
����������
�������

Citation: Kalgaonkar, P.;

El-Sharkawy, M. CondenseNeXtV2:

Light-Weight Modern Image

Classifier Utilizing Self-Querying

Augmentation Policies. J. Low Power

Electron. Appl. 2022, 12, 8. https://

doi.org/10.3390/jlpea12010008

Academic Editor: Andrea Calimera

Received: 9 December 2021

Accepted: 21 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

CondenseNeXtV2: Light-Weight Modern Image Classifier
Utilizing Self-Querying Augmentation Policies
Priyank Kalgaonkar and Mohamed El-Sharkawy *

Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology,
Indianapolis, IN 46254, USA; pkalgaon@purdue.edu
* Correspondence: melshark@purdue.edu

Abstract: Artificial Intelligence (AI) combines computer science and robust datasets to mimic natural
intelligence demonstrated by human beings to aid in problem-solving and decision-making involving
consciousness up to a certain extent. From Apple’s virtual personal assistant, Siri, to Tesla’s self-
driving cars, research and development in the field of AI is progressing rapidly along with privacy
concerns surrounding the usage and storage of user data on external servers which has further
fueled the need of modern ultra-efficient AI networks and algorithms. The scope of the work
presented within this paper focuses on introducing a modern image classifier which is a light-weight
and ultra-efficient CNN intended to be deployed on local embedded systems, also known as edge
devices, for general-purpose usage. This work is an extension of the award-winning paper entitled
‘CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded Systems’ published for
the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC).
The proposed neural network dubbed CondenseNeXtV2 utilizes a new self-querying augmentation
policy technique on the target dataset along with adaption to the latest version of PyTorch framework
and activation functions resulting in improved efficiency in image classification computation and
accuracy. Finally, we deploy the trained weights of CondenseNeXtV2 on NXP BlueBox which is an
edge device designed to serve as a development platform for self-driving cars, and conclusions will
be extrapolated accordingly.

Keywords: CondenseNeXt; convolutional neural network; computer vision; embedded systems;
edge devices; image classification; CNN; PyTorch

1. Introduction

Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN),
which is a subset of Machine Learning (ML), designed to realize and harness power of Arti-
ficial Intelligence (AI) to simulate natural intelligence demonstrated by living creatures of
the Kingdom Animalia. The first CNN algorithm was introduced by Alexey G. Ivakhnenko
and V. G. Lapa in 1967 for supervised, deep, feed-forward, multi-layer perceptions [1].
By the year 2012, data and computation intensive CNN architectures began dominating
accuracy benchmarks. On 30 September 2012, AlexNet CNN architecture developed by
Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton [2,3] won the
ImageNet Large Scale Visual Recognition (ILSCR) Challenge [4] which caught the world’s
attention, eventually becoming the benchmark for newer CNNs utilizing GPUs to accelerate
deep learning [5].

In recent years, CNNs have become a popular cornerstone in the field of computer
vision research and development which is a multidisciplinary field of computer science
that focuses on developing innovative techniques and algorithms to enable machines to
perform complex tasks such as image classification and object detection, analogous to
that of a human visual system, for real-world applications such as advanced surveillance

J. Low Power Electron. Appl. 2022, 12, 8. https://doi.org/10.3390/jlpea12010008 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12010008
https://doi.org/10.3390/jlpea12010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-4113-1141
https://doi.org/10.3390/jlpea12010008
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12010008?type=check_update&version=1

J. Low Power Electron. Appl. 2022, 12, 8 2 of 15

systems for malicious activity recognition [6], self-driving cars, AI robots, and Unmanned
Ariel Vehicles (UAV) such as drones [7].

In this paper, we propose a modern image classifier which is light-weight and ultra-
efficient that is intended to be deployed on local embedded systems, also known as edge
devices, for general-purpose usage. This work is an extension of an award-winning paper
entitled ‘CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded Systems’
published for the 2021 IEEE 11th Annual Computing and Communication Workshop and
Conference (CCWC) [8]. The proposed neural network dubbed CondenseNeXtV2 utilizes
a new self-querying augmentation policy technique on a given target dataset along with
adaption to the latest version of PyTorch framework at the time of writing this paper,
resulting in an improved top-1 accuracy in image classification performance which we shall
observe through experiments by deploying the trained weights of CondenseNeXtV2 for
real-time image classification on NXP BlueBox development platform [9].

2. Background and Literature Review
2.1. Artificial Neural Networks

Artificial Neural Networks (ANN) take inspiration from the human brain. A human
brain is a complex and non-linear processing system capable of retraining and reorganizing
its crucial structural components known as neurons to perform complex operations such as
image classification and object detection much faster than any general-purpose computer
in existence today. ANNs are developed using a common programming language, trained
and then deployed on computer hardware capable of executing objective-specific tasks or
deployed to simulate on a computer. ANNs function in a similar way by:

1. Extracting knowledge using neurons and,
2. Storing the extracted information with the help of inter-neuron connection strengths

known as synaptic weights.

This process of learning by reorganizing synaptic weights in an artificial neural net-
work is called a learning algorithm. Figure 1 below provides a visual representation of a
nonlinear model of a neuron in an ANN.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 2 of 16

of a human visual system, for real-world applications such as advanced surveillance sys-
tems for malicious activity recognition [6], self-driving cars, AI robots, and Unmanned
Ariel Vehicles (UAV) such as drones [7].

In this paper, we propose a modern image classifier which is light-weight and ultra-
efficient that is intended to be deployed on local embedded systems, also known as edge
devices, for general-purpose usage. This work is an extension of an award-winning paper
entitled ‘CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded Sys-
tems’ published for the 2021 IEEE 11th Annual Computing and Communication Work-
shop and Conference (CCWC) [8]. The proposed neural network dubbed CondenseN-
eXtV2 utilizes a new self-querying augmentation policy technique on a given target da-
taset along with adaption to the latest version of PyTorch framework at the time of writing
this paper, resulting in an improved top-1 accuracy in image classification performance
which we shall observe through experiments by deploying the trained weights of Con-
denseNeXtV2 for real-time image classification on NXP BlueBox development platform
[9].

2. Background and Literature Review
2.1. Artificial Neural Networks

Artificial Neural Networks (ANN) take inspiration from the human brain. A human
brain is a complex and non-linear processing system capable of retraining and reorganiz-
ing its crucial structural components known as neurons to perform complex operations
such as image classification and object detection much faster than any general-purpose
computer in existence today. ANNs are developed using a common programming lan-
guage, trained and then deployed on computer hardware capable of executing objective-
specific tasks or deployed to simulate on a computer. ANNs function in a similar way by:
1. Extracting knowledge using neurons and,
2. Storing the extracted information with the help of inter-neuron connection strengths

known as synaptic weights.
This process of learning by reorganizing synaptic weights in an artificial neural net-

work is called a learning algorithm. Figure 1 below provides a visual representation of a
nonlinear model of a neuron in an ANN.

Figure 1. A visual representation of a nonlinear model of a neuron in an ANN.

In Figure 1, synaptic weights are given as inputs to the neurons of an ANN which
may have positive or negative values. A summing junction functions as an adder to line-
arly combine all input weights with respect to corresponding synaptic weights of the neu-
ron and a continuously differentiable linear or non-linear activation functions such as Sig-
moid, Tanh, ReLU, etc. are used to decide if the neuron should be activated or not.

2.2. Representation Learning in Multi-Layer Feed-Forward Neural Networks

Figure 1. A visual representation of a nonlinear model of a neuron in an ANN.

In Figure 1, synaptic weights are given as inputs to the neurons of an ANN which may
have positive or negative values. A summing junction functions as an adder to linearly
combine all input weights with respect to corresponding synaptic weights of the neuron
and a continuously differentiable linear or non-linear activation functions such as Sigmoid,
Tanh, ReLU, etc. are used to decide if the neuron should be activated or not.

2.2. Representation Learning in Multi-Layer Feed-Forward Neural Networks

Multi-layer feed-forward neural networks are one of the most popular and widely
used types of artificial neural network architectures in which the neurons make use of a
learning algorithm to train on a target dataset.

J. Low Power Electron. Appl. 2022, 12, 8 3 of 15

Multi-layer feed-forward neural networks can have one or more hidden layers which
determines the depth of a neural network. Here, the expression hidden signifies that a
particular part of an ANN is not directly accessible to input or output nodes of the ANN.
Therefore, as the depth increases, the ANN will possess even more synaptic connections
between neurons to extract meaningful information and adjust its weights. Such a net-
work architecture is also commonly known as multilayer perceptrons, which utilizes a
backpropagation algorithm during the training phase.

The work proposed within this paper is based on fundamental principles of multi-layer
feed-forward neural networks for supervised learning in the OpenCV realm. In supervised
machine learning, the mapping between input variables (x) and output variables (y) is
learned. It infers a function from labeled dataset known as ground truth. The idea is to
train and learn hundreds of classes from a variety of different images containing noise
and irregularities which can be a challenge for traditional image classification algorithms.
Figure 2 below provides a visual representation of these images. The work presented within
this paper utilizes AutoAugment [10] data augmentation technique to overcome this issue
as discussed in the following sections of this paper.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 3 of 16

Multi-layer feed-forward neural networks are one of the most popular and widely
used types of artificial neural network architectures in which the neurons make use of a
learning algorithm to train on a target dataset.

Multi-layer feed-forward neural networks can have one or more hidden layers which
determines the depth of a neural network. Here, the expression hidden signifies that a par-
ticular part of an ANN is not directly accessible to input or output nodes of the ANN.
Therefore, as the depth increases, the ANN will possess even more synaptic connections
between neurons to extract meaningful information and adjust its weights. Such a net-
work architecture is also commonly known as multilayer perceptrons, which utilizes a
backpropagation algorithm during the training phase.

The work proposed within this paper is based on fundamental principles of multi-
layer feed-forward neural networks for supervised learning in the OpenCV realm. In su-
pervised machine learning, the mapping between input variables (𝑥) and output variables
(𝑦) is learned. It infers a function from labeled dataset known as ground truth. The idea is
to train and learn hundreds of classes from a variety of different images containing noise
and irregularities which can be a challenge for traditional image classification algorithms.
Figure 2 below provides a visual representation of these images. The work presented
within this paper utilizes AutoAugment [10] data augmentation technique to overcome
this issue as discussed in the following sections of this paper.

Figure 2. Sample of 32 × 32 resolution images containing noise and other irregularities.

To address the challenges of performance and efficiency of deep neural network ar-
chitectures, in 2016, a team of researchers and engineers of Facebook AI Research (FAIR)
lab introduced PyTorch and released it under the Modified BSD license for fair use [11].
PyTorch is a scientific computing framework and an open-source machine learning li-
brary built upon the Torch library, which is also a scientific computing framework and an
open-source machine learning library, introduced in 2002 [12]. Some of the important fea-
tures of PyTorch include:
1. Tensor computation accelerated by GPU(s).
2. Automatic differentiation using tape-based autograd.

PyTorch is a popular choice of deep learning framework for commercial applications
such as autonomous vehicles, AI applications, etc. Tesla Motors, a leader in the autono-
mous (self-driving) vehicle industry, utilizes PyTorch for their famous Autopilot system,
which is a suite of SAE Level 2 Advanced Driver-Assistance System (ADAS) features, by
utilizing advanced computing hardware for deep learning, computer vision and sensor
fusion [13]. The proposed CNN within this paper is based on the latest stable release of
PyTorch version 1.10.0 and CUDA toolkit version 10.2 [14].

2.3. Evolution of CondenseNeXt

Figure 2. Sample of 32 × 32 resolution images containing noise and other irregularities.

To address the challenges of performance and efficiency of deep neural network
architectures, in 2016, a team of researchers and engineers of Facebook AI Research (FAIR)
lab introduced PyTorch and released it under the Modified BSD license for fair use [11].
PyTorch is a scientific computing framework and an open-source machine learning library
built upon the Torch library, which is also a scientific computing framework and an open-
source machine learning library, introduced in 2002 [12]. Some of the important features of
PyTorch include:

1. Tensor computation accelerated by GPU(s).
2. Automatic differentiation using tape-based autograd.

PyTorch is a popular choice of deep learning framework for commercial applications
such as autonomous vehicles, AI applications, etc. Tesla Motors, a leader in the autonomous
(self-driving) vehicle industry, utilizes PyTorch for their famous Autopilot system, which is
a suite of SAE Level 2 Advanced Driver-Assistance System (ADAS) features, by utilizing
advanced computing hardware for deep learning, computer vision and sensor fusion [13].
The proposed CNN within this paper is based on the latest stable release of PyTorch version
1.10.0 and CUDA toolkit version 10.2 [14].

J. Low Power Electron. Appl. 2022, 12, 8 4 of 15

2.3. Evolution of CondenseNeXt

Huang et al. introduced ResNeXt [15] CNN architecture which utilizes an innovative
technique to skip one or more layers, known as identity shortcut connections. This allowed
ResNeXt CNN to train on large amounts of data with unparalleled efficiency at the time.

In the following year, in 2017, Huang et al. introduced DenseNet [16] CNN architecture
that utilizes a novel technique to connect each convolutional layer to other proceeding
layers in a feed-forward fashion. This facilitates the reuse of synaptic weights by providing
outputs of current layer as inputs to every other proceeding layer resulting in extraction of
information at different levels of coarseness. DenseNet provides a baseline for CondenseNet
CNN architecture.

In 2018, Huang et al. introduced CondenseNet [17], which was an improvement over
the DenseNet CNN. In this CNN architecture, authors proposed pruning several layers
and blocks and replacing standard convolutions with group convolutions (G). Furthermore,
they proposed a technique to learn mapping patterns between channels and groups by
connecting layers from different groups to each other directly, thus preventing individual
groups of channels from training separately. The authors collectively called this technique
as learned group convolutions. Figure 3 below provides a visual comparison of dense
blocks in DenseNet vs. CondenseNet CNN.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 4 of 16

Huang et al. introduced ResNeXt [15] CNN architecture which utilizes an innovative
technique to skip one or more layers, known as identity shortcut connections. This al-
lowed ResNeXt CNN to train on large amounts of data with unparalleled efficiency at the
time.

In the following year, in 2017, Huang et al. introduced DenseNet [16] CNN architec-
ture that utilizes a novel technique to connect each convolutional layer to other proceed-
ing layers in a feed-forward fashion. This facilitates the reuse of synaptic weights by
providing outputs of current layer as inputs to every other proceeding layer resulting in
extraction of information at different levels of coarseness. DenseNet provides a baseline
for CondenseNet CNN architecture.

In 2018, Huang et al. introduced CondenseNet [17], which was an improvement over
the DenseNet CNN. In this CNN architecture, authors proposed pruning several layers
and blocks and replacing standard convolutions with group convolutions (G). Further-
more, they proposed a technique to learn mapping patterns between channels and groups
by connecting layers from different groups to each other directly, thus preventing indi-
vidual groups of channels from training separately. The authors collectively called this
technique as learned group convolutions. Figure 3 below provides a visual comparison of
dense blocks in DenseNet vs. CondenseNet CNN.

Figure 3. Comparison of dense blocks in DenseNet vs. CondenseNet CNN.

CondenseNet performs a 1 × 1 standard group convolution. The major drawback of
implementing such a convolution is that it does not parse through each channel’s spatial
dimensions and therefore, misses out on fine details leading to a loss in efficiency and
overall accuracy of the network. To address these issues, Kalgaonkar and El-Sharkawy
introduced CondenseNeXt [8] in 2021. CondenseNeXt refers to the next dimension of car-
dinality. In this CNN architecture, the authors propose replacing standard grouped con-
volutions with depthwise separable convolutions [18], which allows the network to ex-
tract information by transforming an image only once and then elongating this trans-
formed image to 𝑛 number of channels instead of simply transforming the image 𝑛
number of times, resulting in a boost in computational efficiency and fewer number of
Floating-Point Operations (FLOPs) at the training stage.

3. CondenseNeXtV2 Architecture

Figure 3. Comparison of dense blocks in DenseNet vs. CondenseNet CNN.

CondenseNet performs a 1 × 1 standard group convolution. The major drawback of
implementing such a convolution is that it does not parse through each channel’s spatial di-
mensions and therefore, misses out on fine details leading to a loss in efficiency and overall
accuracy of the network. To address these issues, Kalgaonkar and El-Sharkawy introduced
CondenseNeXt [8] in 2021. CondenseNeXt refers to the next dimension of cardinality. In
this CNN architecture, the authors propose replacing standard grouped convolutions with
depthwise separable convolutions [18], which allows the network to extract information by
transforming an image only once and then elongating this transformed image to n number
of channels instead of simply transforming the image n number of times, resulting in a
boost in computational efficiency and fewer number of Floating-Point Operations (FLOPs)
at the training stage.

J. Low Power Electron. Appl. 2022, 12, 8 5 of 15

3. CondenseNeXtV2 Architecture

In this section, a new CNN architecture, called CondenseNeXtV2, is being proposed.
CondenseNeXtV2 is inspired by and is an improvement over CondenseNeXt CNN. The
primary goal of CondenseNeXtV2 CNN is to further improve performance and top-1
accuracy of the network. This section describes the architecture in detail.

3.1. Convolutional Layers

CondenseNeXtV2 utilizes depthwise separable convolution which enhances the effi-
ciency of the network without having to transform an image over and over again, resulting
in reduction in number of FLOPs and an increase in computational efficiency in comparison
to standard group convolutions. Depthwise separable convolution is comprised of two
distinct layers:

• Depthwise convolution: This layer acts like a filtering layer which applies depthwise
convolution to a single input channel. Consider an image of size X × X × I given as an
input with I number of input channels of the input image with kernels (K) of size K ×
K × 1, the output of this depthwise convolution operation will be Y × Y × I resulting
in reduction of spatial dimensions whilst preserving I number of channels (depth) of
the input image. The cost of computation for this operation can be mathematically
represented as follows:

Ŷk,l,m = ∑
i,j

K̂i,j,m ∗ Xk+i−1,l+j−1,m (1)

• Pointwise convolution: This layer acts like a combining layer which performs linear
combination of all outputs generated by the previous layer since the depth of input
image from previous operation hasn’t changed. Pointwise convolution operation is
performed using a 1 × 1 kernel i.e., 1 × 1 × K resulting in the size of the output image
to be Y × Y × K. The cost of computation for this operation can be mathematically
represented as follows:

Yk,l,n = ∑
m

K̃m,n ∗ Ŷk−1,l−1,m (2)

A depthwise separable convolution splits a kernel into two distinct layers for filtering
and combining operations resulting in an improvement in overall computational efficiency.
Figure 4 provides a 3D visual representation of depthwise separable convolution operation
where a single image is transformed only once and then this transformed image is elongated
to over 128 channels. This allows the CNN to extract information at different levels for
coarseness. For example, consider a green channel from the RGB channel being processed.
Depthwise separable convolution will extract different shades of color green from this
channel.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 5 of 16

In this section, a new CNN architecture, called CondenseNeXtV2, is being proposed.
CondenseNeXtV2 is inspired by and is an improvement over CondenseNeXt CNN. The
primary goal of CondenseNeXtV2 CNN is to further improve performance and top-1 ac-
curacy of the network. This section describes the architecture in detail.

3.1. Convolutional Layers
CondenseNeXtV2 utilizes depthwise separable convolution which enhances the effi-

ciency of the network without having to transform an image over and over again, result-
ing in reduction in number of FLOPs and an increase in computational efficiency in com-
parison to standard group convolutions. Depthwise separable convolution is comprised
of two distinct layers:
• Depthwise convolution: This layer acts like a filtering layer which applies depthwise

convolution to a single input channel. Consider an image of size 𝑋 × 𝑋 × 𝐼 given as
an input with 𝐼 number of input channels of the input image with kernels (𝐾) of size 𝐾 × 𝐾 × 1, the output of this depthwise convolution operation will be 𝑌 × 𝑌 × 𝐼
resulting in reduction of spatial dimensions whilst preserving 𝐼 number of channels
(depth) of the input image. The cost of computation for this operation can be mathe-
matically represented as follows: 𝑌,, = 𝐾,,, ∗ 𝑋ାିଵ,ାିଵ, (1)

• Pointwise convolution: This layer acts like a combining layer which performs linear
combination of all outputs generated by the previous layer since the depth of input
image from previous operation hasn’t changed. Pointwise convolution operation is
performed using a 1 × 1 kernel i.e., 1 × 1 × 𝐾 resulting in the size of the output
image to be 𝑌 × 𝑌 × 𝐾. The cost of computation for this operation can be mathemat-
ically represented as follows: 𝑌,, = 𝐾෩, ∗ 𝑌ିଵ,ିଵ, (2)

A depthwise separable convolution splits a kernel into two distinct layers for filtering
and combining operations resulting in an improvement in overall computational effi-
ciency. Figure 4 provides a 3D visual representation of depthwise separable convolution
operation where a single image is transformed only once and then this transformed image
is elongated to over 128 channels. This allows the CNN to extract information at different
levels for coarseness. For example, consider a green channel from the RGB channel being
processed. Depthwise separable convolution will extract different shades of color green
from this channel.

Figure 4. A 3D visual representation of depthwise separable convolution for a given example.

3.2. Model Compression
3.2.1. Network Pruning

Figure 4. A 3D visual representation of depthwise separable convolution for a given example.

J. Low Power Electron. Appl. 2022, 12, 8 6 of 15

3.2. Model Compression
3.2.1. Network Pruning

Network pruning is one of the effective ways to reduce computational costs by dis-
carding redundant and insignificant weights that do not affect the overall performance of
a DNN. Figure 5 provides a visual comparison of weight matrices for different pruning
approaches as follows:

1. Fine-grained pruning: using this approach, redundant weights that will have min-
imum influence on accuracy will be pruned. However, this approach results in
irregular structures.

2. Coarse-grained pruning: using this approach, an entire filter which will have minimal
influence on overall accuracy is discarded. This approach results in regular structures.
However, if the network is highly compressed, there may be significant loss in the
overall accuracy of the DNN.

3. 2D group-level pruning: this approach maintains a balance of both, benefits and
trade-offs of fine-grained and coarse-grained pruning.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 6 of 16

Network pruning is one of the effective ways to reduce computational costs by dis-
carding redundant and insignificant weights that do not affect the overall performance of
a DNN. Figure 5 provides a visual comparison of weight matrices for different pruning
approaches as follows:
1. Fine-grained pruning: using this approach, redundant weights that will have mini-

mum influence on accuracy will be pruned. However, this approach results in irreg-
ular structures.

2. Coarse-grained pruning: using this approach, an entire filter which will have mini-
mal influence on overall accuracy is discarded. This approach results in regular
structures. However, if the network is highly compressed, there may be significant
loss in the overall accuracy of the DNN.

3. 2D group-level pruning: this approach maintains a balance of both, benefits and
trade-offs of fine-grained and coarse-grained pruning.

Figure 5. Comparison of different pruning methods.

CondenseNeXtV2 CNN utilizes 2D Group-Level pruning to discard insignificant fil-
ters which is complemented by 𝐿ଵ-Normalization [19] to facilitate the group-level prun-
ing process.

3.2.2. . Class-Balanced Focal Loss (CFL) Function
Pruning networks in order to discard insignificant and redundant elements of the

network can still have an overall harsh effect caused due to imbalanced weights. There-
fore, in order to mitigate any such issues, CondenseNeXtV2 CNN incorporates a
weighting factor inversely proportional to the total number of samples, called Class-bal-
anced Focal Loss (CFL) Function [20]. This approach can be mathematically represented
as follows:

𝐶𝐹𝐿(𝑧, 𝑦) = െ (
ୀଵ 1െ𝑝௧)ఊ ∗ log (𝑝௧) (3)

3.2.3. Cardinality
A new dimension, called Cardinality, is added to the existing spatial dimensions of

the CondenseNeXtV2 network to prevent loss in overall accuracy during the pruning pro-
cess, denoted by 𝐷. Increasing cardinality rate is a more effective way to obtain a boost in
accuracy instead of going wider or deeper within the network. Cardinality can be mathe-
matically represented as follows: 𝐺 ∗ 𝐺௫ = 𝑋 ∗ 𝐷 െ 𝑝. 𝑋 (4)

Figure 5. Comparison of different pruning methods.

CondenseNeXtV2 CNN utilizes 2D Group-Level pruning to discard insignificant filters
which is complemented by L1-Normalization [19] to facilitate the group-level pruning
process.

3.2.2. Class-Balanced Focal Loss (CFL) Function

Pruning networks in order to discard insignificant and redundant elements of the
network can still have an overall harsh effect caused due to imbalanced weights. Therefore,
in order to mitigate any such issues, CondenseNeXtV2 CNN incorporates a weighting
factor inversely proportional to the total number of samples, called Class-balanced Focal
Loss (CFL) Function [20]. This approach can be mathematically represented as follows:

CFL(z, y) = −
C

∑
i=1

(1 − pt
i)

γ ∗ log
(

pt
i
)

(3)

3.2.3. Cardinality

A new dimension, called Cardinality, is added to the existing spatial dimensions of
the CondenseNeXtV2 network to prevent loss in overall accuracy during the pruning
process, denoted by D. Increasing cardinality rate is a more effective way to obtain a

J. Low Power Electron. Appl. 2022, 12, 8 7 of 15

boost in accuracy instead of going wider or deeper within the network. Cardinality can be
mathematically represented as follows:

G ∗ Gx = X ∗ D − p · X (4)

3.3. Data Augmentation

Data augmentation is a popular technique to increase the amount of data and its
diversity by modifying already existing data and adding newly created data to existing data
in order to improve the accuracy of modern image classifiers. CondenseNeXtV2 utilizes
AutoAugment data augmentation technique to pre-process target dataset to determine the
best augmentation policy with the help of Reinforcement Learning (RL). AutoAugment
primarily consists of following two parts:

• Search Space: Each policy consists of five sub-policies and each sub-policy consists of
two operations that can be performed on an image in a sequential order. Furthermore,
each image transformation operation consists of two distinct parameters as follows:

o The probability of applying the image transformation operation to an image.
o The magnitude with which the image transformation operation should be

applied to an image.

There are a total of 16 image transformation operations. 14 operations belong to
the PIL (Python Imaging Library) which provides the python interpreter with image
editing capabilities such as rotating, solarizing, color inverting, etc. and the remaining two
operations are Cutout [21] and SamplePairing [22]. Table 6 in the ‘Supplementary materials’
section of [10] provides a comprehensive list of all 16 image transformation operations
along with default range of magnitudes.

• Search Algorithm: AutoAugment utilizes a controller RNN, a one-layer LSTM [23]
containing 100 hidden units and 2 × 5B softmax predictions, to determine the best
augmentation policy. It examines the generalization ability of a policy by performing
child model (a neural network being trained during the search process) experiments
on a subset of the corresponding dataset. Upon completion of these experiments, a
reward signal is sent to the controller to update validation accuracy using a popular
policy gradient method called Proximal Policy Optimization algorithm (PPO) [24]
with a learning rate of 0.00035 and an entropy penalty with a weight of 0.00001. The
controller RNN provides a decision in terms of a softmax function which is then fed
into the controller’s next stage as an input, thus allowing it to determine magnitude
and probability of the image transformation operation.

At the end of this search process, sub-policies from top five best policies are merged
into one best augmentation policy with 25 sub-policies for the target dataset.

3.4. Activation Function

An activation function in a neural network plays a crucial role in determining the
output of a node by limiting the output’s amplitude. These functions are also known as
transfer functions. Activation functions help the neural network learn complex patterns of
the input data more efficiently whilst requiring fewer number of neurons.

CondenseNeXtV2 CNN utilizes ReLU6 activation functions along with batch nor-
malization before each layer. ReLU6 activation function cap units at 6 which helps the
neural network learn sparse features quickly in addition to preventing gradients to increase
infinitely as seen in Figure 6. ReLU6 activation function can be mathematically defined as
follows:

f (x) = min(max(0, x), 6) (5)

J. Low Power Electron. Appl. 2022, 12, 8 8 of 15J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 8 of 16

Figure 6. ReLU vs. ReLU6 activation functions.

4. NXP BlueBox 2.0 Embedded Development Platform
This section provides a brief introduction of NXP BlueBox 2.0 (Gen2) embedded de-

velopment platform for Automotive High-Performance Compute (AHPC). It is a series of
development platform designed for self-driving (autonomous) vehicles.

4.1. System Design of NXP BlueBox Gen2 Family
The BlueBox 2.0 embedded development platform series is designed and developed

by NXP Semiconductors. First launched in 2016 as a generation 1 series, the target appli-
cation has been self-driving (autonomous) vehicles ever since. It was introduced to gen-
eral public in Austin, Texas, USA. Shortly thereafter, NXP improved an advanced series
of BlueBox which was called BlueBox 2.0, the second generation of this series. It features
following three new ARM-based automotive processors [9]:

1. S32V234 (S32V) dedicated for computer vision processing tasks: This automotive
processor is based on a four core ARM Cortex A53 architecture and operates at 1.0
GHz. An additional ARM Cortex M4 CPU provides further support and functional-
ity for reliability and workload sharing. It is complimented by 4 MB SRAM and an
additional 32-bit LPDDR3 controller to support additional memory if required by
the developers. It also boasts an Image Signal Processor (ISP) on-board the SoC for
noise filtering, noise reduction, etc.

2. LS2084A (LS2) dedicated for high performance computing tasks: This automotive
processor is based on an eight core ARM Cortex A72 architecture and operates at
1.80 GHz. It is complimented by 144 bytes of DDR4 RAM with support enabled for
LayerScape LX2 family. NXP claims LS2 to provide 15 years of reliable service and
meets Q100 grade 3 automotive standards.

3. S32R274 (S32R) dedicated for radar information processing tasks: This automotive
processor is based on a dual-core Freescale PowerPC e200z4 architecture and oper-
ates at 120 MHz in addition to a checker core on-board this System-on-Chip (SoC).
It features a 2.0 MB flash memory and 1.5 MB of SRAM.
NXP BlueBox 2.0 adheres to automotive compliance and safety standards such as the

ASIL-B/C and D to ensure operability and reliability in all real-world conditions. Figure 7
below provides a high-level system architecture view of NXP BlueBox 2.0 [9].

Figure 6. ReLU vs. ReLU6 activation functions.

4. NXP BlueBox 2.0 Embedded Development Platform

This section provides a brief introduction of NXP BlueBox 2.0 (Gen2) embedded
development platform for Automotive High-Performance Compute (AHPC). It is a series
of development platform designed for self-driving (autonomous) vehicles.

4.1. System Design of NXP BlueBox Gen2 Family

The BlueBox 2.0 embedded development platform series is designed and developed by
NXP Semiconductors. First launched in 2016 as a generation 1 series, the target application
has been self-driving (autonomous) vehicles ever since. It was introduced to general public
in Austin, Texas, USA. Shortly thereafter, NXP improved an advanced series of BlueBox
which was called BlueBox 2.0, the second generation of this series. It features following
three new ARM-based automotive processors [9]:

1. S32V234 (S32V) dedicated for computer vision processing tasks: This automotive
processor is based on a four core ARM Cortex A53 architecture and operates at 1.0
GHz. An additional ARM Cortex M4 CPU provides further support and functionality
for reliability and workload sharing. It is complimented by 4 MB SRAM and an
additional 32-bit LPDDR3 controller to support additional memory if required by the
developers. It also boasts an Image Signal Processor (ISP) on-board the SoC for noise
filtering, noise reduction, etc.

2. LS2084A (LS2) dedicated for high performance computing tasks: This automotive
processor is based on an eight core ARM Cortex A72 architecture and operates at
1.80 GHz. It is complimented by 144 bytes of DDR4 RAM with support enabled for
LayerScape LX2 family. NXP claims LS2 to provide 15 years of reliable service and
meets Q100 grade 3 automotive standards.

3. S32R274 (S32R) dedicated for radar information processing tasks: This automotive
processor is based on a dual-core Freescale PowerPC e200z4 architecture and operates
at 120 MHz in addition to a checker core on-board this System-on-Chip (SoC). It
features a 2.0 MB flash memory and 1.5 MB of SRAM.

NXP BlueBox 2.0 adheres to automotive compliance and safety standards such as the
ASIL-B/C and D to ensure operability and reliability in all real-world conditions. Figure 7
below provides a high-level system architecture view of NXP BlueBox 2.0 [9].

J. Low Power Electron. Appl. 2022, 12, 8 9 of 15J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 9 of 16

Figure 7. A high-level system architecture view of NXP BlueBox 2.0.

Figure 8 below provides a top-frontal view NXP BlueBox 2.0 automotive embedded
development platform.

Figure 8. NXP BlueBox 2.0.

4.2. RTMaps (Real-Time Multi-Sensor Applications) Remote Studio Software
RTMaps (Real-time Multi-sensor Applications) Remote Studio Software is a compo-

nent-based software development and execution environment made by Intempora to fa-
cilitate development of autonomous driving and related automotive applications [25]. It
allows users to link various sensors and hardware components by providing a host of
component libraries for automotive sensors, buses, and perception algorithm design as
well as support for almost any type of sensors and any number of those sensors.

RTMaps can run on Windows and Linux operating systems and provides support
for PyTorch and TensorFlow deep learning frameworks. In RTMaps, programming is
done using Python scripting language and then deployed for real-time inference on NXP
BlueBox 2.0.

Figure 7. A high-level system architecture view of NXP BlueBox 2.0.

Figure 8 below provides a top-frontal view NXP BlueBox 2.0 automotive embedded
development platform.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 9 of 16

Figure 7. A high-level system architecture view of NXP BlueBox 2.0.

Figure 8 below provides a top-frontal view NXP BlueBox 2.0 automotive embedded
development platform.

Figure 8. NXP BlueBox 2.0.

4.2. RTMaps (Real-Time Multi-Sensor Applications) Remote Studio Software
RTMaps (Real-time Multi-sensor Applications) Remote Studio Software is a compo-

nent-based software development and execution environment made by Intempora to fa-
cilitate development of autonomous driving and related automotive applications [25]. It
allows users to link various sensors and hardware components by providing a host of
component libraries for automotive sensors, buses, and perception algorithm design as
well as support for almost any type of sensors and any number of those sensors.

RTMaps can run on Windows and Linux operating systems and provides support
for PyTorch and TensorFlow deep learning frameworks. In RTMaps, programming is
done using Python scripting language and then deployed for real-time inference on NXP
BlueBox 2.0.

Figure 8. NXP BlueBox 2.0.

J. Low Power Electron. Appl. 2022, 12, 8 10 of 15

4.2. RTMaps (Real-Time Multi-Sensor Applications) Remote Studio Software

RTMaps (Real-time Multi-sensor Applications) Remote Studio Software is a component-
based software development and execution environment made by Intempora to facilitate
development of autonomous driving and related automotive applications [25]. It allows
users to link various sensors and hardware components by providing a host of component
libraries for automotive sensors, buses, and perception algorithm design as well as support
for almost any type of sensors and any number of those sensors.

RTMaps can run on Windows and Linux operating systems and provides support for
PyTorch and TensorFlow deep learning frameworks. In RTMaps, programming is done
using Python scripting language and then deployed for real-time inference on NXP BlueBox
2.0.

5. Cyberinfrastructure

This section provides details on the hardware and software utilized for training
and testing the proposed CondenseNeXtV2 CNN architecture from which results are
extrapolated accordingly in the following sections.

5.1. Cyberinfrastructure for Training the Proposed CNN

Cyberinfrastructure for training is provided and managed by the Research Technolo-
gies division at the Indiana University in part by Shared University Research grants from
IBM Inc. to Indiana University and Lilly Endowment Inc. through its support for the
Indiana University Pervasive Technology Institute [26]. It is as follows:

• Intel Xeon Gold 6126 12-core CPU with 32 GB RAM.
• NVIDIA Tesla V100 GPU.
• CUDA Toolkit 10.2.
• Python version 3.7.9.
• PyTorch version 1.10.

5.2. Cyberinfrastructure for Testing the Proposed CNN

Cyberinfrastructure for testing is provided and managed by the Internet of Things (IoT)
Collaboratory at the Purdue School of Engineering and Technology at Indiana University
Purdue University at Indianapolis as follows:

• NXP BlueBox 2.0 embedded development platform.
• Intempora RTMaps Remote Studio version 4.9.0.
• Python version 3.6.7.
• PyTorch version 1.10.

6. Experiments and Results

This section provides information on experiment results based on extensive training
and testing of the proposed convolutional neural network, CondenseNeXtV2, on CIFAR-10
and CIFAR-100 benchmarking datasets to verify real-time image classification performance
on NXP BlueBox 2.0. CondenseNeXtV2 CNN has been adapted to be compatible with the
latest stable release of PyTorch version 1.10.0 and CUDA toolkit version 10.2 [14] whereas
CondenseNet and CondenseNeXt CNNs are based on PyTorch version 1.1.0 and 1.9.0
respectively.

6.1. CIFAR-10 Dataset

CIFAR-10 dataset is a popular computer-vision dataset used for image classification
and object detection. It consists of 60,000 32 × 32 RGB color images equally divided into 10
object classes with 6,000 images per class. CIFAR-10 dataset is split into two sets: 50,000
images for training a CNN and 10,000 images for testing the performance of trained model
weights. The training and testing sets are mutually exclusive to obtain fair evaluation
results.

J. Low Power Electron. Appl. 2022, 12, 8 11 of 15

CondenseNeXtV2 CNN was trained for 200 epochs with a batch size of 64 input
images. Since learning algorithm for CondenseNet, CondenseNeXt and CondenseNeXtV2
is unique, hyperparameters such as growth and learning rate for training these CNNs
is different. Python scripting language was utilized to develop an image classification
algorithm for CIFAR-10 dataset and the trained weights were then deployed on to NXP
BlueBox 2.0 embedded development platform using RTMaps Remote Studio software for
image classification performance evaluation.

Table 1 provides an overview of testing results in terms of FLOPs, number of trainable
parameters, Top-1 accuracy and inference time when evaluated on NXP BlueBox 2.0. Top-1
accuracy corresponds to one class predicted by CNN with highest probability of matching
the expected answer, also known as the ground truth. Figure 9 provides an overview of
model performance curves and Figure 10 provides screenshot of single image classification
performance of CondenseNeXtV2 when evaluated on NXP BlueBox 2.0 using RTMaps
Remote Studio software on a Linux PC.

Table 1. Comparison of CIFAR-10 single image classification performance.

CNN FLOPs
(in Million)

Parameters
(in Million) Top-1 Accuracy Inference Time

(in Seconds)

CondenseNet 65.81 0.52 94.69% 0.1346
CondenseNeXt 23.80 0.16 92.28% 0.0659

CondenseNeXtV2 23.80 0.16 93.57% 0.0528

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 11 of 16

matching the expected answer, also known as the ground truth. Figure 9 provides an over-
view of model performance curves and Figure 10 provides screenshot of single image
classification performance of CondenseNeXtV2 when evaluated on NXP BlueBox 2.0 us-
ing RTMaps Remote Studio software on a Linux PC.

Table 1. Comparison of CIFAR-10 single image classification performance.

CNN FLOPs
(in Million)

Parameters
(in Million) Top-1 Accuracy Inference Time

(in Seconds)
CondenseNet 65.81 0.52 94.69% 0.1346

CondenseNeXt 23.80 0.16 92.28% 0.0659
CondenseNeXtV2 23.80 0.16 93.57% 0.0528

Figure 9. Performance curves of CondenseNeXtV2 vs. CondenseNet and CondenseNeXt. These
CNN models are trained on CIFAR-10 dataset for 200 epochs each.

Figure 9. Performance curves of CondenseNeXtV2 vs. CondenseNet and CondenseNeXt. These
CNN models are trained on CIFAR-10 dataset for 200 epochs each.

6.2. CIFAR-100 Dataset

CIFAR-100 dataset is another popular computer-vision dataset used for image classi-
fication and object detection. It also consists of 60,000 32 × 32 RGB color images equally
divided into 100 object classes with 600 images per class. CIFAR-100 dataset is split into
two sets: 50,000 images for training a CNN and 10,000 images for testing the performance
of trained model weights. As with CIFAR-10 dataset, the training and testing sets are also
mutually exclusive in this dataset to obtain fair evaluation results.

CondenseNeXtV2 CNN was trained for 240 epochs with a batch size of 64 input images.
Hyperparameters such as growth and learning rate for training these CNNs is different
because learning algorithm for CondenseNet, CondenseNeXt and CondenseNeXtV2 is
unique. Python scripting language was utilized to develop an image classification algorithm
for CIFAR-100 dataset and the trained weights were then deployed on to NXP BlueBox

J. Low Power Electron. Appl. 2022, 12, 8 12 of 15

2.0 embedded development platform using RTMaps Remote Studio software for image
classification performance evaluation.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 12 of 16

Figure 10. NXP BlueBox 2.0 single image classification prediction of a horse as an input image being
observed in RTMaps Remote Studio software.

6.2. CIFAR-100 Dataset
CIFAR-100 dataset is another popular computer-vision dataset used for image clas-

sification and object detection. It also consists of 60,000 32 × 32 RGB color images equally
divided into 100 object classes with 600 images per class. CIFAR-100 dataset is split into
two sets: 50,000 images for training a CNN and 10,000 images for testing the performance
of trained model weights. As with CIFAR-10 dataset, the training and testing sets are also
mutually exclusive in this dataset to obtain fair evaluation results.

CondenseNeXtV2 CNN was trained for 240 epochs with a batch size of 64 input im-
ages. Hyperparameters such as growth and learning rate for training these CNNs is dif-
ferent because learning algorithm for CondenseNet, CondenseNeXt and CondenseN-
eXtV2 is unique. Python scripting language was utilized to develop an image classification
algorithm for CIFAR-100 dataset and the trained weights were then deployed on to NXP
BlueBox 2.0 embedded development platform using RTMaps Remote Studio software for
image classification performance evaluation.

Figure 10. NXP BlueBox 2.0 single image classification prediction of a horse as an input image being
observed in RTMaps Remote Studio software.

Table 2 provides an overview of testing results in terms of FLOPs, number of trainable
parameters, Top-1 accuracy and inference time when evaluated on NXP BlueBox 2.0.
Figure 11 provides an overview of model performance curves and Figure 12 provides
screenshot of single image classification performance of CondenseNeXtV2 when evaluated
on NXP BlueBox 2.0 using RTMaps Remote Studio software on a Linux PC.

Table 2. Comparison of CIFAR-100 single image classification performance.

CNN FLOPs
(in Million)

Parameters
(in Million) Top-1 Accuracy Inference Time

(in Seconds)

CondenseNet 65.85 0.55 76.65% 0.2483
CondenseNeXt 26.38 0.22 74.87% 0.1125

CondenseNeXtV2 26.38 0.22 75.54% 0.0972

J. Low Power Electron. Appl. 2022, 12, 8 13 of 15

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 13 of 16

Table 2 provides an overview of testing results in terms of FLOPs, number of traina-
ble parameters, Top-1 accuracy and inference time when evaluated on NXP Bluebox 2.0.
Figure 11 provides an overview of model performance curves and Figure 12 provides
screenshot of single image classification performance of CondenseNeXtV2 when evalu-
ated on NXP BlueBox 2.0 using RTMaps Remote Studio software on a Linux PC.

Table 2. Comparison of CIFAR-100 single image classification performance.

CNN
FLOPs

(in Million)
Parameters
(in Million) Top-1 Accuracy

Inference Time
(in Seconds)

CondenseNet 65.85 0.55 76.65% 0.2483
CondenseNeXt 26.38 0.22 74.87% 0.1125

CondenseNeXtV2 26.38 0.22 75.54% 0.0972

Figure 11. Performance curves of CondenseNeXtV2 vs. CondenseNet and CondenseNeXt. These
CNN models are trained on CIFAR-100 dataset for 240 epochs each.

Figure 11. Performance curves of CondenseNeXtV2 vs. CondenseNet and CondenseNeXt. These
CNN models are trained on CIFAR-100 dataset for 240 epochs each.

J. Low Power Electron. Appl. 2022, 12, x FOR PEER REVIEW 14 of 16

Figure 12. NXP BlueBox 2.0 single image classification prediction of a train as an input image being
observed in RTMaps Remote Studio software.

7. Conclusions
The scope of the work presented within this paper focuses on introducing a modern

image classifier named CondenseNeXtV2 which is light-weight and ultra-efficient that is
intended to be deployed on local embedded systems, also known as edge devices, for
general-purpose usage. This proposed CNN utilizes a new self-querying augmentation
policy technique on a target dataset along with adaption to the latest version of PyTorch
framework and activation functions resulting in improved efficiency in image classifica-
tion computation and accuracy.

CondenseNeXtV2 CNN was extensively trained from scratch and tested on two
benchmarking datasets: CIFAR-10 and CIFAR-100 in order to verify the single image clas-
sification performance. The trained weights of CondenseNeXtV2 were then deployed on
NXP BlueBox which is an edge device designed to serve as a development platform for
self-driving cars, and the results were extrapolated and compared to its baseline architec-

Figure 12. NXP BlueBox 2.0 single image classification prediction of a train as an input image being
observed in RTMaps Remote Studio software.

J. Low Power Electron. Appl. 2022, 12, 8 14 of 15

7. Conclusions

The scope of the work presented within this paper focuses on introducing a modern
image classifier named CondenseNeXtV2 which is light-weight and ultra-efficient that
is intended to be deployed on local embedded systems, also known as edge devices, for
general-purpose usage. This proposed CNN utilizes a new self-querying augmentation
policy technique on a target dataset along with adaption to the latest version of PyTorch
framework and activation functions resulting in improved efficiency in image classification
computation and accuracy.

CondenseNeXtV2 CNN was extensively trained from scratch and tested on two
benchmarking datasets: CIFAR-10 and CIFAR-100 in order to verify the single image
classification performance. The trained weights of CondenseNeXtV2 were then deployed on
NXP BlueBox which is an edge device designed to serve as a development platform for self-
driving cars, and the results were extrapolated and compared to its baseline architecture,
CondenseNet, accordingly. CondenseNeXtV2 demonstrates an increase in Top-1 accuracy
over CondenseNeXt as well as utilizes fewer number of FLOPs and total number of
trainable parameters in comparison to CondenseNet, observed during the training and
testing phases.

Author Contributions: Conceptualization, P.K. and M.E.-S.; methodology, P.K.; software, P.K.; vali-
dation, P.K. and M.E.-S.; writing—original draft preparation, P.K.; writing—review and editing, P.K.
and M.E.-S.; supervision, M.E.-S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the fact that all the authors work at
the same institution and there is no necessity to create repository for data exchange.

Acknowledgments: The authors like to acknowledge the Indiana University Pervasive Technology
Institute for providing supercomputing and storage resources as well as the Internet of Things
(IoT) Collaboratory at the Purdue School of Engineering and Technology at Indiana University
Purdue University at Indianapolis for providing autonomous vehicle development platform that
have contributed to the research results reported within this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Berners-Lee, C.M. Cybernetics and Forecasting. Nature 1968, 219, 202–203. [CrossRef]
2. Gershgorn, D. ImageNet: The Data that Spawned the Current AI Boom, QUARTZ. Available online: https://qz.com/1034972/

the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/ (accessed on 10 January 2022).
3. Alex, K.; Sutskever, I.; Geoffrey, H. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60,

84–90. [CrossRef]
4. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
5. Deshpande, A. Engineering at Forward|UCLA CS ’19. Available online: https://adeshpande3.github.io/ (accessed on 10 January

2022).
6. Dimitriou, N.; Kioumourtzis, G.; Sideris, A.; Stavropoulos, G.; Taka, E.; Zotos, N.; Leventakis, G.; Tzovaras, D. An integrated

framework for the timely detection of petty crimes. In Proceedings of the 2017 European Intelligence and Security Informatics
Conference, Athens, Greece, 11–13 September 2017. [CrossRef]

7. Lotfi, A.; Bouchachia, H.; Gegov, A.; Langensiepen, C.; McGinnity, M. (Eds.) Advances in Computational Intelligence Systems;
Springer: Berlin/Heidelberg, Germany, 2018; p. 840. [CrossRef]

8. Kalgaonkar, P.; El-Sharkawy, M. CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded Systems. In Proceedings
of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference, CCWC 2021, Las Vegas, NV, USA,
27–30 January 2021; pp. 524–528. [CrossRef]

9. Cureton, C.; Douglas, M. Bluebox Deep Dive—NXP’s AD Processing Platform; NXP: Einhofen, The Netherlands, 2019; p. 28.
10. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Policies from Data. Cvpr 2019,

2018, 113–123.

http://doi.org/10.1038/219202b0
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
https://qz.com/1034972/the-data-that-changed-the-direction-of-ai-research-and-possibly-the-world/
http://doi.org/10.1145/3065386
http://doi.org/10.1007/s11263-015-0816-y
https://adeshpande3.github.io/
http://doi.org/10.1109/EISIC.2017.13
http://doi.org/10.1007/978-3-319-97982-3
http://doi.org/10.1109/CCWC51732.2021.9375950

J. Low Power Electron. Appl. 2022, 12, 8 15 of 15

11. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Processing Syst. 2019, 32, 8026–8037.

12. Collobert, R.; Kavukcuoglu, K.; Farabet, C. Torch7: A Matlab-like Environment for Machine Learning. NIPS. 2011. Available
online: https://infoscience.epfl.ch/record/192376/files/Collobert_NIPSWORKSHOP_2011.pdf (accessed on 10 January 2022).

13. Fridman, L.; Ing, L.D.; Jenik, B.; Reimer, B. Arguing Machines: Human Supervision of Black Box AI Systems That Make Life-
Critical Decisions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, Long Beach, CA, USA, 16–20 June 2019. [CrossRef]

14. PyTorch. PyTorch 1.10 Release, including CUDA Graphs APIs, Frontend and Compiler Improvements. Available online:
https://pytorch.org/blog/pytorch-1.10-released/ (accessed on 10 January 2022).

15. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; pp.
1492–1500. [CrossRef]

16. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
[CrossRef]

17. Huang, G.; Liu, S.; van der Maaten, L.; Weinberger, K.Q. CondenseNet: An Efficient DenseNet using Learned Group Convolutions.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI,
USA, 21–26 July 2017; pp. 2752–2761. [CrossRef]

18. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 30th IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [CrossRef]

19. Wu, S.; Li, G.; Deng, L.; Liu, L.; Wu, D.; Xie, Y.; Shi, L. L1-Norm Batch Normalization for Efficient Training of Deep Neural
Networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2043–2051. [CrossRef] [PubMed]

20. Cui, Y.; Jia, M.; Lin, T.Y.; Song, Y.; Belongie, S. Class-balanced loss based on effective number of samples. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp.
9268–9277. [CrossRef]

21. DeVries, T.; Taylor, G.W. Improved Regularization of Convolutional Neural Networks with Cutout. arXiv 2017, arXiv:1708.04552.
22. Inoue, H. Data Augmentation by Pairing Samples for Images Classification. arXiv 2018, arXiv:1801.02929.
23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
24. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Openai, O.K. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
25. IUPUI. Speed Is Key to Safety—dSPACE. Available online: https://www.dspace.com/en/inc/home/applicationfields/stories/

iupui-speed-is-key-to-safety.cfm (accessed on 10 January 2022).
26. Stewart, C.A.; Welch, V.; Plale, B.; Fox, G.; Pierce, M.; Sterling, T. Indiana University Pervasive Technology Institute. IUScholar-

Works. Available online: https://scholarworks.iu.edu/dspace/handle/2022/21675 (accessed on 10 January 2022).

https://infoscience.epfl.ch/record/192376/files/Collobert_NIPSWORKSHOP_2011.pdf
http://doi.org/10.1109/CVPRW.2019.00173
https://pytorch.org/blog/pytorch-1.10-released/
http://doi.org/10.1109/CVPR.2017.634
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.1109/CVPR.2018.00291
http://doi.org/10.1109/CVPR.2017.195
http://doi.org/10.1109/TNNLS.2018.2876179
http://www.ncbi.nlm.nih.gov/pubmed/30418924
http://doi.org/10.1109/CVPR.2019.00949
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.dspace.com/en/inc/home/applicationfields/stories/iupui-speed-is-key-to-safety.cfm
https://www.dspace.com/en/inc/home/applicationfields/stories/iupui-speed-is-key-to-safety.cfm
https://scholarworks.iu.edu/dspace/handle/2022/21675

	Introduction
	Background and Literature Review
	Artificial Neural Networks
	Representation Learning in Multi-Layer Feed-Forward Neural Networks
	Evolution of CondenseNeXt

	CondenseNeXtV2 Architecture
	Convolutional Layers
	Model Compression
	Network Pruning
	Class-Balanced Focal Loss (CFL) Function
	Cardinality

	Data Augmentation
	Activation Function

	NXP BlueBox 2.0 Embedded Development Platform
	System Design of NXP BlueBox Gen2 Family
	RTMaps (Real-Time Multi-Sensor Applications) Remote Studio Software

	Cyberinfrastructure
	Cyberinfrastructure for Training the Proposed CNN
	Cyberinfrastructure for Testing the Proposed CNN

	Experiments and Results
	CIFAR-10 Dataset
	CIFAR-100 Dataset

	Conclusions
	References

