision for each individual (cf. Section 2.5). 

With an intensive longitudinal study protocol, missing data were expected. Here, on average 
across load conditions and Grades, 67% of the maximum possible visual spatial WM updating data 
were available. Missing data resulted from, for example, illness, exams, technical problems such as 
empty batteries, or smartphones left at home. Based on available data, the average total number of 
responses from Grade 3 students was 232.98 (SD = 86.57) and 232.74 (SD = 86.58) for first and second 
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second and third items of Load 3 trials, respectively. Grade 4 students responded on average 239.82 
(SD = 67.18) and 239.72 (SD = 67.20) times to the first and second item in Load 2 trials and 238.75 (SD 
= 67.97), 238.63 (SD = 67.99) and 238.58 (SD = 67.98) to first, second and third items in Load 3 trials, 
respectively. Sufficient data for hierarchical modeling analysis and sufficiently reliable estimation of 
individual variance components were assumed for children with more than 20 days (cf. [37]). Thus, 
load effects on variability of spatial precision and individual differences in variance components were 
assessed based on data of 83 children for whom sufficient observations were available to estimate 
variance components at different timescales. All other analyses were based on data from the entire 
sample of 110 children. 
  

Figure 1. Visuospatial working memory updating task (example showing Load 2). Children had to
encode, hold and update the locations of two or three items in visual WM. After updating operations
(i.e., sequential mental shifts within a 4 × 4 spatial grid), children were prompted to retrieve the
updated locations. Responses were consecutively given to each item by touching on the remembered
location (cf. [37]).

2.4. Data Analysis

Behavioral data were analyzed using the lme4 package [56] as well as core packages in R-statistics
(https://www.r-project.org, R Core Team, 2016). Given the intensive longitudinal design, observations
were inherently structured by repeated measures across items (Level 1) that were nested within trials
(Level 2), measures across trials, in turn, were nested within occasions (Level 3) and assessment at
occasions were nested within days (Level 4) (Figure 2a). Item responses were measured in terms of
continuous spatial precision (i.e., Euclidean distance) in addition to discrete accuracy (i.e., correct vs.
incorrect) (cf. Section 2.5). The hierarchical data structure allowed for decomposing the four different
variance components of spatial precision for each individual (cf. Section 2.5).

With an intensive longitudinal study protocol, missing data were expected. Here, on average
across load conditions and Grades, 67% of the maximum possible visual spatial WM updating data
were available. Missing data resulted from, for example, illness, exams, technical problems such as
empty batteries, or smartphones left at home. Based on available data, the average total number of
responses from Grade 3 students was 232.98 (SD = 86.57) and 232.74 (SD = 86.58) for first and second
items in Load 2 trials and 230.96 (SD = 87.97), 230.76 (SD = 87.94) and 230.58 (SD = 87.99) for first,
second and third items of Load 3 trials, respectively. Grade 4 students responded on average 239.82
(SD = 67.18) and 239.72 (SD = 67.20) times to the first and second item in Load 2 trials and 238.75
(SD = 67.97), 238.63 (SD = 67.99) and 238.58 (SD = 67.98) to first, second and third items in Load 3 trials,
respectively. Sufficient data for hierarchical modeling analysis and sufficiently reliable estimation of
individual variance components were assumed for children with more than 20 days (cf. [37]). Thus,
load effects on variability of spatial precision and individual differences in variance components were
assessed based on data of 83 children for whom sufficient observations were available to estimate
variance components at different timescales. All other analyses were based on data from the entire
sample of 110 children.

https://www.r-project.org
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Figure 2. Hierarchical data structure and spatial precision: (a) Data were inherently structured by 
repeated measures at four different levels of time scale (i.e., Items, Trials, Occasions and Days) given 
the microlongitudinal study design; (b) Spatial precision was formalized in terms of the Euclidean 
Distance δ between presented (y) and reported location (x) within a 4 × 4 space grid (cf. upper panel). 
Dashed white lines represent possible distances in the space grid ranging from δ = 0 to a maximum 
of δ = 4.24. 

For response accuracy, a given response was assigned a value of 1 for correct responses (when the 
correct location of the target item was chosen) and a value of 0 for erroneous responses (when any 
other location except the correct location was chosen). 

For data analysis across trials (Level 2), spatial precision and accuracy scores were obtained by 
averaging across responses for each item within trials. For analysis at the occasion level (Level 3), the 
mean spatial precision and mean accuracy of all responses of the four trials per session and load 
condition was obtained. To test whether performance in mean spatial precision differs between 
morning, noon and afternoon sessions, we conducted paired t-tests between levels of Occasion (i.e., 
morning, noon, afternoon) separately for each load condition. 

Variance components of spatial precision. Separately for each child and each load condition, a 
multilevel model was set up with the dependent variable being spatial precision, that is, the 

Figure 2. Hierarchical data structure and spatial precision: (a) Data were inherently structured by
repeated measures at four different levels of time scale (i.e., Items, Trials, Occasions and Days) given
the microlongitudinal study design; (b) Spatial precision was formalized in terms of the Euclidean
Distance δ between presented (y) and reported location (x) within a 4 × 4 space grid (cf. upper panel).
Dashed white lines represent possible distances in the space grid ranging from δ = 0 to a maximum of
δ = 4.24.

2.5. Scoring Behavioral Performance

Spatial precision was formalized as Euclidean Distance between response location and original
location for each item (cf. [57]). The Euclidean Distance is defined as the distance between two points
in space that corresponds to the length of a straight line drawn between them, where the distance δ

from x to y or y to x is given by the following Pythagorean formula:

δ(x, y) =
√
(x1 − y1)

2 + (x2 − y2)
2, (1)

Here, we assume that a higher δ may reflect more dissimilar representations between presented
and reported item location, which may result from less spatially precise memory representations due
to increased memory noise (e.g., [15]). The Euclidean metric works well for two-dimensional spaces
and reflects a more sensitive measure of spatial recall precision as compared to the number of cells
as a distance measure. For example, placing an item in a cell that touches the correct cell diagonally
(δ = 1.41) is considered a somewhat larger error than placing it in a cell that touches the correct cell
horizontally or vertically (δ = 1). The metric space of δ was a 4 × 4 cell grid where one cell reflects
one of 16 different item locations. Specifically, we computed the square root of the sum of the squares
of the difference between all corresponding values within a 4 × 4 matrix (e.g., x(1,2) and y(2,3)) by
using the dist function in R. This resulted in nine distinct δ values ranging from δ = 0 to a maximum of
δ = 4.24 and 120×(15×15 − 1)/2 possible pairs of presented and reported location (cf. Figure 2b).

For response accuracy, a given response was assigned a value of 1 for correct responses (when the
correct location of the target item was chosen) and a value of 0 for erroneous responses (when any
other location except the correct location was chosen).

For data analysis across trials (Level 2), spatial precision and accuracy scores were obtained by
averaging across responses for each item within trials. For analysis at the occasion level (Level 3),
the mean spatial precision and mean accuracy of all responses of the four trials per session and load
condition was obtained. To test whether performance in mean spatial precision differs between
morning, noon and afternoon sessions, we conducted paired t-tests between levels of Occasion
(i.e., morning, noon, afternoon) separately for each load condition.
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Variance components of spatial precision. Separately for each child and each load condition,
a multilevel model was set up with the dependent variable being spatial precision, that is, the Euclidean
Distance between presented and reported location for each item. The model’s intercept parameter
is composed of a fixed and random effects, the slope parameter has only a fixed effect. In particular,
the model allowed for random intercepts of each time scale that were nested within each other. Running
trial number was included as a continuous predictor and modeled as fixed effect to take into account
individual longer-term trends. This general model resulted in four different variance components of
spatial precision: A variance component of day-to-day variability across the n daily occasions (σ2

Days),
a component of occasion-to-occasion variability across the n trials within occasions divided by the
number of occasions within days (σ2

Occasion), trial-to-trial variance across the n item-responses within
trials divided by the number of trials within days (σ2

Trial) and the variance component of item-to-item
variability, including also error variance, divided by the number of responses within days (σ2

Item).
To test whether mean spatial precision and variability of spatial precision across different time

scales change as a function of WM load (i.e., Load 3 vs. 2), we conducted paired t-tests separately
for each performance component. Further, we assessed individual differences in children’s estimated
variance components of spatial precision at different time scales. We tested for differences in spatial
precision performance between school classes using independent t-tests. Finally, we assessed the
relationship between mean and variability of spatial precision and measures of fluid intelligence
(i.e., CFT 20-R raw scores) and school achievement (i.e., ELFE and DEMAT raw scores) using correlation
and hierarchical regression analyses. These analyses were based on subsamples of 82, 79, or 73 children
(i.e., for CFT, DEMAT, ELFE, respectively) for whom scores and sufficient data for estimating variance
components of spatial precision were available. Results were considered to be significant when p < 0.05
by applying a Bonferroni correction to take into account multiple comparisons.

3. Results

3.1. Relationship between Mean Spatial Precision and Mean Response Accuracy

For each trial, mean behavioral performance scores were computed by averaging across data
from item-to-item responses. Note that mean response accuracy corresponds to the probability of
remembering the correct target location, while mean spatial precision corresponds to participant’s
recall precision of spatial location in terms of the mean spatial distance δ between correct and reported
location. A mean Euclidean distance δ of 0 corresponds to memory representations with perfect spatial
precisions, while a mean δ of 4.24 reflects most imperfect or imprecise spatial representations within
trial (which could result from a true location in one of the corners of the grid being remembered as
the diagonally opposite corner). Trial-to-trial mean response accuracy ranged from 0 (i.e., incorrect
remembered locations) to 1 (i.e., correct remembered locations). Figure 3 shows the relationship
between these two parameters and indicates that trial-to-trial mean spatial precision δ varies widely
when there was in fact no variation for mean response accuracy. For both grades of school, this variation
in spatial precision was most pronounced for erroneous responses (i.e., mean response accuracy = 0)
(Figure 3).

3.2. Daily Measures of Spatial Precision

To further assess the role of daily spatial precision in WM updating, we compared mean
performance at different occasions, that is, average Euclidean distances δ in morning, noon and
afternoon sessions within days in Grade 3 and Grade 4 students. Descriptive results demonstrated best
performance in terms of lowest mean δ for Grade 4 students and Load 2 condition during morning
sessions (M = 0.30, SD = 0.23), while lowest spatial precision was observed for Grade 3 students
and Load 3 during noon (M = 1.11, SD = 0.39; cf. Table S1). Children showed highest mean spatial
precision during sessions in the morning, while lowest performance was observed during noon
sessions (Load 2/3: t ≤ −8.33, df = 109, p < 0.05). Further, results demonstrated reduced spatial
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precision in noon compared to afternoon sessions (Load 2/3: t ≥ 4.29, df = 109, p < 0.05) and higher
spatial precision during morning than afternoon (Load 2/3: t ≤ −3.36, df = 109, p < 0.05).J. Intell. 2017, 5, x FOR PEER REVIEW  8 of 19 
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Figure 3. Trial-to-trial mean spatial precision (i.e., Euclidean distance δ) (y-axis) as a function of mean
response accuracy (x-axis) for Grade 3 (first row) and Grade 4 students (second row) and separately for
loads two and three.

3.3. Variability in Spatial Precision

For each child and load condition, we estimated variance components using hierarchical modeling
to examine systematic within-person variability of spatial precision across different time scales.
Figure 4a shows the children’s average estimated variance components σ2(δ) separately for school
classes. The total size of each bar corresponds to the average amount of observed variability of spatial
precision across days (i.e., the variance of mean spatial precision performance from day-to-day). This
variability is decomposed into four variance components reflecting the contribution of item-to-item
variability (yellow), trial-to-trial variability (red), occasion-to-occasion variability (blue) and true
day-to-day variability (green) to observed day-to-day variability. Figure 4a shows that, on average
across children, each variance component contributed to the observed total amount of variability
across days within grades and load conditions (cf. Figure 4a). For each time scale and load condition,
estimated spatial precision variance component was significantly different from zero within children
from Grade 3 (Load 2, all: t ≥ 3.76, df = 33, Load 3: t ≥ 4.02, df =, p < 0.05) and Grade 4 (Load 2: t ≥ 3.41,
df = 48, Load 3: t ≥ 4.39, df = 48, p < 0.05). Detailed summary statistics for each variance component
can be found in Table S2 (see Online Supplement).

3.3.1. Effects of Working Memory Load on Mean and Variability of Spatial Precision

As expected, results showed a significant increase in mean Euclidean distance δ with increased
load in Grade 3 students (Load 2: M = 0.66, SD = 0.4, Load 3: M = 1.02, SD = 0.39; t = −17.31,
df = 49, p < 0.05) and Grade 4 students (Load 2: M = 0.37, SD = 0.26, Load 3: M = 0.75, SD = 0.34;
t = −14.66, df = 59, p < 0.05), suggesting that children showed lower overall spatial precision as load
on WM increased.

For the variability in spatial precision, the item-to-item variance component significantly increased
with load in children from Grade 3 (Load 2: M = 0.011, SD = 0.007, Load 3: M = 0.014, SD = 0.005;
t = −5.95, df = 33, p < 0.05) as well as in children from Grade 4 (Load 2: M = 0.005, SD = 0.004,
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Load 3: M = 0.012, SD = 0.004; t = −12.27, df = 48, p < 0.05) (cf. Figure 4a, yellow bars). No differences
between load conditions were found for spatial precision variability from trial-to-trial (Grade 3: t = 1.58,
df = 33, p = 0.12; Grade 4: t = −0.01, df = 48, p ≥ 0.99), occasion-to-occasion (Grade 3: t = 2.16, df = 33,
p ≥ 0.04; Grade 4: t = 1.45, df = 48, p ≥ 0.15), or for true day-to-day variation in spatial precision
(Grade 3: t = 1.49, df = 33, p ≥ 0.15; Grade 4: t = −0.33, df = 48, p ≥ 0.74) (see also Table S2, Online
Supplement). These effects cannot be attributed to different trends of learning between the two
load conditions, as we took into account individual longer-term trends separately for each child
and load condition (cf. Materials and Methods, subsection Variance components of spatial precision).
Thus, load-related differences in children’s updating performance can only be observed for the fast
item-to-item changes in spatial precision performance within trials but not for the slower variations
across trials, occasions, or days.
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Figure 4. Variance components of spatial precision. (a) The size of each bar reflects the total amount
of children’s averaged observed day-to-day variability separately for Grade 3 and Grade 4 students
and load conditions (i.e., Load 2 and 3). This variability is decomposed into four different variance
components that were estimated for each individual in each load condition. Variance components reflect
variability of spatial precision from item-to-item (yellow), trial-to-trial (red), across occasions (Occ.; blue)
and true day-to-day variability (green); (b) Each bar corresponds to children’s estimated item-to-item,
trial-to-trial, occasion-to-occasion and day-to-day variance component of observed variability across
days. Bars are ordered by their total size (i.e., variance of average performance across days) from very
low (left) to very high (right) variability. N = 34 (Grade 3), n = 49 (Grade 4).
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3.3.2. Individual Differences in Mean and Variability of Spatial Precision

Further, we examined whether Grade 3 students differ from Grade 4 students in their amounts of
estimated variance components of spatial precision and to what degree individual spatial precision
variability differs between time scales within each grade. Figure 4b summarizes individual differences
in estimated variance components of spatial precision. Here, each bar refers to one child and the
total size of the bars corresponds to the variance of average performance across days (i.e., observed
day-to-day variability) for each child. Bars on the right at each panel correspond to the children who
showed highest observed day-to-day variability of spatial precision. Descriptive results indicate that
children considerably differ in their individual amount of estimated variance components at different
time scales. For example, there are children who varied in spatial precision across all considered time
scales where variation was most pronounced from day-to-day in these children. In contrast, there
are also children who showed almost no variation across days but substantial variability in spatial
precision across items, trials and/or occasions (cf. Figure 4b). In comparison to Grade 3, Grade 4
students showed significantly less item-to-item variability of spatial precision for memory Load 2
(t = 4.02, df = 48.6, p < 0.05) and Load 3 condition (t = 2.90, df = 67.3, p < 0.05). No differences between
grades were found for trial-to-trial (Load 2/3: p ≥ 0.07), occasion-to-occasion (Load 2/3: p ≥ 0.39),
or day-to-day variability (Load 2/3: p ≥ 0.16). For the overall mean spatial precision, we observed
improved performance (i.e., lower mean δ) in Grade 4 students compared to Grade 3 students for
Load 2 (Grade 3: M = 0.66, SD = 0.4, Grade 4: M = 0.37, SD = 0.26; t = 4.44, df = 79.57, p < 0.05) and
Load 3 (Grade 3: M = 1.02, SD = 0.39, Grade 4: M = 0.75, SD = 0.34; t = 3.89, df = 97.94, p < 0.05).

3.3.3. Relationship between Spatial Precision Components, Fluid Intelligence and School Achievement

Firstly, we assessed the relationship between fluid intelligence (i.e., CFT-20-R raw scores) and
spatial precision components. For mean spatial precision, results demonstrated that children who
had on average more spatially precise representations (i.e., lower mean δ) scored also higher in fluid
intelligence (Load 2: r = −0.47, p < 0.05, Load 3: r = −0.51, p < 0.05). For the variance components of
spatial precision, the item-to-item variability component was significantly related to fluid intelligence
scores for both Load 2 (r = −0.47, p < 0.05) and Load 3 conditions (r = −0.44, p < 0.05) (cf. Figure 5,
first row). No significant associations were observed for the trial-to-trial (Load 2: r = 0.004, p = 0.97;
Load 3: r = 0.19, p = 0.09) and occasion-to-occasion variance component (Load 2: r = −0.2, p = 0.08;
Load 3: r = 0.09, p = 0.47). The day-to-day variance component showed a significant relationship for
Load 2 (r = −0.37, p < 0.05) but no significant association for Load 3 (r = −0.03, p = 0.78). Thus, children’s
fluid intelligence was significantly linked to both mean and variability of spatial precision. Notably,
among variance components, variability from item to item showed most consistent associations with
fluid intelligence, where lower variability under both loads was linked to higher fluid IQ.

Secondly, to examine convergent, divergent and predictive validity of item-to-item variability,
we conducted additional correlation and hierarchical regression analyses. Results revealed a
significant positive correlation between the item-to-item variability assessed on Load 2 and Load 3
conditions (r = 0.76, p < 0.05), which denotes high convergent validity of this construct. In addition,
higher item-to-item variability was significantly linked to lower mean spatial precision (i.e., higher
mean δ) (Load 2: r = 0.96, Load 3: r = 0.95, both p < 0.05) and to lower mean accuracy (Load 2: r = −0.95,
Load 3: r = −0.94, both p < 0.05), which suggests low divergent validity between mean performance
and item variability. To inspect the predictive validity of item-to-item variability of spatial precision
compared to mean spatial precision on fluid intelligence, we compared three models including mean
precision (Model 1), item-to-item variability (Model 2), or both mean and variability of spatial precision
(Model 3) as predictor variables. We found a significant prediction of fluid intelligence by mean
spatial precision (Load 2: R2 = 0.22, Load 3: R2 = 0.26, both p < 0.05) and item-to-item variability
(Load 2: R2 = 0.22, Load 3: R2 = 0.19, both p < 0.05). Importantly, results demonstrated highest
multiple R2 for Model 3 including both mean and variability of spatial precision (i.e., Load 2: R2 = 0.23,
Load 3: R2 = 0.28, both p < 0.05), whereby Model 3 showed a significantly higher R2 than Model 2 for
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the Load 3 condition (Load 3: F = 9.41, p < 0.05). No such effect was observed for the Load 2 condition
(Load 2: F = 0.74, p = 0.39), or when comparing Model 3 with Model 1 (Load 2: F = 0.23, p = 0.63;
Load 3: F = 2.24, p = 0.14) (see also Figure S3 in the Supplement for a correlation matrix between mean
and variability components and fluid intelligence).J. Intell. 2017, 5, x FOR PEER REVIEW  11 of 19 
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Figure 5. Relationship between fluid intelligence and variability of spatial precision. Children (n = 82)
with higher scores of fluid intelligence measures (i.e., CFT 20-R raw scores) (x-axis) showed lower
item-to-item variability of spatial precision (cf. first row, Load 2/3: p < 0.05). No such relationship
was found for variability of spatial precision across trials (second row), occasions (third row), or days
(fourth row).

Thirdly, we explored associations between children’s mean and item-to-item variability of spatial
precision and measures of school achievement. Correlation analysis revealed that children with
lower precision variability scored higher in a test of mathematical skills (Load 2: r = −0.30, Load 3:
r = −0.35, both p < 0.05) and in a test of reading comprehension (Load 2: r = −0.54, Load 3: r = −0.51,
both p < 0.05). Also, mean spatial precision was significantly correlated with both academic abilities,
whereby higher precision (i.e., lower mean δ) was associated with better math (Load 2: r = −0.32,
Load 3: r = −0.36, both p < 0.05) and better reading skills (Load 2: r = −0.53, Load 3: r = −0.53, both
p < 0.05). Results of hierarchical regression analyses revealed significant prediction of children’s math
skills by mean spatial precision (Model 1: Load 2: R2 = 0.10, p < 0.05; Load 3: R2 = 0.13, p < 0.05) as
well as item-to-item variability (Model 2: Load 2: R2 = 0.09, p < 0.05; Load 3: R2 = 0.12, p < 0.05). Model
3 with both mean and variability of spatial precision as predictor variables showed a significant effect
for Load 3 (R2 = 0.13, p < 0.05) but not for Load 2 (R2 = 0.10, p = 0.01). We observed no significant
difference in R2 between Model 3 and Model 2 (Load 2: F = 1.39, p = 0.24, Load 3: F = 0.70, p = 0.40),
or Model 3 and Model 1 (Load 2: F = 0.13, p = 0.72; Load 3: F = 0.05, p = 0.82). Also, children’s reading
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skills could be significantly predicted by mean spatial precision (Model 1: Load 2: R2 = 0.28, p < 0.05;
Load 3: R2 = 0.28, p < 0.05) and item-to-item variability (Model 2: Load 2: R2 = 0.29, p < 0.05; Load 3:
R2 = 0.26, p < 0.05). Model 3 with both mean and variability of spatial precision showed significant
effects too (Load 2: R2 = 0.29, p < 0.05; Load 3: R2 = 0.28, p < 0.05). Model 3 did not differ from Model 2
(Load 2: F = 0.11, p = 0.75, Load 3: F = 1.91, p = 0.17) or from Model 1 (Load 2: F = 1.36, p = 0.25; Load 3:
F = 0.03, p = 0.86).

In sum, these results suggest that variability of spatial precision is related to fluid intelligence
as well as school achievement in children. In particular, children with more stable spatial
precision representations from item-to-item within trials showed higher fluid intelligence and school
achievement scores than children with less stable representations. The mean spatial precision
component also showed a strong link to the measure of fluid intelligence and scholastic abilities.
Further, the item-to-item variability construct showed high convergent validity and low divergent
validity as compared to children’s mean spatial precision. For the high load condition, we observed
that item-to-item variability together with mean spatial precision showed higher predictive validity
for fluid intelligence than item-to-item variability alone. Thus, there is currently no indication that the
item-to-item variability component is better than mean spatial precision at predicting fluid intelligence
or school achievement. Note, however, that high correlations between mean spatial precision and
item-to-item variability in spatial precision implicate high communality between these two variables.
High communality could indicate similar or the same processes that underlie children’s mean and
item-to-item variability of spatial working memory updating.

4. Discussion

By using cognitive ambulatory assessment, this study provides novel evidence that the spatial
precision with which items are stored characterizes children’s WM performance in real-world and
real-time contexts. Hierarchical modeling revealed substantial within-person changes in spatial
precision at different time scales. Importantly, higher memory load increased the amount of
item-to-item variability in children’s spatial precision but not any other variability component.
Further, lower item-to-item variability of spatial precision was related to higher levels of education,
higher fluid intelligence and higher school achievement. In sum, precise and transiently stable
representations of spatial locations from moment to moment are associated with improved WM
performance and thereby emphasize the importance to understand distinct components in contributing
to WM updating development.

4.1. Spatial Precision as Continuous Quantitative Measure of Children’s Updating Performance

To better understand how children mentally present and update visuospatial information in
working memory, we measured spatial precision in terms of the spatial distance between presented
and reported item location during a sequential spatial WM updating task. Children showed substantial
differences from trial to trial in how far in space their estimate differed from the true item location.
Importantly, this was most pronounced when within trial average performance of response accuracy
was low. These findings are in line with previous studies on the precision of visual WM representations
in adults (e.g., [15,16]) and children [40–44] and support flexible resource accounts of visual WM
capacity (e.g., [4,15]). In contrast to fixed capacity or ‘slot’ models [2,5,58], resource models account for
the presence of internal noise in memory, which has been suggested to increase as a function of set size
(i.e., the number of to-be-remembered items) (e.g., [4,15,19]). Here, WM capacity has been described as
a continuous resource that can be flexibly distributed across all items in the visual scene. The more
resource an item receives, the less noise is present in its representation and the more precise is the
recall of that item [4,15]. Based on these assumptions, cognitive modeling studies in adults observed a
critical trade-off between the number of stored items and the precision of WM representation, that
is, precision declined as load on WM increased [15,16,20–22]. These findings are consistent with our
observation that mean spatial precision substantially decreased from memory loads two to three and
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thereby limited children’s performance. Note that cognitive modeling studies on visual WM precision
are typically based on a continuous recall paradigm which allows to measure behavioral performance
(i.e., error) that is distributed along a continuous feature dimension (e.g., orientation, color) [19]. Our
results are attributable to a spatial WM updating task which typically relies on a binary measure of
each response, that is, correct vs. incorrect recall of item location. This task is well-established in the
visual WM updating literature [37,55,59,60] but studies using fidelity measures of children’s updating
performance are still missing. Inspired from studies on visual WM capacity and the continuous recall
paradigm, we could show that incorrect responses during WM updating do not necessarily mean
that children had no memory representation of the target locations at all. Therefore, we suggest that
continuous measures of spatial precision provide additional insights in children’s response behavior
during WM updating in addition to binary measures of response accuracy.

4.2. Systematic Variability in Children’s Spatial Precision

More recently proposed resource models of visual WM suggest that mental resource is variably but
not equally distributed across items. Therefore, mnemonic precision is itself variable over time within
individuals and task conditions [20,21]. Factorial model comparison revealed that this within-person
variability of precision accounts for a significant proportion of errors in recall whereby variable
precision models outperformed models that did not consider variability in precision [22]. Following
these assumptions, we examined whether children’s spatial precision during WM updating varies
over time and whether this variability depends on memory demands. Results of hierarchical modeling
revealed substantial variability of spatial precision at different time scales including variation within
and across days, while in particular item-to-item variability showed systematic increases from memory
loads two to three. These results support the conception that specifically variability across items plays
a role for variable memory precision within individuals [20,21]. Further, our findings are consistent
with recent modeling results of visual WM performance impairments under high load due to increased
variability of precision [20,22,61].

A growing body of evidence including our study found increased variability in cognitive
performance with higher task demand or cognitive load [37,62–65]. The majority of these findings are
based on developmental or lifespan research on variability of trial-to-trial reaction time (RT) measures.
Here, we combined intensive longitudinal assessment of cognitive performance and hierarchical
modeling which allowed us to directly test which time scales are most important for performance
limitations. We identified that it is indeed the fast item-to-item variability which was increased with
higher memory load and thereby affects performance limitations. Variability from item to item has
been recently reported by measuring memory performance for all items in each trial of a continuous
recall task and thereby claiming that guesses, not low-precision representations, determines visual
WM limitations [66]. Here, we do not want to exclude the possibility that some portion of the incorrect
responses were merely random guesses with a uniform distribution across all fields of the grid.
However, the goal of the present study was to identify how variability in children’s item-responses
changes at different time scales, rather than to separate guessing from precision (for which a higher
number of observations within a broader feature space would be necessary). Beyond this ‘slot’ vs.
resource debate on WM capacity (for reviews see [3,67]), neurocognitive studies have proposed
different potential mechanisms that may underlie variability in cognitive performance [23,24,61,68,69].
Possible sources of variability in spatial precision may result from internal process-related fluctuations
(e.g., sleep quality based on circadian functions, cf. [38]) but also external factors such as environmental
noise (cf. [68]). Variability in dopaminergic activity in prefrontal cortex was found to modulate
visuospatial WM performance [24–26] and thus, may reflect a potential neural source underlying
variability in spatial precision. The high correlation between mean performance and variability in
performance suggests that similar or even the same processes may underlie the two components, while
it will become necessary to use further experimental manipulations and/or neuroimaging methods
to convincingly identify this proposed communality of underlying processes. Based on previous
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findings on visual WM precision, we speculate that attentional mechanisms constitute an important
source underlying item-to-item variability of spatial precision [15,21,23,69]. One possibility is that
such variation may result from random fluctuations in attention and that these fluctuations increase
when multiple locations have to be processed, that is encoded, stored and updated and finally recalled.
Another potential mechanism may be less controlled shifts in attention when demands on WM are high,
while more controlled allocation of selective attention may stabilize WM performance and thereby
improve spatial precision [15,23].

4.3. Individual Differences and Developmental Changes in Variability of Spatial Precision

Combining the concepts of short-term within-person variability such as performance variations
across and within days and theories of long-term change during development has been proven to be a
worthwhile concept of understanding individual dynamics in cognitive functions [31,70]. Following
these calls, we attempted to measure short-term within-person variability in WM performance
over a period of four weeks in third as well as fourth graders. Further, we measured children’s
performance with smartphones in typical settings, such as in school and after school to increase
ecological validity [32,71]. We observed that third graders with mean age of approximately nine
years showed higher item-to-item variability of spatial precision of WM performance compared to the
around ten-year-old fourth graders. These results fall in line with previous developmental research
on within-person variability of RT measures (i.e., SD of RTs) and variability in accuracy at faster
time scales, which together found a reduction in performance variability with increasing age during
childhood [37,65,72]. Moreover, not only younger but also older populations [72–74] and patients with
attention-deficit hyperactivity disorder (ADHD) showed increased trial-to-trial RT variability [75,76],
which has been suggested to reflect reduced resolution of information processing systems [73,74].
Our findings refine these results and point to the importance of transient within-person changes in
spatial WM precision for long-term changes during development of educational competencies.

In addition to reduced item-to-item variability, we observed that Grade 4 students were on
average more precise in spatial recall than Grade 3 students. This finding fits well to the results of
recent developmental studies on age-related changes in visual WM capacity using the continuous recall
paradigm [40–43]. These studies found reduced errors in recall over middle childhood development,
while they came up with mixed conclusions whether this performance improvement is due to increases
in WM precision [40,41] or reduced guessing behavior [42]. Developmental improvements in WM
resolution have been observed already in younger children (i.e., between four and six years old) in
experimental manipulations of the precision of colors within a color discrimination paradigm [44].
These as well as our findings support assumptions of the dynamic field theory which predicts that
neuronal interactions in visuospatial WM become more spatially precise over development, resulting
in more stable behavior (i.e., spatial precision hypothesis; [44,77]).

The observed grade differences in spatial precision performance may be associated with
differences between children in their fluid intelligence and their school achievement [37]. More
mature self-regulatory processes with increased age and level of education may also explain grade
differences [37,78]. Further, we observed strong associations between mean and variability of spatial
precision and fluid intelligence as well as school achievement. In particular, children with higher
mean spatial precision and lower item-to-item variability showed higher fluid intelligence and higher
math and reading abilities. These findings support and extend previous results on WM in predicting
higher-level abilities such as learning and intelligence [11–14].

4.4. Future Perspectives and Limitations

The present study extends existing research in important ways by showing that children’s spatial
WM is not stable over time but substantially varies across days, occasions, trials and items. Specifically,
the item-to-item variability systematically changes with memory load and level of education, thereby
reflecting a new index of performance limitations in children’s everyday life. It is however important
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to note that, in contrast to previous research on the variability of WM precision [20,21], we worked
with a spatial WM updating task that is inherently different and more complex than the continuous
recall paradigm [19]. To mentally shift multiple locations held in WM may reflect different cognitive
functions than to briefly store visual features in WM, thus a direct comparison to previous cognitive
modeling research using the variable precision model is restricted. To further test the assumptions of
the variable precision model in children and their natural contexts, future studies could combine a
continuous recall paradigm and ambulatory assessment which would allow to estimate and to compare
variability at different time scales. In addition, it is important to note that with the current design we
cannot distinguish whether the observed grade- (and age-)related differences in WM performance
are due to effects of schooling, maturity, and/or other time-related variables. To fully understand
the development of distinct components of WM capacity and to which extent WM improvements
are driven by education versus maturation, further research is needed. As a future perspective,
longitudinal methods and a broader age range could help to clearly separate the variance of WM
components that is linked to these variables.

Moreover, whereas limits in attention reflect reasonable mechanisms of item-to-item variability
in spatial precision (e.g., [21,23]), we cannot test these assumptions within the current study. Further
work should focus on disentangling the mechanisms underlying variability of spatial precision and
thereby limitations in children’s updating performance. Variability in spatial precision from item to
item may result from early perceptual and attentional limitations during encoding but could also stem
from constraints in memorizing, mentally shifting, and/or retrieving information in WM. Thus, future
studies should examine the specific WM sub-processes and how their interaction affects variability in
spatial precision. For example, to better understand updating-related processes, one could measure
children’s estimates of remembered locations after each updating step by estimating spatial precision
and its variability across updates. Further, technical advances in combining ambulatory assessment
and neurocognitive methods such as mobile electroencephalography (EEG) (e.g., [79]) may reflect a
fruitful approach to relate neural correlates of WM sub-processes to children’s behavioral performance
in real-life contexts.

In addition to variability from item to item, spatial precision showed substantial fluctuations also
at slower time scales such as days and occasions within days. These fluctuations were independent
of memory load and school grade, suggesting a less detrimental effect of these more enduring
within-person changes for performance limitations. However, children considerably differed in
their amount of day-to-day or occasion-to-occasion variability and also in whether they showed an
increase, decrease or no change in these variabilities with load. To better understand these individual
differences, the relationships of spatial precision variability at slower time scales with other daily
varying constructs may shed light on some influential factors [37], such as sleep [38] or physical
activity [51].

The combination of ambulatory assessment and hierarchical modeling allowed us to provide
improved knowledge about short-term changes in children’s behavior in everyday life settings.
This may be specifically important for developmental and lifespan research, as cognitive development
is a dynamic process which is not constrained to laboratory settings [32,71]. Following these calls,
we were able to assess children’s WM performance at different time scales with high density of
observations in their natural contexts. Aside from these important aspects of ambulatory assessment,
there are methodological constraints, for example regarding the compliance with and reactivity to study
procedures during data collection [71]. Thus, an important future perspective is the improvement of
such aspects, for example, by implementing reward systems within intensive longitudinal designs to
enhance children’s study motivation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-3200/6/1/8/s1,
Table S1: Summary statistics of daily measures of spatial precision in updating, Table S2: Descriptive statistics of
spatial precision variance components at different time scales.
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