
Journal of

Low Power Electronics
and Applications

Article

Intra- and Inter-Server Smart Task Scheduling for
Profit and Energy Optimization of HPC Data Centers

Sayed Ashraf Mamun 1,*,† , Alexander Gilday 2,†, Amit Kumar Singh 3, Amlan Ganguly 1 ,
Geoff V. Merrett 4 , Xiaohang Wang 5 and Bashir M. Al-Hashimi 2

1 Department of Computer Engineering, Rochester Institute of Technology, New York, NY 14623,
USA; axgeec@rit.edu

2 Department of Electronics and Computer Science (ECS), University of Southampton, Southampton SO171BJ,
UK; adg1n17@soton.ac.uk (A.G.); bmah@ecs.soton.ac.uk (B.M.A.-H.)

3 School of Computer Science and Electronic Engineering (CSEE), University of Essex, Colchester CO43SQ,
UK; a.k.singh@essex.ac.uk

4 Department of Electronic and Software Systems, University of Southampton, Southampton SO171BJ,
UK; gvm@ecs.soton.ac.uk

5 School of Software Engineering, South China University of Technology, Guangzhou 510006, China;
baikeina@163.com

* Correspondence: sam7753@rit.edu
† These authors contributed equally to this work.

Received: 13 August 2020; Accepted: 29 September 2020; Published: 14 October 2020
����������
�������

Abstract: Servers in a data center are underutilized due to over-provisioning, which contributes
heavily toward the high-power consumption of the data centers. Recent research in optimizing
the energy consumption of High Performance Computing (HPC) data centers mostly focuses on
consolidation of Virtual Machines (VMs) and using dynamic voltage and frequency scaling (DVFS).
These approaches are inherently hardware-based, are frequently unique to individual systems,
and often use simulation due to lack of access to HPC data centers. Other approaches require
profiling information on the jobs in the HPC system to be available before run-time. In this paper,
we propose a reinforcement learning based approach, which jointly optimizes profit and energy in the
allocation of jobs to available resources, without the need for such prior information. The approach is
implemented in a software scheduler used to allocate real applications from the Princeton Application
Repository for Shared-Memory Computers (PARSEC) benchmark suite to a number of hardware
nodes realized with Odroid-XU3 boards. Experiments show that the proposed approach increases the
profit earned by 40% while simultaneously reducing energy consumption by 20% when compared
to a heuristic-based approach. We also present a network-aware server consolidation algorithm
called Bandwidth-Constrained Consolidation (BCC), for HPC data centers which can address the
under-utilization problem of the servers. Our experiments show that the BCC consolidation technique
can reduce the power consumption of a data center by up-to 37%.

Keywords: high performance computing; data centers; resource allocation; profit; energy consumption;
machine learning; reinforcement learning; server consolidation

1. Introduction

High Performance Computing (HPC) data centers typically contain a large number of computing
nodes each consisting of multiple processing cores. The size and performance of these systems
continue to increase which causes concerns to be raised over higher energy requirements [1–4].
Research estimates that data centers worldwide account for 1.1–1.5% of global electricity use [5].
It is therefore important to take measure that reduce this energy consumption.

J. Low Power Electron. Appl. 2020, 10, 32; doi:10.3390/jlpea10040032 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-0639-8801
https://orcid.org/0000-0002-3616-7596
https://orcid.org/0000-0003-4980-3894
http://www.mdpi.com/2079-9268/10/4/32?type=check_update&version=1
http://dx.doi.org/10.3390/jlpea10040032
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2020, 10, 32 2 of 28

Different techniques have been proposed in the literature to improve the energy efficiency of the
data center. Dynamic Power Management (DPM) and Dynamic Voltage Frequency Scaling (DVFS) are
popular techniques to reduce the power consumption of under-utilized resources. Consolidation of
virtual machines (VMs) running in different servers into fewer servers to enable aggressive DPM or
DVFS has become a major focus area in the research community [6–13].

However, server-consolidation with the sole objective of power reduction can impact the
performance of the HPC data center negatively if the network is incapable of supporting the resultant
aggregated traffic patterns or hotspot scenarios [14]. Therefore, careful attention to the impact of
consolidation on network performance is necessary.

HPC data centers maintain queues of jobs which arrive periodically and must schedule these
jobs to be executed in order to produce a profit. It is common to assign values to jobs which imply
their level of importance compared to other jobs: higher value equates to higher importance [15].
Value is typically assigned based on expected profit earned from the completion of the job. In HPC
systems, the scheduling of jobs is influenced by their value; typically a resource management system
will attempt to maximize its profits by allocating its limited resources to the highest-value jobs in the
queue. This is especially true when jobs arrive at a rate higher than the rate at which the system can
process and execute them. Typically, the value obtained by completion of a job is time-dependent
which reflects the necessity to schedule as early as possible.

Existing approaches which optimize resource management use fast heuristics to very quickly find
practical allocations for the dynamically arriving jobs. The use of heuristics over more complicated
algorithms reduces overhead in the delay of allocations and also lowering the resource requirement of
the resource management system itself. Research has also been conducted which considers profiling
results from design-time testing to improve both the run-time computational complexity and the
quality of the heuristics [16,17]. While the results of these researches show significant improvement
over other approaches, the technique is only applicable in select situations due to the required accurate
information and assumption that there is little deviation in resources required by the jobs in the
system. The challenge to overcome these disadvantages is to design an algorithm that accounts for this
variation and builds up a full history of information about jobs in real-time instead of requiring the
information to exist already.

In an orthogonal direction, novel data center network (DCN) technologies, leveraging emerging
interconnection paradigms such as millimeter-wave (mmWave) interconnects have been proposed
to reduce the power consumption of the networking equipment [18,19]. Wireless data center
architectures have been proposed where Top-of-Rack (ToR) switches are interconnected with
mmWave links while the intra-rack communication is achieved through traditional Ethernet [20–23].
Alternatively, server-centric wireless DCNs where direct wireless links are used for server-to-server
communication have also been designed [24,25]. These wireless data center architectures can be
considered as viable alternate for traditional wired architecture for HPC computing for reducing even
more power consumption. Furthermore, designing adequate server consolidation techniques can
result in further power saving.

Contribution: This paper attempts to address this challenge by using ideas from reinforcement
learning techniques and designing a novel server consolidation technique. The resource management
system performs allocations that optimize both profit (value) and energy using a combination of
light-weight heuristics and historic run-time results. The system considers the scheduling problem
as a Multi-Armed Bandit (MAB) model where each individual job allocation is a possible action.
The approach uses a novel algorithm, inspired by the Upper-Confidence Bound technique [26],
collects profiling information at run-time (exploration) to optimize future allocations of jobs
(exploitation). We also propose a network-aware approach to server-consolidation called Bandwidth
Constrained Consolidation (BCC) and study its impact on a data center. While consolidating tasks
can reduce the power consumption of data centers, due to the arrival of new tasks and completion
of existing tasks, the consolidated utilization profile of the servers may change adversely affecting

J. Low Power Electron. Appl. 2020, 10, 32 3 of 28

the power consumption over time. Hence, the BCC consolidation algorithm should be repeated
periodically. Hence we also propose a method to find the optimal inter-consolidation time for a
data center and derive a mathematical formulation to estimate the optimal inter-consolidation time.
This will enable optimally scheduling consolidation in a data center without the need for extensive
simulations and measurements to achieve the optimality.

Paper Organization: Section 2 presents work related to this paper. Section 3 introduces the
problem, including the definition of a job and its value, the MAB model, and the model of HPC
systems. The novel, reinforcement learning-based approach is introduced in Section 3.4. In Section 4
we introduce the network aware server consolidation technique, traffic model, our proposed algorithm,
and mathematical model to estimate optimal inter-consolidation time. Experimental results are
presented in Sections 5 and 6 concludes the paper.

2. Related Work

It is proven that the use of market-inspired resource allocation heuristics provides promising
results in the common situation that HPC systems are overloaded with more jobs than they can
handle [27]. These heuristics use some implementation of a value for jobs, both fixed [28] and changing
over time [15]. Most of them choose the highest value job first, which might consume too many
resources, leaving limited resources for jobs arriving in the future. Therefore, resources required for
each job should be optimized.

Other heuristics exist such as value density (value divided by resource requirement) which
addresses the issue of the highest value job consuming too many resources [29–31]. This heuristic
instead will prefer jobs which are small and have reasonably high value over very large jobs with high
value. However, this heuristic, and others like it, do not consider energy consumption.

A number of reinforcement learning techniques were compared for scheduling tasks on large-scale
distributed systems [32]. In this comparison, energy efficiency was considered by attempting to
maximize CPU utilization. This intuitively increases energy efficiency by reducing the wasted energy
of having CPUs powered on but in an idle state. Similar reinforcement learning techniques are explored
for data centers [33]. However, these researches only considered the fulfillment of the service level
agreement (SLA) which provides a fixed value when jobs are completed before a specified deadline.
This research instead considers the common case where the value of a job changes gradually as a
function of time, known as a value-curve. In addition, the energy efficiency optimization does not
focus on the reduction of energy consumption directly.

A report identified that the use of profiling results in jointly optimizing the value and energy of a
job [17]. Further research also expanded the optimizations to monitoring and adapting the allocations
during tasks’ execution by migrating to a different set of resources [34]. Both approaches require
profiling of jobs at design-time, and the latter also requires the ability for jobs to pause execution
and resume on a different set of resources. In contrast, the bandit-based technique in this paper
attempts to similarly predict the value and energy of jobs without relying on the assumptions that
prior information is obtainable and migration of jobs is possible.

In a complementary direction, under-utilization of the servers in a data center has always
been observed mainly due to the over-provisioning for the peak demand hours [35]. In [6],
various formulations of the cost-aware application placement problem for servers were first introduced
without considering network performance. Similarly, in [7], a system was proposed that optimizes
power consumption, performance benefits, and transient costs incurred by server consolidation.
In [8] an efficient power-aware resource scheduling strategy was proposed that reduces data center
power consumption based on live VM migration. A framework for VM migration and placement was
proposed in [9] considering both the network topology and network traffic demands to minimize
energy consumption while satisfying as many network-demands as possible. In [10], energy-aware VM
placement was proposed where application dependencies were considered to reduce network energy
consumption. In [11], a network-aware VM consolidation scheme was proposed for solving combined

J. Low Power Electron. Appl. 2020, 10, 32 4 of 28

VM consolidation problems to conserve the energy of the data center. In [12], a heuristic to control
VM migration based on prioritizing VMs with steady capacity was proposed. In addition to server
consolidation, an opportunistic approach to reduce power consumption is proposed in [36]. From all
of these studies, it is clear that if an adequate consolidation algorithm can be designed, a significant
amount of power reduction can be possible for the HPC data centers.

Orthogonally, various designs have been proposed to address DCN design issues such as energy
consumption, cabling complexity, scalability, and over-subscription. One popular topology used today
in data center networks is a fat-tree topology. To address oversubscription and other issues in wired
DCNs many alternative DCN architectures have been proposed such as BCube, DCell, DOS, VL2,
and Helios [35,37]. However, these innovations still rely on copper or optical cables and do not mitigate
the challenges due to high power consumption, design, and maintenance of a DCN with physical
links. To alleviate the issues of DCNs with power-hungry switching fabrics and bundles of cables
wireless data centers with mm-wave inter-rack links are envisioned in [18,20,21]. Most of the recent
works on wireless data centers propose interconnecting entire racks of servers as units with 60 GHz
wireless links primarily in order to utilize the commodity Ethernet switching between servers inside
individual racks [18]. Phased antenna arrays or directional horn antennas are used to establish wireless
links between ToRs in the entire data center [21–23]. Line-of-Sight (LoS) communication paths are
necessary between the antennas for reliable communication in a wireless data center [21]. In [25] a
novel wireless DCN architecture, based on 60 GHz wireless links between the individual servers of
namely, S2S-WiDCN was proposed which drastically reduces the power consumption of the network
portion of the data center while sustaining comparable performance. Hence, adopting an adequate
wireless architecture for the HPC environment can result in significant power saving.

3. System and Problem Definition for Scheduling Problem

Figure 1 shows a simplified model of a typical HPC data center. Users submit their jobs to the
data center which stores them in some data structure such as a queue until they can be allocated.
Attempted allocations usually occur upon a change in the system, such as new jobs arriving or current
allocations finishing which frees resources.

Figure 1. The model of the system targeted by this paper. A High Performance Computing (HPC) data
center containing multiple nodes with many-core CPUs.

J. Low Power Electron. Appl. 2020, 10, 32 5 of 28

3.1. HPC System

The HPC Data Center (HDC) consists of a resource management system (RMS) connected
to a number of different nodes (N0, N1, ..., Ni) each containing a set of processing cores
(Core0, Core1, ..., Corem). Each node represents a physical server in the data center being considered.
The processing cores are homogeneous and communicate with each other via an interconnect. The RMS
operates on its own set of resources and assigns arrived jobs to a set of cores within a single node.
A single job is considered to use resources of a single node to avoid communication overhead between
nodes. Further, to avoid migration overhead, it is assumed that jobs cannot be paused or migrated to a
different set of resources during execution.

The HPC system is created in hardware as three Odroid-XU3 boards connected in a local area
network (LAN). The CPU in these boards, Samsung Exynos5422, is powered by Arm® big.LITTLE™
architecture: four Cortex®-A15 cores at 2.0 GHz and four Cortex®-A7 cores at 1.4 GHz. As our
model requires homogeneous cores in the nodes, only the A15 cores are used for job allocation.
This conveniently allows the proposed RMS to execute solely on the A7 cores of one board instead of
requiring separate hardware for its own set of resources. This represents a many HPC system with
three nodes and many HPC systems are realized in the same way, where one node (server) or a set
of cores act as the manager and other nodes (servers) are used to execute jobs after allocation [34].
Without the loss of generality and having better and more hardware availability, a large HPC system
can be realized.

3.2. Jobs and Value Curves

Each job j is modeled as an tuple J = (T; A), where T is the arrival time of the job and A is the
application to be executed in order to complete the job. Each job j also has its own value curve function
VCj which converts a completion time of its execution to the value of the job to its user. These functions
are typically monotonically-decreasing until reaching zero at a certain threshold of time, as shown in
Figure 2. It is assumed that the value curves are pre-designed for each job and accurately reflect the
economic importance to the user as the economic model is out of the scope of this paper.

The PARSEC benchmark suite was used as the set of applications to queue in the system. This is
because the benchmark applications were designed to have a range of multi-threading and other
resource requirements. The focus on emerging workloads means the jobs are representative of
potential future workloads in all situations including but not exclusive to HPC systems. A number of
applications from the suite were selected and value-curves were designed for each application based
on testing the execution time across different numbers of cores. In particular, we considered PARSEC
applications listed in Table 1. The table also represents the value-curve for each application in terms
of execution time and the value achieved if job is executed by that time. The jobs are generated by
selecting a random application from this list and assigning an arrival time to it. Short and long periods
of no jobs arriving are created to realize periods of no users (such as nights and weekends); these allow
the scheduler to “catch-up” on remaining jobs in the queue.

Table 1. Value at different execution times for PARSEC benchmark applications.

Application Execution Time (s) Value (Currency)

blackscholes 4 6 9 12 100 80 50 0
bodytrack 6 8 11 14 100 80 50 0

dedup 5 7 9 12 100 80 50 0
facesim 8 15 18 22 100 80 50 0
ferret 22 26 29 31 100 80 50 0

fluidanimate 7 9 11 14 100 80 50 0
freqmine 9 15 17 20 100 80 50 0

streamcluster 22 28 35 42 100 80 50 0
vips 9 11 13 16 100 80 50 0

J. Low Power Electron. Appl. 2020, 10, 32 6 of 28

The value curves create a natural “soft deadline” which implies an ideal time for a job to
finish, but also that violation of the deadline does not mean the job completion was irrelevant [38].
Instead, the value of the job is reduced depending on the extra time the user has had to wait for
completion [15,39]. Major violations of the deadline will create no value for the user and therefore the
energy consumed by the computation was wasted.

0

20

40

60

80

100

0 10 20 30 40 50

V
al

u
e

(c
u

rr
e

n
cy

)

Time (seconds)

Figure 2. An example value curve of a job.

3.3. Problem Definition

The problem addressed by the paper is the allocation of jobs to a finite set of resources such that
value obtained from completion of the jobs is maximized while energy consumption is minimized
simultaneously. The problem is defined as follows:

• Input: Job queue (j1, ..., jn), Value curve for each job VCj, Nodes within the HPC data
center (N0, ..., Ni).

• Constraints: Restricted available cores on the nodes in HDC.
• Objective: Jointly optimize overall value Valtotal and energy consumption Etotal , by maximizing

the quotient Valtotal/Etotal .

The RMS needs to make very fast decisions on which node to allocate a job and which cores
within that node should do the computation. It is assumed that any one job requires a minimum of
one core and individual cores are never shared between multiple jobs.

3.4. Proposed Approach Based on Reinforcement Learning

This section describes the proposed approach. It first outlines the Adapted Multi-Armed
Bandit (AMAB) model and discusses the assumptions and constraints of using such a model.
Finally, the algorithm is described and explained in detail.

3.4.1. Adapted Multi-Armed Bandit Model

The MAB is a common model in reinforcement learning [40]. The model is of a game played in
rounds from time t = 1, ..., T. At each round, the player must select a single action from a known
set of actions at ∈ A. The environment then generates a reward rt ∼ Rat where Rat is an unknown
probability distribution. The goal of the game is to maximize the cumulative reward ∑T

t=1 rt by
selecting actions which are likely to give high rewards. Due to the unknown nature of the reward
distributions, players are required to first “explore” the possible actions to figure out the distributions
before they can “exploit” the actions with the highest average probability.

For this paper, the problem is modeled as an adaptation of the MAB (AMAB) model. The possible
actions are the different possible allocations of single jobs currently in the RMS queue, i.e., for each
job there exists an action for each possible number of cores available for it to be allocated to.

J. Low Power Electron. Appl. 2020, 10, 32 7 of 28

There may be multiple jobs of the same type in the queue which will create duplicate allocation
possibilities, however, they will likely have different schedule delays. The rounds are the allocation
stages, which occur at every change in the job queue or available resources. Therefore, the time step
between each round varies significantly. The rewards are Valj/Energyj for each job after computation
is complete.

The MAB model does not perfectly fit the described problem due to a number of assumptions:
rounds are at discrete time steps, every action is available at every round, exactly one action is selected
per round, and rewards are received instantly after selecting an action. As such, the problem model
differs in the following ways: only a subset of all possible actions are available per round, multiple or
no actions may be selected per round, and rewards at the start of some round in the future after
selecting an action. To fit the model, this paper considers the use of the Upper Confidence Bound
(UCB) algorithm [41], which is described in the next subsection.

3.4.2. Upper Confidence Bound Algorithm

The premise of the UCB algorithm is to model the uncertainty of information gathered through
experimentation, allowing for exploitation to occur naturally as uncertainty is reduced. The UCB
algorithm records the average rewards received for each action r̂i alongside the number of times that
action was chosen Ci. It uses this count of previous rewards to calculate the uncertainty of the recorded
average. This uncertainty and the average are combined to give a largest possible estimate for the
actual mean of the reward distribution.

µ̂i = r̂i +

√
2 log(1

δ)

Ci
(1)

where δ is a confidence value which is usually chosen or search for via parameter optimization. If the
value is very small then the result is optimistic of a higher possible mean, while a high value implies
less optimism. Possible values for δ are explored in experimentation. The algorithm simply chooses
the action with the maximum µ̂i as it is predicted to be the action with the best average rewards.
As actions are repeated, the uncertainty represented by the second part of Equation (1) decreases due
to the increased Ci. However, the equation relies on Ci 6= 0. Due to this requirement, the algorithm
must first attempt each action at least once before estimating the means. Usually, implementations of
UCB will spend the first k rounds, where k = |A|, selecting each action in turn. This gives an initial
estimate for the average reward, though with a high uncertainty.

The final selection rule for UCB is as follows.

at =

arg max
i

µ̂i , if t > k ;

t , otherwise .
(2)

However, UCB makes various assumptions which do not fit our adapted model, such as that
the rewards are in the interval [0, 1]. The next section describes these assumptions and the required
adaptations to be compatible with our HPC system.

J. Low Power Electron. Appl. 2020, 10, 32 8 of 28

3.4.3. Proposed Algorithm for Confidence-Based Approach

For the purpose of this paper, the algorithm created will be referred to as the Confidence-Based
Approach (CBA) from its UCB inspiration. The CBA algorithm features a similar selection rule to UCB,
however, it is modified to accommodate the new assumptions. The first modification is the selection:
as every action is not available on every round, it cannot guarantee exploration of action t for t ≤ k. Instead,
it always attempts to find the maximum possible mean from the available actions. When an action i with
Ci = 0 is encountered, the algorithm overrides the search for the maximum possible mean and instead
allocates according to the job and number of cores of that action. This ensures full exploration of all possible
actions that are encountered by the scheduler as soon as they are encountered.

The rewards from each action i are not guaranteed to be in the interval [0, 1] either, as they are
dependent on the user-specified value curve and the energy consumed by the system. This means
that Equation (1) is not an accurate representation of the highest possible mean of an action.
However, knowing the typical interval for the rewards can be used to scale the uncertainty part
of the equation up to somewhat compensate for the difference. This can be done relatively easily using
the specifications for the processing cores to obtain expected power and adding constraints to the
maximum of the user specified value-curves. For our jobs, described in Section 3.2, typical reward
values (>75%) were in the range [0, 5] so we use a scaling multiplier of 5.

The reward, value divided by energy, is not strictly dependent on the job and number of allocated
cores. Instead, it is derived from the sum of the computation time of the job, which is directly
dependent on the allocation, and also the delay in scheduling of the job (time spent in the queue
waiting). Due to this, the algorithm does not record the average reward from allocations but instead
records the average computation time t̂i and energy êi. During the scheduling process, it combines this
average computation time with the current schedule delay of the job to estimate the expected average
value for the current moment in time. The average energy consumed is not affected by schedule delay
so is used directly to calculate the expected reward.

The final scheduler is shown in Algorithm 1. The loop on line 1 of Algorithm 1 is the initialization
of the data required to estimate the average rewards. The full list of possible allocations is the list of
every combination of the type of job and number of cores, i.e., for each job there is an entry for every
number of cores between its maximum number of cores and 1. Lines 7–31 show the allocation “rounds”
in the bandit algorithm. First, all finished jobs are accounted for with appropriate updates of resources
and historical data, then newly arrived jobs are added to the queue, and finally, the algorithm attempts
to allocate jobs to newly freed resources if possible. The selection rule is on line 24 and is nearly identical
to the rule described in Equation (2). Possible values for δ are explored during experimentation.

The Odroid boards used for the experiment support monitoring the energy consumption of the
quad-core Cortex®-A15. The power sensor can only detect the energy consumed by the entire processor
and not the individual cores. This means that it is impossible to get an accurate recording of energy
use for a single job using less than four cores. Instead, the energy recorded over the duration of a
job is simply an estimate and will vary based on other jobs running simultaneously on the nodes.
Therefore, most jobs will have their energy consumption over-estimated and the reward Valj/Energyj
will be underestimated. Experimentation for different levels of confidence using the δ parameter can
give insight into how the variation in energy consumption estimates affects the learning algorithm.
Energytotal for the full system can be still be recorded accurately for comparison.

J. Low Power Electron. Appl. 2020, 10, 32 9 of 28

Algorithm 1: CBA Resource Allocation.

J. Low Power Electron. Appl. 2020, xx, 5 8 of 27

of the equation up to somewhat compensate for the difference. This can be done relatively easily using
the specifications for the processing cores to obtain expected power and adding constraints to the
maximum of the user specified value-curves. For our jobs, described in Section 3.2, typical reward
values (>75%) were in the range [0, 5] so we use a scaling multiplier of 5.

The reward, value divided by energy, is not strictly dependent on the job and number of allocated
cores. Instead, it is derived from the sum of the computation time of the job, which is directly
dependent on the allocation, and also the delay in scheduling of the job (time spent in the queue
waiting). Due to this, the algorithm does not record the average reward from allocations but instead
records the average computation time t̂i and energy êi. During the scheduling process, it combines this
average computation time with the current schedule delay of the job to estimate the expected average
value for the current moment in time. The average energy consumed is not affected by schedule delay
so is used directly to calculate the expected reward.

Algorithm 1: CBA resource allocation
Input: Incoming Jobs, HPC Data Center HDC.
Output: Resource Allocation for Incoming Jobs.

1 for i in possible single allocations do

2 end
3 t̂i ⇐ 0;
4 êi ⇐ 0;
5 Ci ⇐ 0;
6 while 1 do
7 if any running_job(s) have finished or job(s) arrive then
8 Update data center resources;
9 Update t̂i, êi and Ci for all jobs finished;

10 Update jobQueue;
11 while Any possible allocations do
12 selectedAllocation⇐ null;
13 maxU ⇐ 0;
14 for j in jobQueue do
15 for c = maxAvailableCores to 1 do
16 i⇐ allocation(j, c);
17 if Ci = 0 then
18 selectedAllocation⇐ i;
19 go to 31;
20 end
21 curDelay⇐ curTime− j.arrivalTime;
22 v̂i ⇐ j.getValueAtTime(curDelay + t̂i);
23 r̂i ⇐ v̂i

êi
;

24 u⇐ r̂i + 5

√
2 log (1

δ)
Ci

;

25 if u > maxU then
26 selectedAllocation⇐ i;
27 maxU ⇐ u;
28 end
29 end
30 end
31 Allocate job according to selectedAllocation;
32 Update data center resources;
33 end
34 end
35 end

4. System and Problem Definition for Network Aware Server Consolidation

To augment the efficient scheduling algorithm discussed above, we propose a server consolidation
algorithm which will ensure optimal resource utilization under the performance constraints of the
data center network.

4.1. Network Aware Server Consolidation

Server consolidation is a process where VMs running in one server are relocated to one or more
different servers. However, as discussed earlier we propose a network-aware consolidation approach
which takes into account the traffic interaction between the VMs running on the servers. In order for
the VM migration approach to be network or traffic-aware, we first need to understand the nature of
traffic interaction over the data center network.

J. Low Power Electron. Appl. 2020, 10, 32 10 of 28

4.2. Traffic Pattern Model

The traffic pattern in a data center network can be modeled in terms of multiple parameters
such as flow arrival rates, flow injection rates, flow sizes, flow completion time and proportion of
inter-rack and intra-rack flows [42]. In [25] a novel wireless DCN architecture, based on 60 GHz
wireless links between the individual servers of namely, S2S-WiDCN was proposed which drastically
reduces the power consumption of the network portion of the data center while sustaining comparable
performance. The proposed network aware server consolidation can be adopted for S2S-WiDCN or
conventional wired fat-tree data center networks. In the S2S-WiDCN, there are six separate directional
antenna arrays in the vertical plane of the server, and another one array on the top of the server.
Therefore, seven simultaneous links from a server can co-exist at the same time. We represent the
number of possible simultaneous links per server as θ. Let F be a vector whose elements are the
number of existing flows along each sector determined from the number of flows existing in each
server based on their destinations and the routing protocol. Let f denote the traffic flow rate. It is to be
noted, that the flow rate f , has a Gaussian distribution [42,43]. Therefore, to support 99.86% (one-sided
z-distribution) of the flow rates, the required channel throughput should be

r = fµ+3σF, (3)

where elements of the vector r, are the required channel throughput in each of the sectors and fµ+3σ is
the value of the flow rate which is three standard deviations higher than the mean. For the S2S-WiDCN,
to accommodate multiple channel access, a single 60 GHz IEEE802.11ad link is subdivided into nOFDM
number of separate OFDM channels. Therefore, the bandwidth of each OFDM channel is given by,

BW = B60GHZ/nOFDM, (4)

where B60GHZ is the bandwidth of the single physical channel. For a wired network, BW would be
equal to the bandwidth of the connected wire link. Therefore, to reduce the adverse effect of server
consolidation on network performance, the following inequality must be satisfied for all wireless links
or sectors from each server in the S2S-WiDCN,

rx < BW ∀ x (5)

where rx is an element of r. If the inequality in (5) cannot be satisfied due to high flow rates,
consolidation will result in worsening of data center network performance as discussed in the results.

Moreover, it has been observed from the measurement of a variety of data centers in [43], a large
proportion of the server-to-server traffic flows, up to 80%, are intra-rack, meaning between servers in
the same rack. Only a small remaining proportion of about 20% is inter-rack, or between servers in
different racks. Therefore, to reduce the effective load on the network while consolidation, VMs that
communicate more often should be migrated into the same physical server. Hence, in addition to
reducing server underutilization, co-location of highly communicating VMs is also a desirable goal as
it will reduce both power consumption and network traffic. This way, in our consolidation algorithm,
we considered both the inequality of (5) and the proportion of inter and intra-rack traffic to make it
network-aware.

4.3. The Network-Aware Consolidation Algorithm

The primary goal for consolidation is to reduce the total power consumption by reducing the
number of active servers as well as network utilization. The underlying assumption is that the
computational requirement for every VM running in the HPC data center and the injection rates of
every flow from each VM is known and readily available. In a single server, multiple VMs can run at a
single instance. However, during the server consolidation, we considered all the VMs running as a
single entity, meaning if migration is possible, all the VMs running on the server would be migrated

J. Low Power Electron. Appl. 2020, 10, 32 11 of 28

to the new physical server for consolidation. The migrations happen in online mode following live
migration [10]. While this will reduce the granularity of the consolidation, it is a more scalable approach
suitable for large data centers with thousands of servers. Moreover, the task-level granularity for
a network-aware consolidation requires the knowledge of traffic flow per task, which is difficult to
model, predict, or access in large data centers. Data center traffic rates are modeled usually among
entire servers [42] limiting us to design consolidation algorithms at a server-level granularity.

We assume that every server has the same computational capacity and VMs running on a server
utilizes a variable percent, collectively which can be represented by u. Let us assume that the maximum
permissible utilization, without any significant degradation in performance or violation of legal
contracts of any server, is Du. Du is a manufacturer specified parameter and can vary from model to
model. The pseudo-code for implementing the BCC is shown in Algorithm 2. At first, all the servers
running in the data center are divided into smaller clusters, such that servers within a cluster have a
large number of flows exchanged among themselves, whereas servers in different clusters have a much
smaller number of flows exchanged among them. Such a clustering places highly communicating
servers in the same cluster. This intra-cluster consolidation reduces the communication among these
highly communicating servers. This clustering is a Graph Partitioning Problem, which is to partition
graph vertices into disjoint groups with minimum edge cut cost. The Kernighan–Lin algorithm [44]
is adopted for the graph-partitioning tasks in our work. Here we treat servers as vertices and the
number of flows going outside of the server as edge costs. After the partitioning, all the servers in
each cluster are sorted according to their utilization u. The outer loop (line 5 in Algorithm 2) in the
proposed algorithm chooses the candidate to migrate in the ascending order of utilization starting with
the least utilized one. The inner loop (line 6 in Algorithm 2) chooses the destination to migrate in the
descending order of utilization starting with the most utilized one. If the sum of the utilization of the
candidates to migrate and the potential destination is less than Du and each element of the vector sum
of their required injection rates is less than the channel throughput per OFDM channel, the candidate
is migrated to the destination. This flow rate related condition for migration is informed by our traffic
model related constraint in (5). After a successful migration, the inner loop is broken out of, to choose
the next server in the outer loop for potential migration. If either of the two conditions fails, the inner
loop continues till the list of servers for the potential destination is exhausted. For each completion of
the inner loop, the outer loop progresses to the next candidate for migration.

Algorithm 2: Algorithm for Bandwidth-Constrained Consolidation (BCC).

The necessary steps of the migration function (Migrate) used in the pseudo-code of BCC
Algorithm 2 are shown in Algorithm 3. The function migrates server a to server b. At first, all the
VMs running in migrating server a is migrated in the destination server b. So the utilization of the
destination server increases which is the summation of the utilization of both the servers. Vector rb
is updated based on all the flows running on server b post migration. After successful migration,

J. Low Power Electron. Appl. 2020, 10, 32 12 of 28

server a is put into the PowerNap state [45] having zero utilization. In the PowerNap state, most of the
components of the server are powered down except the network interface card (NIC), the wireless
transceivers, and a small portion of the CPU to get the signal for waking up when required.

Algorithm 3: Migration Function.

4.4. Complexity Analysis

Optimizing the performance of the scheduler in the data center has been a major research focus
area for the last few years [46]. The calculation for the consolidation algorithm operations take place
on the scheduler. The complexity of server consolidation over the entire data center to provide the
optimal solution using exhaustive search method is O(NN) where N is the total number of servers
in the entire data center. This is because N set of VMs can be potential candidates for migration to
N servers in N ways. Therefore, each of N set of VMs has N options for potential migrations and
for each of the N such scenarios the other sets of VMs also have all N options to create each possible
migration scenario. However, this complexity is too high even for moderately large data centers.
Therefore, we compare our proposed BCC consolidation algorithm with the Clustered Exhaustive
Search (CES) algorithm, which finds the optimal migration within each cluster using the exhaustive
search. We have adopted the Kernighan–Lin algorithm to do the clustering in the beginning of the BCC
consolidation. If all the servers are equiprobable to have links between themselves, the computational
complexity becomes O(N2 log N) [44]. If the average number of servers in a cluster is n and if the
number of the clusters formed is m, the computational complexity of the CES algorithm after clustering
is O(mnn) and is an np-hard problem. With the clustering, the complexity of the CES algorithm is
O(N2 log N + nnm). On the contrary, for the BCC algorithm, inside each cluster, the servers are sorted
according to their utilization having a complexity of O(n log n) using merge sort [47]. Next, the two
loops for finding the source and destination of the migration has the complexity of O(n2) in the worst
case. So the overall complexity of BCC for all m clusters becomes O(N2 log N + mn log n + mn2).
Therefore, BCC has a much lower complexity compared to the overall exhaustive search algorithm.
As the clustering is similar in both CES and BCC, the difference in their complexity comes from
the mechanism of determining candidates for migration. The complexity of BCC after clustering is
O(mn log n + mn2) ≈ O(mn2) which, is lower than that of the CES after clustering.

4.5. Optimizing the Inter-Consolidation Time

Due to the arrival of new tasks and the completion of existing tasks, the consolidated utilization
profile of the servers may change over time. Therefore, the power consumption of the HPC data center
may be adversely affected over time. Hence, the BCC consolidation algorithm should be repeated
periodically. Repeating the consolidation too often might not reduce the total power consumption
enough to justify the additional network traffic introduced as a result of the consolidation. On the
contrary, delaying the consolidation can adversely affect the potential opportunity to save power.
Hence, to determine the optimal time interval between two consecutive consolidations, an appropriate

J. Low Power Electron. Appl. 2020, 10, 32 13 of 28

cost function, to capture the trade-off between power savings and network traffic is required. We define
the expected value of the time-dependent cost function C(t) for inter consolidation time interval as

C(t) = κE[A(t)]− E[B(t)], (6)

where A(t) is migration cost related to the network traffic which represents the total traffic movement
for the consolidation operation, B(t) is the total power saving due to the consolidation, t represents
the time interval between two consecutive consolidation operation, and κ is a scaling constant which
captures the relative significance of network traffic and power savings. E[·] represents the expected
value and is necessary as random task arrivals and completion make A(t) and B(t) random processes.
At the optimal inter-consolidation time interval of t∗, the cost C(t) should have the minimum value,
that is,

t∗ = argmin
t∈R

C(t) (7)

Figure 3 represents the timeline for the consolidation operation which shows two consecutive
consolidation operations. u denotes the utilization profile of all the servers in the HPC data center,
where u = [u1, u2, ..., uN]

T ∈ RN
+ if N is the total number of servers in the data center. At time t0,

when the utilization profile is u0, first consolidation operation takes place, and immediately after
the consolidation, at time t1, the utilization profile of the servers becomes u1. After t seconds at t2

the utilization profile of the servers becomes u2 and a second consolidation is carried out which is
completed at t3 with a final utilization profile of u3. Hence, it can be written that, u1 = Γ (u0) and
u3 = Γ (u2), where Γ represents the consolidation operation. Furthermore, it holds that,

u2 = u1 + δt, (8)

where [δ]i is the task increase rate. A(t) is directly related to the amount of traffic transferred through
the network for the migration. If the average size of traffic per migration is ν, then A(t) can be
represented by,

A(t) = ν
(
‖u1 + δt‖0 − ‖Γ(u1 + δt)‖0

)
, (9)

where ‖·‖0 represents the `0-norm and returns the number of non-zero entries of its vector argument
that is the total number of active servers. Therefore the difference between the `0-norms capture the
total number of VMs migrating as a result of the consolidation.

Let, η0, η1, η2(t), and η3(t) represent the number of idle servers at time t0, t1, t2, and t3,
respectively, where

η0 = N − ‖u0‖0,

η1 = N − ‖Γ(u0)‖0,

η2(t) = N − ‖u1 + δt‖0,

η3(t) = N − ‖Γ(u1 + δt)‖0,

(10)

and N is the total number of servers in the data center. Hence, from (9) and (10), the expected value of
A(t) can be expressed as

E[A(t)] = ν
(
η3(t)− η2(t)

)
. (11)

If the aggregate load running across the data center remains approximately constant between two
consolidations, the expected number of idle servers after any consolidation operation will be similar,
i.e., η1 ≈ η3(t) and does not depend on t. This assumption especially is valid when the granularity of
the tasks are small compared to the capacity of an individual server. Hence, the expected value of A(t)
can be written as

E[A(t)] = ν
(
η1 − η2(t)

)
. (12)

J. Low Power Electron. Appl. 2020, 10, 32 14 of 28

Time

Utilization profile: u0 u2u1 u3

F
ir

st
 c

o
n

so
li

d
at

io
n

o
p
er

at
io

n

S
ec

o
n
d

 c
o

n
so

li
d
at

io
n

o
p
er

at
io

n

t

t0 t2t1 t3Time:

Figure 3. Timeline of consolidation operations.

On the other hand, the expected value of B(t) can be estimated as

E[B(t)] =Pidleη2(t) + P · ‖u1‖1 + (N − η2(t))P0 − Pidleη1 − P · ‖u2‖1 − (N − η1)P0. (13)

Here, Pidle is the power consumption per server in the PowerNap mode and P0 represents the
power consumption per server just after waking up from the PowerNap mode. P is the slope of
the linear regime of the power profile of the server as discussed in Section 5.2.2. ‖·‖1 represents the
`1-norm and returns the sum of the utilization of all the active servers.

As the aggregate load across the data center is approximately constant over time, the total
utilization of all active servers is approximately constant. Moreover, as the power consumption of the
active servers is almost a linear function, it can be estimated that, ‖u1‖1 ≈ ‖u2‖1 Hence, Equation (13)
can be rewritten as

E[B] = Pidle
(
η2(t)− η1

)
− P0

(
η2(t)− η1

)

=
(
η2(t)− η1

)(
Pidle − P0

)

=
(
η2(t)− η1

)
K (14)

Here K = Pidle − P0 is a constant with respect to t. Combining Equations (6), (12) and (14),
the estimated cost of the consolidation after time interval t can be found to be

C(t) = κν
(
η1 − η2(t)

)
− K

(
η2(t)− η1

)

=
(
η1 − η2(t)

)
(κν + K)

=
(
η1 − η2(t)

)
K′ (15)

where K′ = (κν + K) is a constant with respect to t. Thus to estimate t that minimizes the cost,
we have to find the t that minimizes η2(t), though η2(t) is not known. Below we present a model for
approximate η2(t).

To approximate η2(t), we consider that the servers follow the model of M/M/1 queuing processes [48],
where λ and µ represent the new task arrival rate and task finishing rate per server, respectively. Hence,
if a server initially has a utilization i, then t seconds later it will have utilization k, with the probability,

p(i)k (t) =e−(λ+µ)t
[
ρ

k−i
2 Ik−i(at) + ρ

k−i−1
2 Ik+i+1(at) + (1− ρ)ρk

∞

∑
j=k+i+2

ρ−j/2 Ij(at)
]
, (16)

where ρ = λ
µ , a = 2

√
λµ and Ik =

∞
∑

m=0

(−1)m

m!Γ(m+k+1)

(x
2
)2m+k represents the modified Bessel function

of the first kind of k-th order [48]. This model is valid only for λ < µ, which is essentially true for
sustenance of data centers of interest.

J. Low Power Electron. Appl. 2020, 10, 32 15 of 28

The probability that a node becomes idle at time t can be found from (16) by replacing k with zero.
Hence the probability of a node becoming idle can be expressed as

p(i)0 (t) = e−(λ+µ)t
[
ρ−

i
2 I−i(at) + ρ

−i−1
2 Ii+1(at) + (1− ρ)

∞

∑
j=i+2

ρ−j/2 Ij(at)
]
. (17)

Hence, the expected number of the idle nodes at t2 = t1 + t can be expressed as,

ηmodel
2 (t) =

N

∑
l=0

∑
J⊆[N]

∏
n∈J

pi(n)
0 (t) ∏

m/∈J

(
1− pi(m)

0 (t)
)

(18)

where [N] = {1, 2, 3,, N} and J is all the possible realizations of l idle nodes. In view of (18) and
(15), the inter consolidation cost can be approximated as

Cmodel(t) =
(
η1 − ηmodel

2 (t)
)
K′

= η1K′ − K′
N

∑
l=0

∑
J⊆[N]

∏
n∈J

pi(n)
0 (t) ∏

m/∈J

(
1− pi(m)

0 (t)
)

. (19)

Cmodel(t) in (19), can be calculated for any t, since pi
0(t) is known for any t. Thus optimal

inter-consolidation time can be approximated by

t∗model = argmin
t∈G

Cmodel(t) = argmax
t∈G

ηmodel
2 (t), (20)

where G is a finite-length fixed-step grid in R. From this mathematical model, the optimal
inter-consolidation time can be estimated without the need for thousands of simulations involving
different random utilization profiles of servers. The accuracy of the mathematical model is verified
with a Monte-Carlo simulation in Section 5.2.4.

5. Experimental Results

In this section, we discuss and evaluate the performance and effectiveness of both CBA and BCC
algorithms. At first we discuss the results related to CBA, followed by the results related to BCC.
Then we discuss the effect of combining CBA and BCC algorithms.

5.1. Experimental Results for CBA Algorithm

Initial experimentation was required to find a good confidence value δ. These experiments used
a high arrival rate of jobs, though it is possible to repeat these experiments for other arrival rates if
desired. A few values were tested in the range [0.01, 0.95], however, the search for the optimal value
was purposely shallow. This was due to the possibility that the search is not possible for systems
implementing a similar approach in the future; instead, the experiments were designed to find a rough
approximation which was more generalized (i.e., how optimistic should similar algorithms be for best
results). The results of the parameter optimization are shown in Figure 4. The results of using different
δ values were compared to a baseline of δ = 1 which implied complete certainty in the recorded job
averages as log (1) = 0, so µ̂i = r̂i. The graph shows that a high confidence level (0.95) was the most
successful which implies there was little variation in the data and, therefore, the true mean was not
plausibly significantly higher than previous readings. However, experiments using δ ≤ 0.75 performed
worse than δ = 1 which shows that it was better to be slightly overconfident in previous results than
to be very optimistic in higher possible mean reward. Optimizing the parameter further is considered
a secondary objective to the problem addressed by this paper, as such further experimentation in this
area is recommended for systems with different assumptions which may affect reward distributions.

J. Low Power Electron. Appl. 2020, 10, 32 16 of 28

2.800
2.900
3.000
3.100
3.200
3.300
3.400
3.500
3.600
3.700
3.800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Va
lu
e
pe

r j
ou

le

δ

Figure 4. Value/energy for different confidence values.

To evaluate the scheduling algorithm in different situations, the arrival rate of jobs was adjusted
to realize larger periods of time with high/low activity compared to the small periods as described in
Section 3.2. The small periods of time realized as nights and weekends were kept the same length for
consistency; the scheduler must handle a higher number of jobs in the same amount of time. In total,
50 days and nights were simulated of which 14 days were weekends. In a single day, the number of
jobs which arrive depends on the arrival rate: 20 jobs arrived at the high rate, 12.5 jobs (on average)
arrived at the medium rate, and eight jobs arrived at the low rate. In these experiments, we considered
the Valtotal/Energytotal recordings of the previous experiments and also the percentage of jobs which
provided no value to the customer: either they finished computation after computation or are rejected
due to r̂i = 0.

5.1.1. Experimental Baselines

As discussed in Section 2, the approaches which considered the joint optimization of value
and energy required prior information collected at design-time of jobs [17,34]. Similar approaches
considered indirect energy optimization by minimizing CPU idle time [32] which was not a solution to
the problem addressed by this paper. We compared results of experiments using the CBA approach
to a simple heuristic approach. As no prior information was available, the heuristic used was the value
obtained by the job if completion was instantaneous, i.e., heuristic was a value optimizing approach [15,28].
This approach, further referred to as the Heuristic-Based Approach (HBA), was implemented by
replacing lines 22–24 with u⇐ j · getValueAtTime(curDelay) .

5.1.2. Profit and Energy Consumption Results at Varied Arrival Rates

Figure 5 displays the total value earned (profit) and the energy consumed by both HBA and
CBA at the different arrival rates. At the high arrival rate, jobs arrived very frequently while at the
low arrival rate the jobs arrived much less frequently. An interesting initial observation of the figure
is that the value earned by HBA decreased as the arrival rate increased while the value earned by
CBA increased instead. This was likely due to the poor estimation of value by the HBA algorithm:
high schedule delays of jobs which arrived earlier but were delayed in preference of other jobs may still
have lain at the peak of the value curves, earning less value when the computation time resulted in a
value much further down the curve than the heuristic can predict. For the CBA algorithm, the increased
arrival rate of jobs increased the total value as it had more options for allocation. It also tended to
execute more jobs simultaneously as jobs with a very low schedule delay were often allocated to far
fewer cores, likely due to significantly lower energy consumption compared to a relatively minor drop
in value.

At the low arrival rate, the value earned was slightly higher for CBA than HBA while the energy
consumed was slightly higher for the latter approach. However, this difference did not seem to be very
significant at <1% change in both cases. We believe that this change would be more significant for

J. Low Power Electron. Appl. 2020, 10, 32 17 of 28

experiments over a longer period of time for a number of reasons: the overhead of initial exploration
by CBA would be a smaller fraction of the total time and the algorithm would explore less frequently
as jobs were executed more times. This effect occurred at all arrival rates but was more prevalent at the
low arrival rate as the initial exploration took much more time.

0
2,000
4,000
6,000
8,000
10,000
12,000
14,000

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000

High Medium Low

En
er
gy
 c
on

su
m
pt
io
n
(J
)

Va
lu
e
(c
ur
re
nc
y)

Arrival rate

HBA Value CBA Value
HBA Energy CBA Energy

Figure 5. Value earned and energy consumed at different arrival rates.

In general, HBA resulted in higher profit and lower energy consumption when compared
to CBA. On an average, HBA optimized profit and energy consumption by 40% and 20%,
respectively, compared to CBA.

5.1.3. Percentage of Zero-Value Jobs

This metric is important as it relates to user satisfaction with the system: more jobs successfully
serviced implies more users serviced and therefore more satisfied users. Figure 6 shows the percentage
of zero-value jobs for both approaches at each of the different arrival rates. The average over each of
the different arrival rates is also shown. Note that the rejections of jobs were implicit in the maximum
reward check, they were not actually removed from the queue though it would be possible to add that
functionality. It can be observed that, for all arrival rates, CBA had a lower percentage of zero-value
jobs. This was less significant at the high and low arrival rates. For the high arrival rate, this was
due to such a large number of jobs arriving that it was impossible to service a large number of them
regardless of approach. For the low arrival rate, the difference was again likely due to the exploration
part of the algorithm. The initial exploration caused a number of early jobs to be executed after the
deadline while the algorithm learned the initial average reward for each possible allocation. The effect
of exploration based on uncertainty after initial exploration was unlikely to have much effect on the
number of jobs which give zero-value as this exploration favored jobs with reasonably high expected
value already. On average, CBA provided 5% more user satisfaction than that of HBA.

0.0%

20.0%

40.0%

60.0%

High Medium Low Average

Ze
ro
‐v
al
ue

 jo
bs
 (%

)

Arrival rate

HBA CBA

Figure 6. Percentage of zero-value jobs at various arrival rates.

J. Low Power Electron. Appl. 2020, 10, 32 18 of 28

5.1.4. Overhead Analysis

Computational complexity of CBA was no higher than the heuristic algorithm HBA. It did perform
slightly more mathematical operations per iteration, but it was the same number of iterations required.
The average time to find the allocation for a job by CBA was 0.12 milliseconds and the average energy
consumption for it was 0.3 millijoules, which was quite low.

Memory overhead of CBA as compared to HBA was negligibly higher as it stored only a few
extra numbers per job.

These overheads both in terms of timing and energy consumption were part of the overall profit
and energy consumption results, which were better by CBA over HBA. Next, we will discuss the
results related to BCC algorithm.

5.2. Experimental Results for BCC Algorithm

In this section, we discuss modeling, results and the corresponding analysis of the proposed server
consolidation method. We first estimate the power reduction from proposed BCC server consolidation
algorithm for both wired and wireless networks. Next, we evaluate the network-level performance
with the consolidation algorithm in an HPC data center with network-level simulations. Before
presenting and analyzing the results we describe the data center traffic generation procedure and
simulation platform in the next subsections.

5.2.1. Traffic Generation and Simulation Platform for BCC

The BCC algorithm was evaluated with a set of traffic flows based on application demands.
Real data center traffic for typical query/search type applications like map-reduce and index-search
were measured in [43]. Using these measured traffic flows, a Poisson shot-noise based model to
synthesize data center traffic was proposed and verified in [42]. According to [42], the new flow
arrival time, the flow duration and the injection rate for each application followed a Poisson, Pareto
and, Gaussian distribution respectively. The new flow arrival time was generated using a Poisson
distribution with an average flow arrival rate. The average flow arrival rate was considered to be
1000 flows/s for the small-sized DCN [43]. In our evaluations, we considered a Gaussian distribution
for the injection rate to have a mean of 8.0 Kbps as the base case for the simulation. Application flow
duration was generated following an independent Pareto distribution having a minimum duration
of 10 microseconds [43] and a mean of 1 s. We then increased the average injection rates on an
incremental basis to 8 Mbps, 100 Mbps, 400 Mbps, and 650 Mbps and regenerated new traffic
which represented different types of multimedia traffic and repeat the simulations. We used the
Network Simulator-3 (NS-3) suite [49] to evaluate the performance of BCC for both wired fat-tree and
wireless S2S-WiDCN networks. NS-3 supported the characteristics of wireless propagation as well as
network-level communications. This simulation platform was used to evaluate the S2S-WiDCN with
and without consolidation and compare it with the fat-tree wired DCN. For the fat-tree based wired
data center architecture, we considered 1.0 Gbps links between servers to access switches and 40.0
Gbps upper-layer links. For all the cases, the migration cost for consolidation is not included in the
performance analysis. We have compared the performance of the BCC consolidation algorithm for
S2S-WiDCN with traditional wired fat-tree based DCN. We considered a small data center consisting
of 800 servers arranged in a 20× 8 array of racks as [25]. Each of the racks housed five servers and
occupied an area of 0.6 m × 0.9 m and is 2 m high. There were 10 racks arranged in a single row and
two columns of 8 rows, totaling 160 racks. In our simulations, the racks were assumed to be without
any front or back door. In the traditional wired fat-tree based DCN, we considered the same number
of servers arranged in same layout as S2S-WiDCN. We considered three hierarchical network layers
consisting of 160 access, two aggregate, and two core layer switches, where each rack having an access
layer switch.

J. Low Power Electron. Appl. 2020, 10, 32 19 of 28

5.2.2. Power Consumption Analysis of BCC

Here we discuss the model and parameters used in power estimation followed by the results.
Power Model for BCC:
It was not a straightforward task to estimate the actual electrical power consumed by an HPC data

center. The power consumption depended on several internal factors such as utilization of computing
power, the cooling mechanism, and data center networks. Data center power consumption was also
affected by external parameters like the geographical location, weather, temperature, and humidity.
The total IT power consumption of a data center, PIT consisted of power consumption of the servers
(PServer) and network component (PNetwork) of the HPC data center. Hence,

PIT = PServers + PNetwork (21)

A major portion of PIT comes from PServers [50,51]. However, the power consumption of servers
varies significantly with the change in CPU utilization [45]. If the utilization of i-th server is denoted by
ui, the Power consumption of that server can be given by PServer(ui), where the dependence of server
power on utilization is adopted from [52]. Hence, Equation (21) can be rewritten as:

PIT =
N

∑
i=1

Pserver(ui) + Pnetwork (22)

For the power analysis, we used the power profile of Dell Inc. PowerEdge C5220 (Intel
Xeon E3-1265LV2) servers. Power consumption at different server utilization was modeled from
the measurement done by the Standard Performance Evaluation Corporation’s SPECpower_ssj2008
database for the same server [52]. In addition to the above power model for the server, we considered
an idle server to be placed in the PowerNap state [45] with minimal power consumption. The power
profile of a server against different utilization is shown in Figure 7. Although compared to the server
power, the power consumption of the network of an HPC data center was small, but it was not
negligible [50]. One of the issues with the networking equipment was that they needed to be turned
on all the time. The static power portion of the networking equipment dominated the total power
consumed by the network [53]. In [53], it was shown that for a network switch, only 8% power
reduced during full load to no load transition. Moreover, for the wired network, upper-level switches
experienced a similar amount of traffic before and after the consolidation as the majority of the flows
remained inside of the rack. For this reason, we neglected the change in networking power equipment
due to the variation in injection rate or throughput. We estimated power consumption for wired DCNs
using commercially available data from Cisco network switches [54] and Silicom network interface
cards (NIC) [55]. The power consumption of each device used in the network is shown in the Table 2.
The total network power is:

PNetwork = NCorePCore + NAggPAgg + NAccPAcc + NPNIC, (23)

where NCore, NAgg, NAcc, N are the number of cores, aggregation, access switches, and the total
number of servers, respectively; PCore, PAgg, PAcc, PNIC are the power consumption of an individual
core, aggregation, access switches, and network interface cards, respectively. In S2S-WiDCN, however,
no core, aggregate or access layer switches were needed, but only antennas, transceivers and NICs
were required for wireless communication. The power consumption of the wireless 60 GHz transceiver
was modeled based upon the assessment of 60 GHz transceivers [56]. The NICs of S2S-WiDCN were
equipped with transceivers for horizontal and vertical communication. In the traditional DCN, external
connections were established via the two Cisco 7702 switches. To provide equivalent connectivity
in S2S-WiDCN, we employed two servers to work as gateways, and their power consumption was

J. Low Power Electron. Appl. 2020, 10, 32 20 of 28

modeled as that of the Cisco 7702 switch. The power consumption for communication per server in
S2S-WiDCN was calculated as:

PWireless = 7P60GHzTran + PWi f iCntrl + PNIC, (24)

where P60GHzTran is the power consumption of a single 60 GHz transceiver required for each of the six
sectors and the horizontal link and PWi f iCntrl is the power consumption of the IEEE802.11 2.4/5 GHz
ISM adapter for the control channel. Finally, the total power consumption in S2S-WiDCN was:

PNetwork(WiDCN) = NCorePCore + N.PWireless. (25)

Table 2. Power consumption of different data center network (DCN) components.

Device Model Used in Power (W)

Access Layer Switch Cisco 9372 Fat-Tree 210.0
Aggregate Layer Switch Cisco 9508 Fat-Tree 2527.0

Core Layer Switch Cisco 7702 Fat-Tree, S2S-WiDCN 837.0
Network Interface Card Silicom PE2G2I35 Fat-Tree, S2S-WiDCN 2.64

60 GHz Transceiver Analog Device HMC 6300/6301 S2S-WiDCN 1.70
IEEE802.11 2.4/5 GHz Adapter D-link DWA-171 S2S-WiDCN 0.22

Comparative Analysis of Power Consumption for BCC:
The IT power consumption of wired and S2S-WiDCN data centers with different consolidation

methods including the BCC algorithm with variation in the flow injection rate are shown in Figure 8.
These power consumption are computed based on the power model described in the previous
sub-section for each of the simulation cases ran in the NS-3 simulator for different consolidation
algorithm. In [45], it is observed that the majority of the utilization factor of a server is within the
range of 20–30%. Here we adopted the utilization of the server capacity of each server without any
consolidation from [45]. Figure 8a represents the power consumption of the HPC data center with no
consolidation normal condition (NC) while Figure 8d represents BCC. The figure also contains the
power consumption pattern if Clustered Exhaustive Search (CES) algorithm was adopted instead of
BCC in Figure 8b. CES is a variant of the BCC algorithm, which finds the optimal migration within each
cluster using the exhaustive search, hence being much more computationally expensive. For the sake of
comparison, we also simulated a network-unaware greedy approach based consolidation (GRD) which
is a variant of NICE [11] and the power consumption pattern is shown in Figure 8c. For both wired and
wireless networks, at lower injection rates, all the consolidation techniques performed similarly and
resulted in significant power consumption reduction compared to NC, while CES consumed the least
power. BCC algorithm consumed only 2.83% more power than CES, whereas CES was significantly
more computationally complex than BCC because of exhaustive search as discussed in Section 4.4.
Hence during the consolidation operation, for moderate to large size of data centers, CES algorithm
became impractical to implement as it was not able to perform real-time operations, whereas the
BCC algorithm could. BCC algorithm for S2S-WiDCN reduced 37% power consumption compared to
the NC case.

For higher injection rates, CES and GRD consumed significantly less server power compared to
BCC for wired networks. This was because the CES and GRD did not consider the network bandwidth
constraints while consolidating, resulting in more aggressive consolidation that in the BCC. Therefore,
this difference became more apparent with increase in flow injection rates. However, this reduction
of power came at the cost of the lower throughput because the CES and GRD algorithms did not
consider the network traffic characteristics. This impact on performance will be discussed in detail in
Section 5.2.3. Moreover, the computational complexity of CES was orders of magnitude higher than
the BCC.

J. Low Power Electron. Appl. 2020, 10, 32 21 of 28

 (%)

Figure 7. Power profile with varying utilization of PowerEdge C5220 server [52].

For BCC consolidation in S2S-WiDCN, similar to the wired network, with the increase in flow
injection rate, the server power consumption increased, while for CES and GRD power consumption
remained the same. Hence, at higher injection rate, CES and GRD consumed less power compared
to BCC. However, this reduction of power came at the cost of lower throughput as CES and
GRD algorithms did not consider the network traffic characteristics while consolidating. However,
the increase in power consumption in BCC for S2S-WiDCN was not as drastic as in the case of
wired data center. This is demonstrated by the trend arrows in Figure 8d. This was because, in the
S2S-WiDCN architecture, a server had the potential to sustain a maximum of seven simultaneous links
at a time with other servers in its vertical plane and horizontal line. On the contrary, in the wired
architecture, there existed only one link per server albeit, of higher bandwidth. As a result, for the
wired DCN with BCC, many of the VM migration attempts failed due to the violation of the inequality
of (5) compared to the S2S-WiDCN. This suggested that the bandwidth constrained network-aware
consolidation, BCC, was more effective on S2S-WiDCN.

0

50

100

150

200

250

300

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

8

Kbps

8

Mbps

100

Mbps

400

Mbps

650

Mbps

P
o

w
er

 (
K

W
)

Average injection rate

Server Power Network Power

0

50

100

150

200

250

300

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

8

Kbps

8

Mbps

100

Mbps

400

Mbps

650

Mbps

P
o

w
er

 (
K

W
)

Average injection rate

0

50

100

150

200

250

300

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

8

Kbps

8

Mbps

100

Mbps

400

Mbps

650

Mbps

P
o

w
er

 (
K

W
)

Average injection rate

0

50

100

150

200

250

300

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

F
at

-t
re

e
D

C
N

S
2

S
-W

iD
C

N

8

Kbps

8

Mbps

100

Mbps

400

Mbps

650

Mbps

P
o

w
er

 (
K

W
)

Average injection rate

More

consolidation

Less

consolidation

(a) (b) (c) (d)

Figure 8. Power consumption comparison of different architecture for (a) no consolidation (NC) (b)
clustered exhaustive search (CES) (c) Greedy approach base consolidation (GRD) and (d) bandwidth
constrained consolidation (BCC). The arrows denote the power saving due to BCC.

5.2.3. Performance Analysis of BCC

Here we present the network-level performance of the S2S-WiDCN with BCC along with a
comparative analysis with respect to wired fat-tree DCNs in terms of throughput.

The throughput was defined as the average rate of bit transferred per second over the DCN.
The normalized throughput of both S2S-WiDCN and fat-tree architecture for different injection rates at
NC, CES, GRD and BCC consolidation are shown in Figure 9. Normalized throughput was defined as
the ratio of the average throughput achieved and average injection rate. For NC, although it was seen
that for lower injection rate both S2S-WiDCN and fat-tree network showed similar throughput, but for

J. Low Power Electron. Appl. 2020, 10, 32 22 of 28

both the networks, the achieved throughput started to decrease as the average injection rate went
beyond 100 Mbps. However, degradation was different for wired and wireless DCNs. The throughput
reduced more for the wireless DCN than the wired counterpart for higher injection rates due to the
lower physical bandwidth available per channel for the wireless links of 0.563 Gbps compared to
1.0 Gbps for the wires. Further, from Figure 9, it can be seen that, for the lower injection rates, there was
no significant difference in achieved throughput with BCC consolidation for both wired and wireless
data centers. These throughputs were also similar compared to that NC case. However, for higher
injection rates beyond 100 Mbps, for both S2S-WiDCN and fat-tree network, achieved throughput
increased compared to the NC. The main contributing factor was that, due to the VM migrations, in
many cases, both source and destination of flows ended up in the same physical server. Therefore, these
flows are effectively eliminated from the network, which ultimately increased the average throughput
of the entire network compared to NC. On the other hand, instead of BCC, if CES or GRD consolidation
was implemented, at lower injection rates, there was no significant difference in achieved throughput
for both S2S-WiDCN and fat-tree networks compared to BCC. For the higher injection rates beyond
100 Mbps, the performance of the wireless networks improved compared to NC, but not as well as
BCC. However, the performance of the wired network degraded with the incorporation of CES or
GRD consolidation algorithm. This contrasting behavior was mainly due to the number of channels
available in different architectures. Due to all flows in the wired data center being channelized over the
same link, the aggregate flow rate after CES or GED exceeded the physical link bandwidth violating (5).
This caused degradation in throughput. On the contrary, in the S2S-WiDCN, due to the presence of
multiple vertical sectors and the horizontal link a relatively larger number of flows did not violate (5)
resulting in better performance compared to the wired data center.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100 1000 10000 100000 1000000

N
o

rm
a
li

ze
d

 t
h

ro
u

g
h

p
u

t

Average injection rate (kbps)

Wired NC Wired CES Wired GRD Wired BCC

Wireless NC Wireless CES Wireless GRD Wireless BCC

100 101 102 103 104 105 106

Figure 9. Average throughput for different data center architecture with NC, CES, GRD and BCC
consolidation normalized with flow injection rate.

5.2.4. Accuracy of Inter-Consolidation Time Modeling

In this section, the inter-consolidation time for the BCC algorithm is analyzed and the accuracy of
the mathematical estimation of inter-consolidation time is evaluated. The expected inter consolidation
cost estimated from (15) is shown in Figure 10 for a data center consisting of 800 servers as discussed
in Section 5.2.1.

J. Low Power Electron. Appl. 2020, 10, 32 23 of 28

0 5 10 15 20 25 30 35 40 45 50

Inter-consolidation time (seconds)

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

C
o

st
,
 C

(t
)

 = 0.25 Math-model

 = 0.35 Math-model

 = 0.45 Math-model

 = 0.55 Math-model

 = 0.25 Simulation

 = 0.35 Simulation

 = 0.45 Simulation

 = 0.55 Simulation

Figure 10. Consolidation cost estimated from mathematical analysis (dashed line) and from Monte
Carlo simulation (solid line) with respect to inter-consolidation time.

To verify the mathematical model for cost of consolidation (15), we ran a Monte Carlo simulation
for each ρ 300 times and calculated the value of the cost function. For these cases, the values for η1,
ν, κ considered here were 200, 1000, and 1 respectively. The average size of migration ν was considered
as 1000 Megabytes which represents a practical value. For η1, we ran the server consolidation simulation
for different random initial conditions for thousands of times and used the average number of idle
servers in PowerNap mode after the first cycle of server migration. We considered κ = 1 to put equal
emphasis on power saving and network performance on the cost. Nevertheless, these values needed
not necessarily be exactly the same across all the data centers. Depending on the capacity, performance
requirements and physical limitations, these values could vary for different HPC data centers.

The average of the simulated values from the different run for each ρ are shown in Figure 10.
The cost estimates in this method relied on many repetitive simulations and were highly
computationally expensive as each of simulation at a particular ρ and t was repeated at least 1000 times
to find the expected cost using Monte-Carlo method. On the contrary, using (15) the cost and optimal
inter-consolidation time could be approximated much faster. The optimal inter-consolidation time for
different ρ identified from both methods is shown in Figure 11. It was observed that for lower values
of ρ (ρ ≤ 0.55) the optimal inter-consolidation time estimated from the mathematical equation closely
approximated the measured value from the Monte Carlo simulation. On the contrary, for higher values
of ρ, the optimal inter-consolidation time estimated from the mathematical analysis deviated from the
value measured through simulations. However, at higher ρ, the absolute value of the cost was less
sensitive to the inter-consolidation time. This shows that although at higher ρ the inter-consolidation
time suggested by the model may deviate from the actual optimal interval, the actual cost incurred at
this non-optimal interval was not much different compared to that at the optimal interval. Hence the
optimal inter-consolidation time could be estimated reasonably accurately from the mathematical form.

We used MATLAB R2018b on a system having Intel Core i7 with 16 GB memory to calculate the
inter consolidation time with both Monte-Carlo simulation and mathematical model. On average,
computation time required for the Monte-Carlo simulation took 1039.4 s to complete the calculation
while the mathematical model took only about 0.798 s on average. Hence there was more than 1000×
speedup in calculation time using the mathematical model.

J. Low Power Electron. Appl. 2020, 10, 32 24 of 28

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0

5

10

15

20

25

ti
m

e
 (

se
c

o
n

d
s)

t*

t*
model

Figure 11. Comparison of optimal inter-consolidation time obtained from the mathematical model and
Monte-Carlo simulations at different ρ.

5.3. Overall Power Saving with a Combination of BCC and CBA

In this subsection we discuss the combined effect of CBA and BCC together for power saving.
We evaluated the power consumption of a data center consisting of 800 servers with a higher injection
rate traffic having an average flow rate of 400 Mbps. For this comparison, the power consumption of
each server was modeled based on Odroid-XU3 board. The power consumption of the Odroid-XU3
at PowerNap was conservatively assumed to be 1 watt and the full load power consumption was
20 Watts. We also assumed that the power saving ratio per device followed the energy saving ratio
due to CBA algorithm. In Figure 12 we showed the power consumption of the data center in different
cases including, normal condition (NC), utilizing BCC only, utilizing CBA only and finally, utilizing
both BCC and CBA together.

At higher datarate, BCC consolidation could reduce the power consumption of the overall data
center more for S2S-WiDCN compared to fat-tree network. The CBA algorithm working standalone
outperformed BCC for fat-tree wired network while in S2S-WiDCN, BCC could reduce more power
compared to CBA. Nevertheless, for both wired and wireless networks, combining both BCC and CBA
could achieve maximum power reduction.

0

1

2

3

4

5

6

7

8

9

10

NC BCC CBA BCC+CBA NC BCC CBA BCC+CBA

Fat-tree S2S-WiDCN

P
o
w

er
 (

K
W

)

Figure 12. Power consumption comparison between normal condition, BCC, CBA and combination of
BCC and CBA.

6. Conclusions

In this paper we investigated an algorithm for jointly optimizing value and energy when
considering resource allocation in HPC data centers. The algorithm was created under the assumption
that no prior information is available for accurate predictions of job value and energy, instead it
used a technique inspired by reinforcement learning to explore the value and energy of jobs before
exploiting in future allocations. It has also been shown that the percentage of zero-value jobs is

J. Low Power Electron. Appl. 2020, 10, 32 25 of 28

lower for all of the different arrival rates for CBA. We have also incorporated a server consolidation
algorithm BCC for both wired and wireless data center networks. We have shown that both the
approaches significantly reduce energy and power consumption of the entire data center. It has
been observed that, if BCC and CBA are adopted simultaneously for the wireless HPC data center
architecture, maximum power saving can be achieved. We also derived a mathematical model for BCC
for determining optimal inter-consolidation interval to enable the data center resource management
unit to schedule consolidations at optimal intervals without relying on computationally expensive
simulations to estimate the optimal interval.

Author Contributions: Conceptualization, A.K.S., A.G. (Amlan Ganguly), G.V.M. and B.M.A.-H.; Data curation,
S.A.M. and A.G. (Alexander Gilday); Formal analysis, S.A.M. and A.G. (Alexander Gilday); Investigation, S.A.M.,
A.G. (Alexander Gilday), A.K.S., A.G. (Amlan Ganguly) and X.W.; Methodology, X.W.; Supervision, A.K.S.,
A.G. (Amlan Ganguly), G.V.M. and B.M.A.-H.; Writing—original draft, S.A.M. and A.G. (Alexander Gilday);
Writing—review & editing, S.A.M. and A.G. (Alexander Gilday). All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Engineering and Physical Sciences Research Council under
EPSRC Grant EP/L000563/1, and EP/K034448/1 the PRiME Programme Grant (www.prime-project.org), and US
National Science Foundation(NSF) CAREER grant CNS-1553264.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rodero, I.; Jaramillo, J.; Quiroz, A.; Parashar, M.; Guim, F.; Poole, S. Energy-efficient application-aware online
provisioning for virtualized clouds and data centers. In Proceedings of the International Green Computing
Conference (IGCC), Chicago, IL, USA, 15–18 August 2010; pp. 31–45. [CrossRef]

2. Benini, L.; Micheli, G.d. System-level power optimization: Techniques and tools. ACM Trans. Des. Autom.
Electron. Syst. (Todaes) 2000, 5, 115–192. [CrossRef]

3. Aksanli, B.; Rosing, T. Providing regulation services and managing data center peak power budgets.
In Proceedings of the 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 24–28 March 2014; pp. 143–147.

4. Bogdan, P.; Garg, S.; Ogras, U.Y. Energy-efficient computing from systems-on-chip to micro-server and
data centers. In Proceedings of the 2015 Sixth International Green Computing Conference and Sustainable
Computing Conference (IGSC), Las Vegas, NV, USA, 14–16 December 2015; pp. 1–6.

5. Koomey, J. Growth in data center electricity use 2005 to 2010. In A Report by Analytical Press, Completed at the
Request of The New York Times; Analytics Press: Burlingame, CA, USA, 2011.

6. Verma, A.; Ahuja, P.; Neogi, A. pMapper: Power and migration cost aware application placement in
virtualized systems. In Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware,
Leuven, Belgium, 1–5 December 2008; pp. 243–264.

7. Jung, G.; Hiltunen, M.A.; Joshi, K.R.; Schlichting, R.D.; Pu, C. Mistral: Dynamically managing power,
performance, and adaptation cost in cloud infrastructures. In Proceedings of the 2010 IEEE 30th International
Conference on Distributed Computing Systems, Genova, Italy, 21–25 June 2010; pp. 62–73.

8. Zu, Y.; Huang, T.; Zhu, Y. An efficient power-aware resource scheduling strategy in virtualized datacenters.
In Proceedings of the IEEE 2013 International Conference on Parallel and Distributed Systems, Seoul, Korea,
15–18 December 2013; pp. 110–117.

9. Mann, V.; Kumar, A.; Dutta, P.; Kalyanaraman, S. VMFlow: Leveraging VM mobility to reduce network power
costs in data centers. In International Conference on Research in Networking; Springer: New York, NY, USA,
2011; pp. 198–211.

10. Huang, D.; Yang, D.; Zhang, H.; Wu, L. Energy-aware virtual machine placement in data centers.
In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA,
3–7 December 2012; pp. 3243–3249.

11. Cao, B.; Gao, X.; Chen, G.; Jin, Y. NICE: Network-aware VM consolidation scheme for energy conservation
in data centers. In Proceedings of the 2014 20th IEEE International Conference on Parallel and Distributed
Systems (ICPADS), Hsinchu, Taiwan, 16–19 December 2014; pp. 166–173.

www.prime-project.org
http://dx.doi.org/10.1109/GREENCOMP.2010.5598283
http://dx.doi.org/10.1145/335043.335044

J. Low Power Electron. Appl. 2020, 10, 32 26 of 28

12. Ferreto, T.C.; Netto, M.A.; Calheiros, R.N.; De Rose, C.A. Server consolidation with migration control for
virtualized data centers. Future Gener. Comput. Syst. 2011, 27, 1027–1034. [CrossRef]

13. Sun, G.; Liao, D.; Zhao, D.; Xu, Z.; Yu, H. Live migration for multiple correlated virtual machines in
cloud-based data centers. IEEE Trans. Serv. Comput. 2015, 11, 279–291. [CrossRef]

14. Kliazovich, D.; Bouvry, P.; Khan, S.U. DENS: Data center energy-efficient network-aware scheduling.
Clust. Comput. 2013, 16, 65–75. [CrossRef]

15. Khemka, B.; Friese, R.; Pasricha, S.; Maciejewski, A.A.; Siegel, H.J.; Koenig, G.A.; Powers, S.; Hilton, M.;
Rambharos, R.; Poole, S. Utility maximizing dynamic resource management in an oversubscribed
energy-constrained heterogeneous computing system. Sustain. Comput. Inform. Syst. 2015, 5, 14–30.
[CrossRef]

16. Kim, S.; Kim, Y. Application-specific cloud provisioning model using job profiles analysis. In Proceedings
of the 2012 IEEE 14th International Conference on High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), Liverpool, UK,
25–27 June 2012; pp. 360–366.

17. Singh, A.K.; Dziurzanski, P.; Indrusiak, L.S. Value and energy optimizing dynamic resource allocation in
many-core HPC systems. In Proceedings of the 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), Vancouver, BC, Canada, 30 November–3 December 2015; pp. 180–185.

18. Baccour, E.; Foufou, S.; Hamila, R.; Hamdi, M. A survey of wireless data center networks. In Proceedings
of the 2015 49th Annual Conference on Information Sciences and Systems (CISS), Vancouver, BC, Canada,
30 November–3 December 2015; pp. 1–6.

19. Vardhan, H.; Ryu, S.R.; Banerjee, B.; Prakash, R. 60 GHz wireless links in data center networks. Comput. Netw.
2014, 58, 192–205. [CrossRef]

20. Halperin, D.; Kandula, S.; Padhye, J.; Bahl, P.; Wetherall, D. Augmenting data center networks with
multi-gigabit wireless links. ACM Sigcomm Comput. Commun. Rev. 2011, 41, 38–49. [CrossRef]

21. Zaaimia, M.; Touhami, R.; Fono, V.; Talbi, L.; Nedil, M. 60 GHz wireless data center channel measurements:
Initial results. In Proceedings of the 2014 IEEE International Conference on Ultra-WideBand (ICUWB), Paris,
France, 1–3 September 2014; pp. 57–61.

22. Mamun, S.A.; Umamaheswaran, S.G.; Chandrasekaran, S.S.; Shamim, M.S.; Ganguly, A.; Kwon, M.
An Energy-Efficient, Wireless Top-of-Rack to Top-of-Rack Datacenter Network Using 60 GHz Links.
In Proceedings of the 2017 IEEE Green Computing and Communications (GreenCom), Exeter, UK,
21–23 June 2017; pp. 458–465.

23. Cheng, C.L.; Zajić, A. Characterization of 300 GHz Wireless Channels for Rack-to-Rack Communications in
Data Centers. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 194–198.

24. Shin, J.Y.; Kirovski, D.; Harper, D.T., III. Data Center Using Wireless Communication. U.S. Patent 9,391,716,
12 July 2016.

25. Mamun, S.A.; Umamaheswaran, S.G.; Ganguly, A.; Kwon, M.; Kwasinski, A. Performance Evaluation of
a Power-Efficient and Robust 60 GHz Wireless Server-to-Server Datacenter Network. IEEE Trans. Green
Commun. Netw. 2018, 2, 1174–1185. [CrossRef]

26. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 2002, 3, 397–422.
27. Yeo, C.S.; Buyya, R. A Taxonomy of Market-based Resource Management Systems for Utility-driven Cluster

Computing. Softw. Pract. Exp. 2006, 36, 1381–1419. [CrossRef]
28. Theocharides, T.; Michael, M.K.; Polycarpou, M.; Dingankar, A. Hardware-enabled Dynamic Resource

Allocation for Manycore Systems Using Bidding-based System Feedback. EURASIP J. Embed. Syst.
2010, 2010, 261434.

29. Locke, C.D. Best-Effort Decision-Making for Real-Time Scheduling. Ph.D. Thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1986.

30. Aldarmi, S.; Burns, A. Dynamic value-density for scheduling real-time systems. In Proceedings of the
Euromicro Conference on Real-Time Systems, York, UK, 9–11 June 1999; pp. 270–277.

31. Bansal, N.; Pruhs, K.R. Server Scheduling to Balance Priorities, Fairness, and Average Quality of Service.
SIAM J. Comput. 2010, 39, 3311–3335. [CrossRef]

http://dx.doi.org/10.1016/j.future.2011.04.016
http://dx.doi.org/10.1109/TSC.2015.2477825
http://dx.doi.org/10.1007/s10586-011-0177-4
http://dx.doi.org/10.1016/j.suscom.2014.08.001
http://dx.doi.org/10.1016/j.comnet.2013.09.020
http://dx.doi.org/10.1145/2043164.2018442
http://dx.doi.org/10.1109/TGCN.2018.2838525
http://dx.doi.org/10.1002/spe.725
http://dx.doi.org/10.1137/090772228

J. Low Power Electron. Appl. 2020, 10, 32 27 of 28

32. Hussin, M.; Lee, Y.C.; Zomaya, A.Y. Efficient energy management using adaptive reinforcement
learning-based scheduling in large-scale distributed systems. In Proceedings of the 2011 International
Conference on Parallel Processing, Taipei, Taiwan, 13–16 September 2011; pp. 385–393.

33. Lin, X.; Wang, Y.; Pedram, M. A reinforcement learning-based power management framework for green
computing data centers. In Proceedings of the 2016 IEEE International Conference on Cloud Engineering
(IC2E), Berlin, Germany, 4–8 April 2016; pp. 135–138.

34. Singh, A.K.; Dziurzanski, P.; Indrusiak, L.S. Value and energy aware adaptive resource allocation of
soft real-time jobs on many-core HPC data centers. In Proceedings of the 2016 IEEE 19th International
Symposium on Real-Time Distributed Computing (ISORC), York, UK, 17–20 May 2016; pp. 190–197.

35. Sun, X.; Ansari, N.; Wang, R. Optimizing resource utilization of a data center. IEEE Commun. Surv. Tutor.
2016, 18, 2822–2846. [CrossRef]

36. Ray, M.; Sondur, S.; Biswas, J.; Pal, A.; Kant, K. Opportunistic power savings with coordinated control in
data center networks. In Proceedings of the 19th International Conference on Distributed Computing and
Networking, Varanasi, India, 4–7 January 2018; p. 48.

37. Farrington, N.; Porter, G.; Radhakrishnan, S.; Bazzaz, H.H.; Subramanya, V.; Fainman, Y.; Papen, G.;
Vahdat, A. Helios: A hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM
Comput. Commun. Rev. 2011, 41, 339–350.

38. Calheiros, R.N.; Buyya, R. Energy-Efficient Scheduling of Urgent Bag-of-Tasks Applications in Clouds
Through DVFS. In Proceedings of the IEEE International Conference on Cloud Computing Technology and
Science (CLOUDCOM), Singapore, 15–18 December 2014; pp. 342–349.

39. Irwin, D.E.; Grit, L.E.; Chase, J.S. Balancing Risk and Reward in a Market-Based Task Service.
In Proceedings of the IEEE International Symposium on High Performance Distributed Computing (HPDC),
Honolulu, HI, USA, 4–6 June2004; pp. 160–169.

40. Bubeck, S.; Cesa-Bianchi, N. Regret analysis of stochastic and nonstochastic multi-armed bandit problems.
Found. Trends Mach. Learn. 2012, 5, 1–122. [CrossRef]

41. Carpentier, A.; Lazaric, A.; Ghavamzadeh, M.; Munos, R.; Auer, P. Upper-confidence-bound algorithms for
active learning in multi-armed bandits. In International Conference on Algorithmic Learning Theory; Springer:
New York, NY, USA, 2011; pp. 189–203.

42. Han, Y.; Yoo, J.H.; Hong, J.W.K. Poisson shot-noise process based flow-level traffic matrix generation for data
center networks. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 450–457.

43. Benson, T.; Akella, A.; Maltz, D.A. Network traffic characteristics of data centers in the wild. In Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne, Australia, 1–3 November 2010;
pp. 267–280.

44. Dutt, S. New faster kernighan-lin-type graph-partitioning algorithms. In Proceedings of the 1993
International Conference on Computer Aided Design (ICCAD), Santa Clara, CA, USA, 7–11 November 1993;
pp. 370–377.

45. Meisner, D.; Gold, B.T.; Wenisch, T.F. PowerNap: Eliminating server idle power. ACM SIGARCH Comput.
Archit. News 2009, 44, 205–216. [CrossRef]

46. Zhang, J.; Yu, F.R.; Wang, S.; Huang, T.; Liu, Z.; Liu, Y. Load Balancing in Data Center Networks: A Survey.
IEEE Commun. Surv. Tutor. 2018, 20, 2324–2352. [CrossRef]

47. Davidson, A.; Tarjan, D.; Garland, M.; Owens, J.D. Efficient parallel merge sort for fixed and variable length
keys. In Proceedings of the 2012 Innovative Parallel Computing (InPar), San Jose, CA, USA, 13–14 May 2012;
pp. 1–9.

48. Kleinrock, L. Queueing Systems, Volume 2: Computer Applications; Wiley: New York, NY, USA, 1976.
49. ns-3 Network Simuilator. Available online: https://www.nsnam.org/ (accessed on 4 July 2019).
50. Shehabi, A.; Smith, S.J.; Sartor, D.A.; Brown, R.E.; Herrlin, M.; Koomey, J.G.; Masanet, E.R.; Horner, N.;

Azevedo, I.L.; Lintner, W. United States Data Center Energy Usage Report; Technical Report LBNL-1005775;
LBNL: Berkeley, CA, USA, 2016.

51. Pelley, S.; Meisner, D.; Wenisch, T.F.; VanGilder, J.W. Understanding and abstracting total data center
power. In Proceedings of the 2009 Workshop on Energy Efficient Design (WEED), Ann Arbor, MI, USA,
20 June 2009.

http://dx.doi.org/10.1109/COMST.2016.2558203
http://dx.doi.org/10.1561/2200000024
http://dx.doi.org/10.1145/2528521.1508269
http://dx.doi.org/10.1109/COMST.2018.2816042
https://www.nsnam.org/

J. Low Power Electron. Appl. 2020, 10, 32 28 of 28

52. SPECpower_ssj2008. Results for Dell Inc. PowerEdge C5220. Available online: https://www.spec.org/
power_ssj2008/results/res2013q2/power_ssj2008-20130402-00601.html (accessed on 4 July 2019).

53. Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. Elastictree:
Saving Energy in Data Center Networks. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI), San Jose, CA, USA, 28–30 April 2010; pp. 249–264.

54. Cisco. Cisco Data Center Switches. Available online: https://www.cisco.com/c/en/us/products/switches/
data-center-switches/index.html (accessed on 4 July 2019).

55. Silicom. Silicom PE2G2I35 Datasheet. Available online: http://www.silicom-usa.com/wp-content/uploads/
2016/08/PE2G2I35-1G-Server-Adapter.pdf (accessed on 4 July 2019).

56. Analog Devices. Analog Devices HMC6300 and HMC6301 60 GHz Millimeter Wave Transmitter and Receiver
Datasheet. Available online: http://www.analog.com/media/en/technical-documentation/data-sheets/
HMC6300.pdf (accessed on 4 July 2019).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.spec.org/power_ssj2008/results/res2013q2/power_ssj2008-20130402-00601.html
https://www.spec.org/power_ssj2008/results/res2013q2/power_ssj2008-20130402-00601.html
https://www.cisco.com/c/en/us/products/switches/data-center-switches/index.html
https://www.cisco.com/c/en/us/products/switches/data-center-switches/index.html
http://www.silicom-usa.com/wp-content/uploads/2016/08/PE2G2I35-1G-Server-Adapter.pdf
http://www.silicom-usa.com/wp-content/uploads/2016/08/PE2G2I35-1G-Server-Adapter.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/HMC6300.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/HMC6300.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System and Problem Definition for Scheduling Problem
	HPC System
	Jobs and Value Curves
	Problem Definition
	Proposed Approach Based on Reinforcement Learning
	Adapted Multi-Armed Bandit Model
	Upper Confidence Bound Algorithm
	Proposed Algorithm for Confidence-Based Approach

	System and Problem Definition for Network Aware Server Consolidation
	Network Aware Server Consolidation
	Traffic Pattern Model
	The Network-Aware Consolidation Algorithm
	Complexity Analysis
	 Optimizing the Inter-Consolidation Time

	Experimental Results
	Experimental Results for CBA Algorithm
	Experimental Baselines
	Profit and Energy Consumption Results at Varied Arrival Rates
	Percentage of Zero-Value Jobs
	Overhead Analysis

	Experimental Results for BCC Algorithm
	Traffic Generation and Simulation Platform for BCC
	Power Consumption Analysis of BCC
	Performance Analysis of BCC
	Accuracy of Inter-Consolidation Time Modeling

	Overall Power Saving with a Combination of BCC and CBA

	Conclusions
	References

