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Abstract: Accelerated simulations of biological neural networks are in demand to discover the
principals of biological learning. Novel many-core simulation platforms, e.g., SpiNNaker, BrainScaleS
and Neurogrid, allow one to study neuron behavior in the brain at an accelerated rate, with a high
level of detail. However, they do not come anywhere near simulating the human brain. The massive
amount of spike communication has turned out to be a bottleneck. We specifically developed a
network simulator to analyze in high detail the network loads and latencies caused by different
network topologies and communication protocols in neuromorphic computing communication
networks. This simulator allows simulating the impacts of heterogeneous neural networks and
evaluating neuron mapping algorithms, which is a unique feature among state-of-the-art network
models and simulators. The simulator was cross-checked by comparing the results of a homogeneous
neural network-based run with corresponding bandwidth load results from comparable works.
Additionally, the increased level of detail achieved by the new simulator is presented. Then, we show
the impact heterogeneous connectivity can have on the network load, first for a small-scale test case,
and later for a large-scale test case, and how different neuron mapping algorithms can influence this
effect. Finally, we look at the latency estimations performed by the simulator for different mapping
algorithms, and the impact of the node size.

Keywords: network simulator; neuromorphic computing; communication network; heterogeneous
connectivity models; neuron mappings

1. Introduction

Recently, great improvements in the performance of neural network (NN) implementa-
tions have been achieved in systems such as TrueNorth [1], which is intended for cognitive
computing applications with very low area and power requirements, and in the field of
biological neural network (BNN) simulation, such as the SpiNNaker system [2], Brain-
ScaleS [3] and Neurogrid [4]. The later aims to allow better insights into biological learning
principles—in what is known as computational neuroscience. Both approaches rely on
distributed computing with decentralized memory. These many-core systems realize the
very high communication demands between the cores with an overlaying interconnected
communication network. The number of neurons and their connectivity level in a cognitive
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computing system provide far more complexity than the fan-out in traditional computer ar-
chitectures, but the complexity is still orders of magnitude less than that in the human brain.
In the field of computational neuroscience, the number of neurons and their connectivity
need to reach biological levels, which for the human brain means approximately 1011 neu-
rons with around 10,000 synapses, i.e., connections, per neuron. For meaningful research on
the principles of biological computing, a significant acceleration in simulations compared
to biological real-time is needed [5]. In contrast to cognitive computing systems, power
consumption and implementation size are mainly limited by physical constraints—i.e., the
power density needs to remain manageable. For this, the inclusion of new power-efficient
technologies may need to be considered. Each of the platforms recently developed for
computational neuroscience (see above) has different strengths, but none of them meets
the requirements concerning size, connectivity and acceleration factor of the Advanced
Computing Architectures (ACA) project [6] this work is part of.

The simulation platform to be developed within the ACA project shall enable the
simulation of large-scale, natural-density connected BNNs with an acceleration factor of
100. The acceleration, combined with a desired simulation time step of 0.1 ms, would
result in a time constraint of 1 µs of wall clock time per time step. Both the calculations
performed in the nodes to mimic neuron behavior and the transmission of generated spikes
have to be performed during this time. Assuming an even allocation of time for both tasks
leaves a maximum of 500 ns to send all generated spikes to their destinations. This chal-
lenge requires a new communication network, as the communication requirements differ
substantially from those of traditional computer communication networks. In particular,
a large amount of very small information packets need to be sent with minimum latency,
in contrast to the fewer large data streams typically for traditional computer networks.
This cannot be realized by making use of recent technological advancements in communi-
cation components alone, and thus a reconsideration of the network concept itself has to
be enabled.

This paper focuses on a Python-based network simulator allowing for the analysis
of both the communication bandwidth and the latency between processing elements in
a neurmorphic computing (NC) system according to the requirements outlined above.
Section 2 presents a brief introduction to NC systems. The network simulator is described
in Section 3. In Section 4 the simulation results are outlined. Section 4.1 focuses on the
analysis of the homogeneous connectivity model and compares the results with the current
state of the art. Section 4.2 discusses the impact of heterogeneous NNs and the mapping of
these NNs. Finally, in Section 5 the summary and outlook for possible future works are
presented. As this contribution is an extension of our paper [7] previously submitted to the
International Symposium of Embedded Multicore/Many-core Systems on Chip (MCSoC-
2021), the Introduction and Sections 2–4.1 are similar to those of the original. The original
paper mainly focuses on the simulator’s implementation, along with a brief verification
and proof of concept study, i.e., showing the need for a simulator that is able to handle
heterogeneous connectivity models. For this contribution, the focus was extended from the
simulator’s implementation and verification to the analysis of a biologically representative
large-scale, heterogeneous NN, the multi-area model [8], in Section 4.2.

2. Background and motivation
2.1. Neuromorphic Computing Systems

Although most existing large-scale NC systems [1–5,9,10] follow the same concept,
there are fundamentally differences concerning techniques and designs to achieve their
respective goals. In order to better recognize the general problems which arise during
the development of such systems, one needs to consider the general functionality of NC
systems. In the following, we give a short description of this. NC systems need to include
two constituent items, i.e., a vast number of relatively simple computational units (CU),
and a network which connects the individual CUs (Figure 1), ensuring a high bandwidth
and low latency communication.
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Figure 1. An example of a basic neuromorphic system’s structure, i.e., an interconnected square-mesh
system [7].

2.1.1. Neural and Synaptic Modeling by the CUs

A brain is organized as a massively parallelized system with neurons and synapses as
the elemental units. In order to get at least close to this level of parallelism, a simulation of
these units is carried out within a large number of CUs, with each CU being responsible for
a group of neurons and the corresponding synapses according to a predefined connectivity
model. The neuron spike is initiated by the neuron membrane potential surpassing a certain
threshold. A small spike-related data packet is generated and either retained within the
CU or transmitted to one or more other CUs, as determined by the connectivity model.
After the distribution of the spike packet within and between the CUs, first the states
of the synapses and secondly the states of the neurons are updated according to their
behavioral model.

2.1.2. Interconnect Design and Spike Communication

The communication between neurons in a biological brain is facilitated by axons
and dendrites, linked by synapses. This hardwired connectivity between the neurons is
very dense, as it utilizes all three spatial dimensions. Additionally, structural plasticity,
i.e., realizing new and removing existing connections, is observed in biological neural
networks. Both the biological density and structural plasticity are not possible to realize
in current VLSI (very-large-scale integration) technologies. On the other hand, technical
electrical signals’ transfer speeds are multiple orders of magnitude higher than in the
brain. Existing NC systems make use of this by time division multiplexing of signals from
different neurons on shared connections. By means of modern routing concepts, the CUs are
connected to a network of shared connections and an address event representation (AER)
protocol is used to route the spike packets according to the connectivity definition. Due to
the temporal relation-based information coding in biology, spike packets next to the timing
information only include the AER-address to route the packet. To ensure deterministic
behavior of the NC-system, the communication network needs to be able to handle a very
large number of small spike packets within a given time frame, requiring low latency,
without dropping any packet. In contrast to this, other high-bandwidth networks often
have to process large streams of data, whereas latency is less important.

2.2. Motivation and Comparable Work

Fulfilling all the requirements outlined above for designing large-scale NC systems is
a complex task. The load on the network and the resulting latency are determined by the
number of neurons to be simulated and the communication network topology, together
with the routing and casting protocols. For this, it is necessary to perform a comprehen-
sive analysis of the performances of different communication network topologies and
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communication protocols in order to ensure a well-informed design choice. Comparable
studies have been conducted previously, but never at the same level of detail. In [11] a
mathematical approach to calculate the bandwidth in a NC communication network is
presented. This approach gives a good initial approximation of the network load, but is
highly generalized, returns only average values and is limited to very basic connectivity
schemes. In [12], a numerical model was used to determine the network load and latency.
It offers a higher level of detail and allows more complex connectivity schemes. However,
this model still assumes a level of homogeneity in the network. Every neuron has the same
probability of connecting to other neurons, i.e., the same probability function is used for
every neuron. This does not represent the connectivity observed in the brain, where the
connectivity is much more heterogeneous. The connectivity of neurons varies in both the
number of connections and the destinations. Two biological network models, often used
within the ACA project, which are characterized by this heterogeneous connectivity, are
described in [8,13]. The simulator introduced in this work can run such a heterogeneous
NN in its analysis and show the effect this has on the network load and latency. Based
on this, the simulator is also able to investigate how to efficiently map neurons to the NC
system, as will be explained in more detail in Section 3.3.

3. Neuromorphic Communication Network Simulator

In this section, the Python simulator is described at a high level of abstraction. A more
detailed description of the simulator can be found in the Supplementary Material.

3.1. High-Level Simulator Description

The Python simulator is designed to provide performance analyses of chosen commu-
nication infrastructures for NC systems rather than explorations of neural networks or the
behavior of individual neurons. Thus, the NC system is modeled as a directional graph.
The latter consists of vertices corresponding to CUs and edges corresponding to unidirec-
tional links. Bidirectional links of the hardware system are mimicked by two antipodal
unidirectional links. While analyses are restricted to the square-mesh topology in this paper,
the simulator can deal with different regular meshes and hierarchical networks, or other
more complex topologies. Fostered by its design, which neglects, for example, computa-
tions of membrane potentials and synaptic behavior, a variety of communication network
architectures and communication protocols, such as casting and routing schemes, can be
examined to substantiate a design decision of a physical implementation. Without node
internal calculations, spike packets can be dropped once they reach their destinations, and
only transfers from source nodes to destination nodes are considered.

Thus, there are no temporal triggers for spike production, but there is rather the
assumption that every neuron spikes once. Since the total network traffic is determined
by superposition of the traffic loads caused by single neurons this way, their firing rates
(FR) can be considered as simple multipliers. A simulation then delivers the number of
spike packets nPackets passing through each node and over each link in a given time frame
T. For an example also covering the desired acceleration factor, please look at [7]. If there is
approximately the same level of activity for all neurons in the NN, an average firing rate
can be used. In biological NNs, however, neurons typically have different levels of activity,
so this condition does not apply. For this reason, it is advantageous to set an FR multiplier
for a neuron or a group of neurons separately.

Additionally, a network load based on average firing rates is not a good way to identify
bottlenecks created by peak traffic loads during high levels of activity. By changing the
FRs of specific neurons or neuron populations, periods of high activity can be mimicked as
well, and the corresponding peak traffic loads can be estimated. Variations in the network
load are also created by boundary effects of the hardware system and variations in the
connectivity of the NN. These effects are discussed in more detail in Sections 4.1 and 4.2.
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Equation (1) relates the network loads determined this way to bandwidth requirements.
The packet size used in this equation depends on the network size, the routing and casting
scheme and the header or debug bits that are potentially added:

Bandwidth =
npackets · Bits/packet

T
. (1)

To convey a concise picture, two ways to state the bandwidth requirements should
be distinguished: the bandwidth requirements of the routers, i.e., the number of packets
passing through individual nodes, and the bandwidth requirements of the input and output
ports, i.e., the number of packets passing over each link. In addition to these quantities,
the simulator can determine the difference between the instants of time during which a
packet is sent by a neuron and received by all its destinations, i.e., latency. According to its
principle of operation, this latency is unitless and indicates the “number of routers passed,”
also called “hops”, which is used below. By assigning values to the user defined parameters
trouter and tlink, however, it is possible to provide real time estimates. These estimates reflect
best case scenarios—with routers processing packets immediately upon arrival—since the
timing of spike events is not modeled and arbitration within routers is thus neglected. Still,
they are deemed appropriate at the design stage considered, because trouter and tlink largely
depend on hardware design and technology, which are kept open. Stating results in terms
of hops, as below, is equivalent to setting trouter = 1 and tlink = 0.

3.2. Neural Network Generation

To derive realistic traffic loads on the hardware network, the simulator needs to be fed
with exemplary NNs. Currently it supports three NN representations for this purpose:

• Netlist-based simulation.
• Connectivity matrix simulation.
• Location-based connectivity simulation.

3.2.1. Netlist-Based Simulation

This mode provides the highest flexibility but has also the largest memory footprint
limiting the NN size. At simulation start-up, a JSON-file is created according to a user’s
specifications. For convenience, functions are provided that help create netlist files for
the test cases of the ACA project, e.g., the cortical microcircuit published by Potjans and
Diesmann [13]. However, any other NN type can be specified by the user with a netlist
adhering to the format discussed in the Supplementary Material or in [7]. The netlist
contains all information for a repeatable, deterministic simulation. Just as an example,
3.8 GB is required in this mode to store the netlist of the cortical microcircuit with its 78,071
neurons on disk, and a multiple of this is required to load the model into working memory.

3.2.2. Connectivity Matrix Simulation

In computational neuroscience, NNs are modeled by statistical connection probabilities
between populations, i.e., neuron clusters of a given size, so that the level of detail provided
by netlist-based simulations is not required. For larger scale NNs, such as the multi-area
model [8], the simulator can dynamically create connections without the need for a detailed
netlist and mitigate the high memory utilization this way. In this mode, it relies on a
connectivity matrix (CM) with connection statistics that are stored in a .csv file. Each row
of the file contains a population name and the population size, followed by the connection
probabilities to the populations. After skipping the first two columns when counting, CX,Y
specifies the probability that a neuron from population X is connected to a neuron from
population Y. In general CX,Y 6= CY,X , which means C is not symmetric.
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3.2.3. Location Based Connectivity

This approach is similar in spirit to the connectivity matrix described above, but allows
the connection probability to depend on the positions of neurons within the communication
network. A constant probability function will yield a uniform randomly connected NN
(RNDC). Alternatively, connectivity models as described in [12], such as the radially or
biologically motivated distribution, can be examined by letting the probability function
depend on the distance between nodes containing source and target neurons.

3.3. Neuron Mapping

Heterogeneous NNs pose an additional challenge to the simulator, since the overall
traffic generated by a neuron depends on its position in the network. The analysis of
such networks is a special feature of this simulator distinguishing it from existing network
models mentioned in Section 2.2. Neuron mapping, i.e., the assignment of neurons to
nodes, creates proximity relations between neurons that significantly affect traffic loads on
the network. Network load and latency can obviously be reduced when tightly coupled
neurons are placed in close proximity—ideally on the same node. On the other hand,
hardware constraints impose limits on the proximity due to the large number of neurons
and high connectivity levels in large-scale heterogeneous NNs. Thus, neuron placement
needs to be optimized to reduce overall traffic load and/or latency at the system level.
Emphasis is placed on this aspect in Section 4.2 based on the simulation results.

Depending on the neural network generation mode chosen, some mapping algorithms
are more suitable than others. Netlist-based network generation allows for the application
of VLSI-inspired placement algorithms targeting at optimal locations for individual neurons.
However, in addition to the memory constraints mentioned above, the complexities and
run times of these mapping approaches limit the applicability of netlist-based simulations.
Within heterogeneous NNs [8,13], neurons predominantly connect to neurons of the same
population or cluster; therefore, it is advantageous to map whole populations at once,
which is possible in the case of CM-based network generation.

At the time of writing this paper, the simulator includes population oriented mapping,
a cluster algorithm, along with some VLSI inspired placement algorithms, and will possibly
be extended in the future.

4. Results

The results provided in this section were used to validate the simulator against the
results of an analytical approach [11] for a homogeneous connectivity model on a square-
mesh topology that can be analyzed by both approaches. In addition, they are well suited
to show its increased level of detail, especially for heterogeneous NNs with appropriate
neuron mapping. While the impacts of several parameters will be analyzed, we do not
provide an extensive analysis of network topologies, routing schemes, casting schemes
and node sizes, i.e., the number of neurons per node. However, aside from the regular
square mesh, the torus variant is also examined, in which nodes at opposing perimeter grid
positions are directly connected. In addition, a selection of casting schemes is considered,
including unicast (UC), local multicast (LMC) and multicast (MC). They differ in the
number of spike packets sent by a neuron: one packet per target synapse in the case of
UC, one packet per target node in the case of LMC and one packet per source neuron with
duplication at branching points (intermediate nodes) in the case of MC. While network
traffic was expected to be reduced from the first to the last, the opposite would apply to
the required hardware resources per node. Since LMC requires duplication of packets
only within a destination node to reach all the target synapses, the hardware effort was
expected to be just slightly increased compared to UC, while network load—especially for
clustered neurons—could be reduced. UC and LMC can use destination based addresses
or even relative addresses, i.e., the number of hops in either direction needed to reach
the destination. Routing in this case can be implemented as a logic operation on the
target address and requires only a small number of logic gates. MC, on the other hand,
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requires some kind of lookup table (LUT), such as the content addressable memory (CAM)
used in the SpiNNaker system [2], which requires more hardware and is generally slower.
For broadcast (BC), as another common casting scheme, network load and latency can be
determined accurately with the analytical model, so it was neglected. In a regular square
mesh, the longest dimension first routing (LDFR) algorithm always returns the shortest
path between source and destination, so that it was selected in favor of a minimized latency.
For more information on this and other implemented routing algorithms, see [14]. Finally,
the number of neurons per node NpN) is important for the interpretation of results. It was
bounded by the two extreme cases: NpN = 1, i.e., dedicated hardware for each neuron,
and NpN = n, i.e., all neurons n located in one node. While NpN in general must be
closely related to the characteristics of node internal hardware, in the latter case, only the
advantage of specialized hardware would be retained with respect to a possible acceleration.
A value of NpN = 100 was used throughout the simulations examining the homogeneous
connectivity scheme and the cortical microcircuit model. The multi-area model simulations
were performed for NpN = 100, 250, 500 and NpN = 1000.

4.1. Homogeneous Connectivity Model Simulations

First, we focus on NNs with homogeneous connectivity and compare the simulated
network load and latency with results from the analytical model [11]. The latter approxi-
mates the average number of spikes per link BWavg by

BWavg =
n · Ntargets · Davg

L
· FRavg, (2)

where FRavg is the average firing rate of all neurons and L is the number of links in the
network. FRavg is a linear multiplier and can be set in both the simulator and the analytical
model, so that we used FRavg = 1. The remaining variables, Davg and Ntargets, are the
average distance between source and destination and the average number of targets that
need to be reached, respectively. They differ among the casting types and will be related
to the characteristics of the uniform RNDC NN next. This connectivity model uses a
pre-defined connection probability ε to randomly select targets of a neuron. This results in
a NN with evenly distributed neuron targets.

For UC, Ntargets is equal to the average number of synapses per neuron (SpN) and can
be calculated according to the previous consideration as:

Ntargets,RNDC,UC = SpN = n · ε. (3)

For LMC and MC, the probability that a node contains at least one target synapse
needs to be calculated first. It is given by:

P(SpNd > 1) = 1− P(SpNd = 0) = 1− (1− ε)NpN , (4)

with SpNd being the number of target synapses per node. Ntargets is equal to the number of
nodes containing target neurons for LMC and MC. In a network with N nodes, this number
can be approximated with

Ntargets,RNDC,LMC = Ntargets,RNDC,MC = N · (1− (1− ε)NpN). (5)

For UC and LMC, Davg can be calculated from the connectivity model. Therefore,
we set ε approximately to the average connection probability of the cortical microcircuit
model (Section 4.2) for the rest of this subsection, i.e., ε = 0.048. In a regular square mesh,
the average distance to all targets is then determined by

Davg,square =
2
3

√
N, (6)
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because the synapses are distributed randomly across all nodes. In the case of the torus
variant, it is given by

Davg,torus =

{
1
2

√
N, if

√
N is odd.

N
2·(N−1)

√
N, if

√
N is even.

(7)

For MC, Davg needs to be calculated as the distance from the closest branch node (or
source) to the destination. Thus, it is harder to be calculated and can often only be roughly
approximated. With ε = 0.048, almost every node in the network will contain a target
synapse and will act as branch node, since Ntargets approaches N. This results in a value for
Davg slightly larger than one, so that Davg,MC ' 1 is used as the lower limit. BWavg,MC can
be determined more accurately by other tools, such as the one presented in [12], yet not in
heterogeneous networks.

Figure 2 presents box plots of network loads caused by an RNDC NN simulated on
a regular square mesh using the three casting types. For comparison, values determined
with the above equations and parameter values are shown. Analogous results for the torus-
shaped mesh are contained in Figure 3. In both Figures, i.e., for both topology variants,
good agreement between the analytical model and average values of network load provided
by the simulator can be observed. On the other hand, in Figure 2, i.e., for the case of the
regular square mesh, a large variance in the network load at different locations is apparent.
This occurs because centrally located links need to handle significantly more spike packets
than peripheral links. Such areas are significant, as they may impose communication
bottlenecks on the network caused by congestion. In a torus mesh, inherently there are no
distinguished locations. Consequently, there are no boundary effects, so that the variance
of the network load at different locations is low. When comparing the two topologies
with each other for 100,000 neurons, using the analytical model, differences in network
load of approximately 37% for UC and LMC and 3% for MC can be identified. However,
the differences between the maximum values established with the simulator rose to 89%
for UC and LMC and 92% for MC. Therefore, the torus variant is the preferred choice.
However, for fixed-size NC systems that simulate NNs of different sizes, there may be
occasions of low system utilization. In such cases, when the NN is located in a distinct part
of the system, care should be exercised not to create an isolated non-torus subnetwork.

Figure 2. Network load estimation of an RNDC NN on a square mesh for different types of casting,
(a) unicast, (b) local multicast, (c) multicast [7].
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Figure 3. Network load estimation for an RNDC NN on a square torus mesh for different types of
casting, (a) unicast, (b) local multicast, (c) multicast [7].

4.2. Heterogeneous Connectivity Model Simulations

To show the impact of heterogeneous connectivity, we examine the aforementioned
cortical microcircuit model [13] and the multi-area model [8]. As mentioned before in
Section 3.1, the FR can be set for individual neuron populations to account for differences
in spike activity in different time frames. However, at this point in time, the test cases do
not describe the distribution of spike activity in the networks, and as we were still looking
at the network load at a high level of abstraction, we kept FR = 1 for the rest of this work.

4.2.1. Cortical Microcircuit Model

The former model consists of four layers with two populations, an excitatory and an
inhibitory population each. Additionally, the model also contains a “thalamic” population.
The model specifies the number of neurons in each population and the connection prob-
ability CX,Y between neurons from population X and population Y, which are shown in
Table 1. With these values, we can determine the average connection probability between
neurons in this model to be 0.048.

Table 1. The connection probability matrix of the cortical microcircuit model [13].

Source Number Target Population (Y)
Population (X) of Neurons L2/3E L2/3I L4E L4I L5E L5I L6E L6I

L2/3E 20,683 0.1009 0.1346 0.0077 0.0691 0.1004 0.0548 0.0156 0.0364
L2/3I 5834 0.1689 0.1371 0.0059 0.0029 0.0622 0.0269 0.0066 0.0010
L4E 21,915 0.0437 0.0316 0.0497 0.0794 0.0505 0.0257 0.0211 0.0034
L4I 5479 0.0818 0.0515 0.1350 0.1597 0.0057 0.0022 0.0166 0.0005
L5E 4850 0.0323 0.0755 0.0067 0.0033 0.0831 0.0600 0.0572 0.0277
L5I 1065 0.0 0.0 0.0003 0.0 0.3726 0.3158 0.0197 0.0080
L6E 14,395 0.0076 0.0042 0.0453 0.1057 0.0204 0.0086 0.0396 0.0658
L6I 2948 0.0 0.0 0.0 0.0 0.0 0.0 0.2252 0.1443
TC 902 0.0 0.0 0.0983 0.0619 0.0 0.0 0.0512 0.0196

Figure 4 compares the throughput created by the cortical microcircuit model and an
RNDC NN model. Both used an average connectivity of ε = 0.048 and n = 78,071 neurons.
If random mapping is applied to the cortical microcircuit model, the network loads created
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by the models will be statistically equivalent. However, as outlined before, the simulator
allows for the application of a mapping algorithm to achieve beneficial placement. Table 1
shows for the cortical microcircuit model that the connectivity is generally highest between
neurons of the same population. For an efficient mapping, it is thus reasonable to group
all neurons of one population together. There is also a relevant secondary connectivity
between excitatory and inhibitory populations of the same layer, and to adjacent layers.
The network is therefore sequentially filled by a rudimentary mapping approach, layer by
layer. Figure 5 shows the resulting mapping.

Figure 4. Network load over each link for the cortical microcircuit model compared to an RNDC NN
of the same size and average connectivity for different types of casting, (a) unicast, (b) local multicast,
(c) multicast [7].

Figure 5. Sequential mapping of the cortical microcircuit model to a 28 × 28 square mesh network.
Different items of the legend correspond to different populations of the microcircuit model [7].

Simulation results after the mapping are contained in Figure 4 as well. They demon-
strate that the average network load is significantly reduced for all three casting types.
As detailed above, the maximum value is also a critical metric and rises notably for the UC
case. The location-dependent network load distributions for a random and a sequential
mapping, when using UC, are visualized in Figure 6 as heat maps. Every pixel in the heat
map represents a node in the network, and the color, the number of spike packets going
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through each node. In Figure 6a, we can see a uniform distribution of the network load,
caused by randomly mapping the neurons. We can observe reduced traffic in peripheral
regions, as this heat map presents results of a non-torus network. In Figure 6b, on the
other hand, the network area dedicated to L4I stands out due to high traffic load and may
likely become a bottleneck. Notable here is that the differences between the maximum
traffic loads for the different types of mapping seem to be larger in the box plots than in the
heat maps. This is because the traffic load in Figure 4 is given in spikes per link, whereas
Figure 6 shows the traffic load in spikes per node. Induced by sequential mapping, for both
LMC and MC, a significant reduction in the maximum network load can be seen in Figure 4,
in addition to the reduction in average network load. In a homogeneous NN, as in the
RNDC NN, all neurons have similar connections so that there is no underlying structure,
which renders sequential mapping ineffective.

Figure 6. Heatmaps of the network load through each node for two differently mapped cortical
microcircuit model simulations on a square mesh using UC, (a) random mapping, (b) sequential
mapping [7].

Figure 7 presents the latency estimates generated by the simulator. The latency per
neuron is determined by the farthest distance its generated spike packet has to travel to
reach all its destinations. The box plots in Figure 7 show the resulting latency values
for all neurons in the network. As discussed above, the LDFR algorithm always estab-
lishes the shortest path between source and destination, which causes the latency to be
independent of the casting type. An average latency of 41.9 hops was determined for all
neuron communications by the simulator for both the RNDC benchmark and the randomly
mapped cortical microcircuit model. When sequential mapping was applied, the average
latency dropped slightly to 40.25 hops hops. In a network, often the maximum latency is
the critical timing constraint rather than the average latency. For all models considered
in this subsection, this value is 55 hops—the maximum possible distance in the network.
This could be expected, because the probability that there is a connection between single
neurons in opposite corners is close to 1 in all three cases. This might be different for larger
NNs or other mapping algorithms.



J. Low Power Electron. Appl. 2022, 12, 23 12 of 17

Figure 7. Latency of the cortical microcircuit model compared to an RNDC NN simulated on a
square mesh.

4.2.2. Multi-Area Model

These previously discussed results already show the impacts heterogeneous con-
nectivity models in combination with an appropriate mapping can have on the network
load, even for this relatively small test case. This impact becomes even larger for larger
NNs. To show this, we used the multi-area model described in [8]. This model contains
4,130,044 neurons, making it approximately 52.9 times the size of the cortical microcircuit,
and it has an average connection probability of ε ≈ 0.0016. As the name suggests, this
model consists out of 32 areas. Each of these areas is comparable to the cortical microcircuit
with four layers and two populations per layer, but without a “thalamic” population. How-
ever, all areas have their own specific sizes and connection probabilities to populations
within and outside of the area. There is one unique area as well, as it does not contain
the layer-4 populations. Apart from this, the general structure of these areas is similar
to that of the microcircuit model. Connectivity is generally highest within a population
and its layer, followed by the connectivity between neighboring layers. At a higher level,
the connectivity between areas is significantly lower. Only the excitatory populations of
layers L2/3, L5 and L6 have outgoing connections to populations outside of their own
areas. However, all populations do have incoming connections from other populations.
Unfortunately, for this large-scale NN, the run time of the simulator is infeasible for certain
configurations, especially for small values of NpN. For some cases, as for UC and for a
random mapping of heterogeneous connectivity models, some optimization tricks for the
on-the-fly connectivity generation cannot be utilized, and the run time rises exponentially.
Luckily, these configurations are of less interest. UC will be the least desired casting scheme
due to the significantly higher network load, even for relatively small NpN, as the added
complexity of LMC is relatively small. As of such, UC is omitted in the subsequent analysis
of the multi-area model. The random mapping of neurons, on the other hand, might be
of interest to act as a benchmark, but as shown in Figure 4, this can be emulated with an
RNDC NN of equivalent size and average connectivity. To verify this at a larger scale,
random mapping was performed for the simulations of larger values of NpN = 500 and
NpN = 1000, but omitted for the smaller values. In Figure 8 the simulation results for the
multi-area model are shown for LMC and MC, for different mapping approaches and node
sizes. Just as for the microcircuit model, randomly mapping the neurons will result in a sim-
ilar network load to running a uniform RNDC NN with an equivalent average connection
probability. However, at this scale, the impact of neuron mapping is significantly larger.

As the connectivity is highest within an area, and especially within a population,
we could apply the same reasoning for the mapping as before and place the areas and
populations sequentially. However, because the populations were smaller in relation to
the total network size, the sequential placement stretched the populations and areas out in
small strips over the width of the network. This can also be recognized in the heat map
shown in Figure 9a. Another attempt to improve the mapping, which is still in an early
stage, limits the sequential placement of the individual populations to a rectangular region
determined by the size of the area. This way, neurons of a single population are placed as
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clusters, and populations of an area are grouped close together as well. The resulting traffic
distribution of this mapping approach called “area grouping” is also shown in Figure 8, and
the corresponding heat map is in Figure 9b. This small alteration results in an additional
reduction in the network load and a more even distribution on the grid.

Figure 8. Network load of the multi-area model compared to an RNDC NN of the same size and
average connectivity simulated on a square mesh for different types of casting, (a) local multicast,
(b) multicast.

Figure 9. Heatmaps of two differently mapped multi-area model simulations on a square mesh with
500 NpN and LMC: (a) sequential mapping, (b) area grouping.
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Unlike the smaller microcircuit model, where the latency was hardly affected by
the different mappings, at this larger scale, the impact is more pronounced, as shown in
Figure 10. Table 2 lists both the average latency and the maximum latency per neuron for
the different mapping algorithms and node sizes as well. The maximum latency was still
mainly unaffected by the different mapping algorithms. However, the average latency
dropped significantly for this large-scale test case. The maximum value is still the critical
metric, but the average latency could be important in some scenarios. However, because of
the underlying structure present in the multi-area model, there is the potential to reduce
the maximum latency for this test case. The long range connections between areas are
relatively sparse and the current area grouping algorithm does not consider the inter-area
connectivity to determine where to place which area. Placing pairs of areas which do not
share any connections in opposite corners would already result in a significant drop in
the maximum latency. Generally, latency and network load are related to each other, as a
packet which has to travel a shorter distance will not occupy as many links. The potential to
improve the latency might also indicate the potential to reduce the network load. However,
the optimization of the mapping algorithms lies outside the scope of this work.

Table 2. The estimated latency in number of hops in the multi-area simulation runs.

Neurons per Node
100 250 500 1000

RNDC Benchmark Average 303.808 192.428 135.945 97.2743
Maximum 407 257 181 129

Randomly Mapped Average 135.828 97.2132
Multi-Area Model Maximum 181 129

Sequentially Mapped Average 233.358 147.889 103.895 73.5825
Multi-Area Model Maximum 401 255 180 127

Grouped Areas Average 184.783 117.5 83.3113 59.1662
Multi-Area Model Maximum 401 256 177 129

Figure 10. Estimated latency of the multi-area model compared to an RNDC NN of the same size
simulated on a square mesh.

As larger nodes, i.e., larger values of NpN, reduce the size of the communication
network, the latency can also be expected to reduce. However, the network load shows less
dependence on the node size. For MC and for two of the four mapping algorithms with
LMC, the network load hardly changed. Only the RNDC benchmark and the randomly
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mapped test case, which we have shown to be almost equivalent, showed increases in
the network load, especially from NpN = 100 to NpN = 500. From NpN = 500 to
NpN = 1000, the impact that the node size has seems to reduce. Thus, larger node sizes
seem to be preferred, as the latency decreases without a significant negative effect on the
network load. However, it does increase the complexity of the CUs, which is not considered
by the simulator.

5. Summary and Future Work

A Python-based network simulator dedicated to the evaluation of NC communication
networks was presented in this paper. It provides an extendable collection of different NN
models and communication protocols. We have verified the correctness of the simulator
against an existing network model for homogeneous connectivity. We also showed that
compared to existing network models and simulators, our implementation offers more
details about the distribution of the bandwidth load on a network when homogeneous
NNs are analyzed. It reveals an even greater advantage for the torus square mesh over
the regular square mesh. To our knowledge, other NC network simulators so far do not
address heterogeneous NNs or the network bandwidth loads generated by them. This
outstanding capability mandates the use of mapping algorithms so that support for them is
included in the simulator. First, we applied the simulator to a small-scale test case, i.e., the
microcircuit model, and showed the effect that a rudimentary mapping approach can have
on the network’s bandwidth load.

In this extension, we then expanded the analysis of the biologically representative
heterogeneous connectivity models by including a large-scale test case, i.e., the multi-area
model. The effects previously observed for the small scale test case became even more
pronounced for the large-scale test case.

We also took a closer look at the latency of the network and the influence of the
node size in this extension. While the maximum latency did not change significantly for
different mapping algorithms, an impact could still be observed, even though the mapping
algorithms were not yet optimized for latency in any way. The node size itself, on the other
hand, had a significant impact on the latency, whereas it only affected networks’ bandwidth
loads to a small degree. There was a large influence on the design requirements of the CUs
as well, so it seems studying this parameter in more detail in the future will be worthwhile.

According to the simulations, the network loads in heterogeneous connectivity models
combined with appropriate mapping schemes differ significantly from the network loads
in homogeneous models. This justifies the development of our simulator, since it confirms
our assumption that homogeneous connectivity models—and the network models based
on them—are not sufficient to analyze the network load in an NC system simulating BNNs.
The simulator can be used in further extensions of this research to develop and evaluate
more effective (and flexible) mapping solutions.

Our next step is to verify the simulator against actual NC hardware. We will run
heterogeneous NNs on systems such as SpiNNaker and BrainScaleS and compare the
communication traffic with the network loads estimated by the simulator. Additionally,
to determine an appropriate network design for a large scale NC system, different net-
work topologies, communication protocols and NNs will be evaluated qualitatively and
quantitatively in our future work.
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Abbreviations
The following abbreviations are used in this manuscript:

ACA Advanced Computing Architectures
AER Address event representation
BC Broadcast
BNN Biological neural network
CAM Content addressable memory
CM Connectivity matrix
CU Computational unit
FR Firing rate
LDFR Longest dimension first routing
LMC Local multicast
LUT Lookup table
MC Multicast
NC Neuromorphic computing
NN Neural network
NpN Neurons per node
RNDC NN Randomly connected neural network
SpN Synapses per neuron
UC Unicast
VLSI Very large scale integration
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