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Abstract: Object detection is an essential component of many systems used, for example, in advanced
driver assistance systems (ADAS) or advanced video surveillance systems (AVSS). Currently, the
highest detection accuracy is achieved by solutions using deep convolutional neural networks
(DCNN). Unfortunately, these come at the cost of a high computational complexity; hence, the work
on the widely understood acceleration of these algorithms is very important and timely. In this work,
we compare three different DCNN hardware accelerator implementation methods: coarse-grained
(a custom accelerator called LittleNet), fine-grained (FINN) and sequential (Vitis AI). We evaluate
the approaches in terms of object detection accuracy, throughput and energy usage on the VOT and
VTB datasets. We also present the limitations of each of the methods considered. We describe the
whole process of DNNs implementation, including architecture design, training, quantisation and
hardware implementation. We used two custom DNN architectures to obtain a higher accuracy,
higher throughput and lower energy consumption. The first was implemented in SystemVerilog
and the second with the FINN tool from AMD Xilinx. Next, both approaches were compared with
the Vitis AI tool from AMD Xilinx. The final implementations were tested on the Avnet Ultra96-V2
development board with the Zynq UltraScale+ MPSoC ZCU3EG device. For two different DNNs
architectures, we achieved a throughput of 196 fps for our custom accelerator and 111 fps for FINN.
The same networks implemented with Vitis AI achieved 123.3 fps and 53.3 fps, respectively.

Keywords: DCNN; AI; FPGA; FINN; Vitis AI; GCIoU; hardware accelerator; object detection

1. Introduction

Deep convolutional networks (DCNNs) are characterised by high accuracy, especially
for applications in the area of computer vision systems. They represent state-of-the-art
solutions for tasks such as classification [1], segmentation [2], object detection [3] or track-
ing [4]. Regardless of the application, DCNNs are characterised by a high computational
complexity, both during training and inference. Network training is usually performed
using GPUs (graphics processing units) or TPUs (tensor processing units) [5]. The use
of these devices for inference is also a common practise. The implementation of DCNNs
on these platforms is rather simple and allows high flexibility in choosing the network
architecture. Furthermore, many libraries and pre-trained models are available (so-called
model zoos).

GPUs, however, are devices with a high power consumption. (It should be noted
that TPUs are rather less energy-hungry than GPUs. Also, so-called embedded GPUs are
designed to be power efficient). Therefore, they may not always be applicable, especially
for some edge devices operating within a limited energy budget (battery-powered), such as
drones or autonomous electric cars. In these cases, the lowest power consumption can be
achieved by using dedicated application-specific integrated circuits (ASICs). However, this
approach is less flexible, as the computing architecture cannot be changed after production.
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A solution with a relatively low power consumption but still high flexibility is FPGAs
(field-programmable gate arrays). Their structure is based on LUTs (look-up tables), FF
(flip-flop), block memories (BRAM), arithmetic-logic units (DSP) and configurable inter-
connection resources. This allows for dynamic changes (reconfigurations) of functionality,
also in the target device, and significantly facilitates the parallelisation of calculations.
The flexibility of FPGAs allows for the implementation of different approaches to data
processing; in particular, DCNNs.

We can distinguish three main categories of DCNN accelerators (presented in Figure 1):
Sequential—one general purpose accelerator or several multiplexed ones dedicated to

selected layer types. Only one layer (its output) is computed at the time of processing. The
processing of the next layer begins when the computation for the previous layer is complete.
During layer processing, the full input feature map is available. This enables access to
every element of the input data. The processing time of the whole network depends on the
sum of the times for all layers.

Fine-grained—all layers are organisedinto a stream executed in parallel over time.
Each layer is directly connected to the previous and the next layers, which imposes depen-
dencies. One layer cannot continue processing if the next layer is not prepared for new
data or the previous one has not provided it (if needed). Large memory resources are not
required here. The throughput of the entire network depends on the slowest layer.

Coarse-grained—the processing is divided into groups of layers—blocks (specifically,
one layer per block) with an accelerator for each. Each block is separated from the previous
and next block with memories (RAM). These store both the input and output of the block.
The block has access to the full input feature map. All layers can work in parallel as there
is buffering of inputs and outputs. The result of each block is obtained after determining
the output of the last layer of the block. The completion of block processing is or can be
synchronised. The result of the last block is the result of the whole network. The next cycle
starts with new data for the first block. The processing time depends on the throughput
of the slowest block. In this architecture, it is possible to implement different processing
methods for each block. In particular, a part of the blocks can be fine-grained, whereas the
rest is executed by sequential/general purpose accelerators.

(a) (b) (c)

Figure 1. Schemes of DNNs accelerators: (a) sequential, (b) fine-grained and (c) coarse-grained.

In this paper, we present a comparison between the three mentioned approaches for
implementing DCNNs in FPGAs. We designed two different convolutional network archi-
tectures (LittleNet and YoloFINN) trained for the task of classless single object detection
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(SOD)—only the location and dimensions of an object are detected, but not the object’s class.
As training datasets, Visual Object Tracking (VOT) [6] and Visual Tracking Benchmark
(VTB) [7] were chosen. We describe the network training and the quantisation process. For
the detection task, we proposed to use the GCIoU loss function. Both network architectures
were implemented in an FPGA. The first, LittleNet, was designed for a dedicated coarse-
grained accelerator. The second, YoloFINN, was implemented as a fine-grained one using
the FINN tool from AMD Xilinx [8]. We analysed the energy consumption of the processing
system, depending on the frequency and the degree of computation parallelisation. Both
architectures were also implemented using the sequential approach in the Vitis AI DPU
from AMD Xilinx [9]. We compared the obtained implementation and optimisation results
and evaluated the accelerators on the Avnet Ultra96-V2 development board with the Zynq
UltraScale+ MPSoC ZCU3EG device.

The main contributions can be summarised as follows:

• A comparison between FINN and Vitis AI—we are not aware of other papers that
compare these environments. There is a comparison of a number of different accelera-
tion methods in the paper [10]—including FINN. However, the Vitis AI environment
was not available at the time of writing the publication. The authors of the paper [11]
compare Vitis AI with a GPU implementation. They use selected neural network
architectures adapted to the detection task. Our comparison uses the same network
architecture on the same device.

• The proposal of two convolutional network architectures, LittleNet and YoloFINN,
for the detection task optimised for a reconfigurable embedded computing platform.
For the first one, we applied multipliers of YOLO width/height channels for anchors
adjustment—a solution for the problem of anchor box sizing. We are not aware of any
work using similar approaches.

• A coarse-grained accelerator for the LittleNet network. We used caching of the results
of successive layers, as well as multiple use of memory blocks by selected accelerators.
This allows for access to the full input feature map of a given accelerator. Furthermore,
this limits the transfer with external memory. Our accelerator allows for a multi-
depthwise convolution operation; it is rather a unique feature, as well as operation.

• A formulation of optimisation rules to reduce the energy consumption of a system
that processes a finite dataset. The method takes into account the frequency and the
degree of parallelisation of the computations.

The remainder of this paper is organised as follows. In Section 2, we discuss selected
research papers that address the topic of DCNNs hardware acceleration. We then present
the datasets used, their partitioning and the augmentation applied in Section 3. We have de-
voted Section 4 to presenting the developed LittleNet architecture, its training with selected
loss functions (including GCIoU) and quantisation. For the architecture mentioned above,
we developed a coarse-grained accelerator, which is described in Section 5. Furthermore,
we performed an energy consumption analysis of the whole processing system with the
relevant experiments—Section 6. The second proposed architecture is YoloFINN, whose
topology and fine-grained acceleration in FINN is presented in Section 7. In Section 8 the
implementation of both architectures in the Vitis AI tool is discussed. The results obtained—
speed, resource usage and energy consumption—are presented in Section 9. We compare
the proposed DNNs architectures with state-of-the-art solutions in Section 10. The paper
ends with a short summary with conclusions and discussion of possible future work.

2. Related Work

Due to the wide range of DNN-based applications, the issue of their hardware imple-
mentation and acceleration is often addressed in the literature. The proposed solutions are
mainly targeted for FPGAs, but could also be designed as ASICs. The overview presents
only selected and popular approaches to the issue. It is not possible to discuss all avail-
able solutions due to the high degree of design freedom, which makes the number of



J. Low Power Electron. Appl. 2022, 12, 30 4 of 35

solutions almost unlimited. Frankly, each network architecture could be deployed on
a custom-designed accelerator.

In the paper [12], a general purpose solution implemented as an ASIC—Eyeriss—is
presented. The computations are based on an array/matrix of processing elements (PEs)
connected to adjacent rows. Each PE performs a scalar product operation. To reduce energy
consumption, gating is applied in the case of zero input data. Each PE is connected to
a global buffer via consecutive intra-row and inter-row buses. Data transfer is carried out
using the appropriate column and row tags. Additionally, compression of data exchanged
with external memory was used.

The work [13] presents an improved version of the above-described solution—Eyeriss
v2. The global PE array and memory have been replaced by several smaller ones. Further-
more, the configuration possibilities have been extended through configurable data and
signal routing. Among other things, computational elements allowing for the calculation
of so-called sparse convolutions have been used. For this purpose, data compression also
occurs at the processing level. This reduces energy consumption and increases throughput.

The gating technique has also been used in the paper [14]. The authors also pointed
out the problem of zero filter weights. This can be addressed already at the training stage
by pruning. However, the authors also proposed the gating of zero filter weights.

The DNNBuilder framework is presented in the work [15]. The acceleration is carried
out here in a fine-grained way. The network weights are read from external memory and
then cached. The HybridDNN [16] environment uses a general-purpose accelerator with
storing the results to external memory. In addition, the ability to perform convolutional
calculations spatially and according to the Winograd algorithm was used. In the work [17],
the authors proposed a coarse-grained two-stage architecture. The initial layers are realised
as a fine-grained stream. In contrast , further layers are determined based on a general
purpose accelerator with an on-chip buffer. The authors also presented a comparison
of DNNExplorer with previous projects: DNNBuilder, HybridDNN and the commercial
Xilinx Vitis AI DPU solution (architecture not stated).

The work [18] presents the DNNWaver environment. It used multiple layer accel-
erators with a global memory buffer. In addition, there is a local input buffer for each
computational element in each block. However, the authors have not presented how the
data flow between successive accelerators occurs: coarsely/sequentially using the global
buffer or fine-grainedly by direct data transfer on the bus connecting the processing units
(layer accelerators).

The paper [19] presents an overview of selected solutions to the DNN acceleration
problem using FPGAs and ASICs, including neuromorphic platforms. The authors also ad-
dress the issue of energy consumption for selected data types or memory used. An overview
of the many solutions available in the literature, including FINN [8], is presented in [10].
The authors describe accelerator architectures and present a comparison, including results
from source publications, for different hardware platforms, different network architectures
and datasets.

In turn, the paper [11] compares implementations of selected neural networks on CPU,
GPU and Xilinx DPU for the object detection task. In the case of the GPU, two number
formats were used: floating-point and fixed-point. The authors describe the accelerators
architectures and present a comparison, including results from source publications, for
different hardware platforms, different network architectures and datasets. In the case of
the GPU, two number formats were used: floating-point and fixed-point.

In the presented papers, there is no direct comparison between FINN and Vitis AI,
which is one of our objectives. In addition, the comparisons that occur are mostly imple-
mented on different platforms. In our work, we compare three types of implementations
for the same task considering the limitations of the same hardware platform.
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3. The Dataset Used

The training of the considered networks required a properly prepared dataset. For
this purpose, we chose two sets: Visual Object Tracking (VOT2019-LT) [6] and Visual
Tracking Benchmark (VTB-100) [7] and merged them. They contain tracking sequences of
single objects, such as a face, a human, a car and many others. The images have different
dimensions. We removed images for which no ground truth (bounding boxes) were
available or the object was not visible (was outside the frame). The final size of the set was
244,795 images. We randomly divided it into three subsets in a stratified manner:

Training—117,409 images (8/15 of the whole set);
Validation—29,417 images (2/15);
Test—97,969 images (5/15).

The division used was applied to each of the subsequent training stages. For hardware
evaluation, we applied only first 3000 of samples from the test set—we call it hardware
test set. The reason was the reduction in evaluation time—it does not affect throughput or
power. We also applied data augmentation by: vertical and horizontal reflection, rotation,
additive noise in RGB, LAB and YCbCr spaces, blurring and translation. Example images
are presented in Figure 2.

(a) (b)

Figure 2. Merged VOT and VTB datasets. In (a), correctly marked bounding boxes are presented.
(b) shows improper annotations: a fully covered object, wrong object, wrong object part, object not
fully marked or inaccurately marked. Also visible are different images’ sizes.

4. Littlenet Network

As a first step, we decided to design a network architecture with relatively low
computational complexity and a low number of parameters that could be implemented
relatively easily and then deployed on an embedded reconfigurable computing platform
—FPGA or SoC FPGA (system on chip FPGA). We based our design on the SkyNet [20]
architecture, which uses depthwise and pointwise convolutions. SkyNet was successful
in the DAC SDC [21] competition (high position in the ranking). Depthwise convolution
allows for the extraction of contextual features from a given pixel within a single channel.
On the other hand, pointwise convolution allows one to extract features of only a given
point among all of its input features. The use of the successively mentioned types of
convolution is called a separable convolution. It allows us to obtain a certain approximation
of the full convolution and to apply additional non-linear activation functions after each
component. The result obtained is characterised by a significantly smaller number of
computations and parameters.
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For example, the number of parameters Pstd of the full/standard convolution with
CHout filters, K× K context and Chin input channels is given by Equation (1):

Pstd = ChinChoutK2 (1)

For a separable convolution with the same parameters, Psep of parameters is obtained,
given by Equation (3).

Psep = ChinChout + ChinK2 = Chin(Chout + K2) (2)

The ratio of the number of parameters S is given by Equation (3):

S(K, Chout) =
Psep

Pstd
=

1
K2 +

1
Chout

(3)

The value of S decreases significantly, especially for a large number of filters, and also
for large kernels.

4.1. Multi-Depthwise Convolution

As mentioned above, the use of separable convolution significantly reduces the number
of parameters. However, depthwise convolution allows us to perform extraction of only one
context feature from the channel. For initial layers, this can be limiting or also redundantly
reduce the amount of input information. To prevent this, we decided to use multi-depthwise
convolution, with more filters per channel (Figure 3). This represents some compromise
between separable and standard convolution. We are not aware of any other network
architecture that uses this type of convolution.

Figure 3. Multi-depthwise convolution scheme. Two input features maps are convolved with 4 filters—
2 different filters for each map. The output map contains results of all 4 convolutions—edge colour
points to the input map, colour of filling is related to filter. The output features order depends on
implementation strategy.

4.2. Architecture

The architecture of the proposed LittleNet network is shown in Figure 4. An RGB image
is given as the input to the network. The output consists of the location, size of the object
and its probability of occurrence. The architecture is built of 19 blocks containing the selected
convolution type (with or without bias), a normalisation layer, a possible ReLU activation
function or max-pooling layer. We also used depthwise linear convolutions. This allows us
to obtain features of a larger context with limiting gradient degradation. The last layer of
the network is the YOLOv3-type layer [22]. The results of the next five filters f0,...,4 form the
basis for determining the validity of the pixel v—object probability, its position parameters
(x, y), width w and height h. Furthermore, we applied an additional scaling of the object
dimensions through trainable parameters (Mw, Mh)—we called them anchor multipliers. The
relationships for the parameters mentioned are described by Equations (4)–(8), where Rw and
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Rh denote, respectively, the ratio of the width and height dimensions of the input image to
the dimensions of the output layer, i, j the row and column of the output grid a-th anchor
box of dimension (Aw, Ah).

v(a, i, j) = σ( f0(a, i, j)) (4)

x(a, i, j) = (i + σ( f1(a, i, j)))Rw (5)

y(a, i, j) = (j + σ( f2(a, i, j)))Rh (6)

w(a, i, j) = Aw,ae f3(a,i,j)eMw,a (7)

h(a, i, j) = Ah,ae f4(a,i,j)eMh,a (8)

Figure 4. LittleNet architecture’s scheme. Denotations: M× DW K×K—depthwise convolution with
kernel of size K× K and M sets of filters, F × PW—pointwise convolution with F filters, BIAS—using
bias in convolution, BN—using batch normalisation, ReLU—applying ReLU activation function,
MP—max pooling 2D layer. Blocks with the same colours have similar structure.

In the case of multiple object detection, the value of v(a, i, j) should be thresholded to
obtain a list of objects. Then, a non-maximum suppression should be applied to eliminate
redundant detections. For a single-object detection task, the solution are parameters at
position (amax, imax, jmax) as an argument of the function max(v(a, i, j))—the highest value
of the probability of object occurrence.

The numbers of filters in particular layers, parameters of multi-depthwise convolution
and the number of anchor boxes were chosen experimentally. We took into account the
possibility of storing all of the network weights, as well as intermediate feature maps in the
internal memory of the target device (its reconfigurable part). In the same way, we selected
the input dimensions of the network—112× 208 (height × width). For the given input
dimensions, the network output size is 7× 13 (height × width).

The number of parameters of the entire network equals 243,919.

4.3. Training

We trained the floating-point network by minimising the loss function given by
Equation (9). Suppose that the centre of the reference object is located at point (ire f , jre f ).
The loss L consists of:
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• Binary cross entropy calculated for v for each anchor box. The reference mask vre f
contains the value 1 at position (ire f , jre f ).

• Mean value of bounding box regression between prediction for a-th anchor box at
position (ire f , jre f ). By LIoU , we denote any loss function based on the IoU metric.

• Regularisation as the square of the norm L2 of all network’s parameters P.

L(vpred, vre f , bboxpred, bboxre f , p, Na) = λvBCE(vpred, vre f )

+ λiou
1

Na

Na

∑
a=1

LIoU(bboxpred, bboxre f )

+ λreg||P||2L2

(9)

Gciou Loss Function

Some of the loss functions more commonly used than LIoU are CIoU, DIoU [23] and
GIoU [24]. During network training (for a purpose not directly related to this work), we
observed that the value of GIoU, as a metric, significantly underestimates the base value of
IoU more than CIoU or DIoU. Analysing the mentioned metrics as error functions, it can
be observed that GIoU has the highest value that describes the same arguments. However,
as the research by the authors shows, CIoU achieves better results than GIoU. Due to the
above, we decided to use a combined version of both mentioned functions. This allows us
to combine the “high penalty” and expansive nature of GIoU (as well as its early extinction)
with the good convergence, centrality of DIoU and the dimensions scaling of CIoU. The
proposed function GCIoU (generalised complete IoU) is defined by Equation (10).

GCIoU(A, B) = 1− IoU(A, B)

+ pgiou(A, B, C(A, B))

+ pdiou(A, B, C(A, B))

+ pciou(A, B)

(10)

pgiou(A, B, C) =
|C \ (A ∪ B)|

|C| (11)

pdiou(A, B, C) =
(Bx − Ax)2 + (By − Ay)2

C2
w + C2

h
(12)

pciou(A, B) = α(A, B)v(A, B) (13)

v(A, B) = (arctan(
Bw

Bh
)− arctan(

Aw

Ah
))2 (14)

α(A, B) =
v(A, B)

1− IoU(A, B) + v(A, B)
(15)

C(A, B) is the smallest bounding box C containing bounding boxes A and B (it does
not matter which one is the reference). The indices x, y, w, h denote, in consecutive order,
the coordinates of the centre of the bounding box and its dimensions and alpha represents
the coefficient proposed by the authors of [23].

To compare the aforementioned function, we trained the LittleNet architecture using the
GCIoU function, as well as CIoU with the alpha coefficient: original [23] and zeroed for values
of IoU < 0.5 [25]. In addition, we also used the following parameter values: lambdav = 1,
lambdaiou = 1 and lambdareg = 0.00001. As a learning method, we used the stochastic gradient
descent with a momentum factor of 0.9 and an initial learning rate lr = 0.1 changed at each
iteration according to Equation (16). By loss(t), we mean the value of the loss function (9) of the
network in iteration t. The parameters were updated every 49 batches of training data, each of
size 10.

lr(t + 1) =

{
1.3 · lr(t), if loss(t) < loss(t− 1)
0.5 · lr(t), otherwise

(16)



J. Low Power Electron. Appl. 2022, 12, 30 9 of 35

The training results are presented in Figure 5. The higher error value for GCIoU
is noticeable. However, this seems to be natural because of the additional sum element.
Analysing the course of both the IoU metric and the loss, we can notice a larger oscillation
of GCIoU in the middle part of the learning stage. This is related to the “extinction” of
pgiou at the moment when one object is contained in the other, as well as to the mentioned
additional sum element increasing the amplitude. The final value of IoU, for the proposed
function, is slightly lower than the others. Furthermore, in the initial learning epochs,
the value of IoU for the validation set is higher for GCIoU than for CIoU0. This may
indicate some kind of increase in the convergence rate. However, the dataset used is
also not fully reliable. This is because it contains some images with incorrect and often
inaccurate labels (e.g., Figure 2b). The proposed error function should be tested on a more
challenging dataset, such as MS COCO. This will allow for more reliable comparison results.
As an additional result from the comparison, we can note that the application of alpha
zeroing in CIoU for small values of IoU obtained a worse result than the original version.

(a) (b)

(c) (d)

Figure 5. Networks’s training results with the selected loss functions. The following graphs show:
(a)—loss and (b)—IoU for training data, (c)—loss and (d)—IoU for validation data. By CIoU0, we have
denoted the version with zero alpha coefficient for a small value of IoU. The obtained waveforms achieve
relatively similar values of the IoU metric. For GCIoU, there is noticeably higher loss value in comparison
to CIoU.

4.4. Quantisation

The models obtained were implemented using floating-point numbers. However,
the accelerator described in Section 5 uses fixed-point operations. In order to change
the format of the computation, we performed quantisation using the brevitas library [26].
We used 8-bit fixed-point quantisation as a compromise between accuracy and memory
consumption in the target hardware solution. The input data are considered to be unsigned
and fully fractional—0 bits of the integer part. This notation represents the normalisation
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also used during floating-point training. For the convolution and normalisation weights
and their results, we used quantisation with a sign. To adjust the size of the fractional part
depending on the layer, we used a trainable parameter p f (separate for each quantised
stage of the network processing). Based on it, the number of bits of the fractional part
B f ractional was determined according to Equation (17). The value bw was set to 8 (width of
the selected quantisation) and s denotes the sign bit and was set to 1. The function (18)
returns the nearest integer in the given range. To limit the range of values of p f , we used
the function (19). It contains a static parameter m to control the effect of p f on B f ractional
(mainly in the initial stage of training). Experimentally, we set m = 2.

B f ractional(p f ) = int(p f , bw − s) (17)

int(p, vmax) = round(vmaxL(p)) (18)

L(p) = min(max(m(p + 1); 0.0); 1.0) (19)

Moreover, we chose the following integer approximation methods:

• Round—weights;
• Floor—input data;
• Round—initially for intermediate results;
• Floor—at the end of training for intermediate (and final) results.

The flow of the quantised learning process is shown in Figure 6. We performed
quantisation on the model learned with the GCIoU function and continued the quantised
training using the same loss function. In the first learning step, we did not quantise
the normalisation layer. This was to adjust the normalisation coefficients to the new
ranges of values implied by the applied quantisation. Then, in epoch 36, we replaced the
normalisation layers with an affine transformation and quantised them. In epoch 46, we
changed the approximation method for the layer results from round to f loor. Finally, we
obtained an accuracy of 0.65282 IoU for the validation set and 0.65524 IoU for the test
set. In comparison, the floating-point model achieved an accuracy of 0.66258 and 0.66578,
respectively. The applied quantisation resulted in a reduction in bit width from 32 to 8 bits,
reducing the network accuracy by only approximately 1.58% IoU.

(a) (b)

Figure 6. The quantisation process waveforms: (a)—loss and (b)—IoU. The red lines indicate the
epochs starting the quantisation of the normalisation layers and the change in the integer approxi-
mation method from round to f loor. The introduction of quantisation for the normalisation layers
does not introduce significant changes in the error value and accuracy. Changing the approximation
method causes a significant increase in the error value as well as a decrease in the accuracy.
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5. LittleNet Accelerator

To implement the above-described network in a reconfigurable system, we designed
a coarse-grained accelerator. Its general schematic is shown in Figure 7. We assumed that
a separate accelerator would be used for each layer. We used caching the results of the
layers in RAM (implemented with BRAM available in FPGA). However, to reduce the
memory consumption, we used the sharing (multiplexing) of one block of RAM by several
accelerators (ACCs). Finally, we obtained a macroblock structure (Figure 8). This represents
an organisational division of the accelerator’s structure. A single macroblock contains up to
four accelerators along with ROMs (weights) and up to two memory blocks (feature maps).
We used dual-memory sharing, but other solutions are also possible—this will increase or
decrease the processing time with different RAM usage. In addition, one of the read ports
is shared with another macroblock. This allows data to flow between consecutive blocks.

To avoid RAM overwriting, the processing in each block is carried out sequentially in
four states. They are synchronised, i.e., each macroblock is in the same state. In each state,
only one accelerator can write or read to a given memory block. This is controlled by the
LittleNet control unit (LN_CU). A state changes when the currently running corresponding
accelerators (same index in macroblock) of all macroblocks are completed. These blocks are
then deactivated. The first step to start the next state involves waking up (changing the
value of the sleep pin from 1 to 0) the corresponding ROMs from the power saving mode.
The aforementioned mode allows for a reduction in energy consumption when the ROMs
are not actively used. The wake up takes a dozen clock cycles. (The documentation [27]
states that two clock cycles are enough to wake up the BRAM block from sleep mode.) After
this time, the ROMs are available for use. The corresponding accelerators are then turned
on, and the ROMs used in the previous processing state are put to sleep. The entire process
is repeated recursively as long as input data are available and output data are received.

Figure 7. LittleNet accelerator’s scheme. Connections between macroblocks are buses for reading
data from previous macroblocks.

We distinguished five types of layer accelerators:

• Input layer (IL);
• Output layer (OL);
• Depthwise convolution layer (DW);
• Pointwise convolution layer (PW);
• Max finder layer (MF).
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Furthermore, we applied the grouper unit (GU) and memory writer unit (MWU)
modules in each layer (Figure 9).

Figure 8. Macroblock’s scheme—two shared memories (RAM and ROM) and four layer accelerators
(ACC). The last macroblock in Figure 7 is not complete—only 2 accelerators are present. In addition,
the output bus is connected directly to the last accelerator—the output layer. Moreover, the presence
of ROM depends on the type of the accelerator.

(a) (b)

Figure 9. Grouper unit is presented in (a). Input signals are stored in the serial-parallel register (SPR).
Next they are concatenated (CONCAT) into a wider package. (b) presents the memory writer unit.
Parallel input channels (CHx) are delayed by D_x blocks. The CHDx blocks determine the addresses
for the valid data from each channel. Next, the multiplexer (MUX) iterates over channels and selects
channel’s data, address and validity as output signals. The memory writer control unit (MW_CU)
controls the entire module.

5.1. Grouper Unit

The schematic of the grouper unit is shown in Figure 9a. It contains a serial-parallel register
(SPR) and a counter for valid input data. When the counter obtains an appropriate value,



J. Low Power Electron. Appl. 2022, 12, 30 13 of 35

the data stored in the registers are considered valid. This allows single bytes to be grouped into
double words or other multiples of input data (in the diagram, the next G bytes of data).

5.2. Memory Writer Unit

The memory writer unit allows us to write data from parallel channels. A schematic
of the module is shown in Figure 9b. Each channel contains the data to be written and its
validity. Data from P channels are delayed by the value of the channel index. Then, for each
channel, the target memory address is incremented in case of valid data. This occurs until the
maximum address from the range assigned to the channel is reached. The resulting addresses,
along with the data, are multiplexed. This is followed by reading from successive channels.
In addition, the multiplexer counter is reset when new valid data arrive at the input. The
resulting data and addresses are the input signals of the target output RAM. When the last
address is reached by the address counters of all channels, the entire module is terminated. The
operation of the MWU is similar to that of a parallel-serial register. Furthermore, the frequency
of valid input data cannot be greater than the number of channels.

5.3. Input Layer

The layer accelerators discussed in the following subsections have been adapted to the
“channel first” data representation (CHW)—in memory, the data of a given channel appear in
one continuous sequence. Images coming from a camera or read from a memory card, rather,
are stored in “channel last” format—the data describing a given point (pixel) is one continuous
string. It is possible to change the format in software. However, the hardware execution of this
operation seems to be a better solution. Furthermore, the data sent to the accelerator are in the
form of an AXI4-Stream [28]. The input data must be stored in blocks of RAM.

For this purpose, we designed a suitable accelerator for the mentioned operations—input
layer (IL). The scheme is shown in Figure 10. Data coming from a four-byte wide stream
are grouped into three consecutive packets. This is implemented by the GU block. The
accumulated data contain 12 bytes of data—4 bytes each from the R, G and B channels.
These data need to be separated due to the aforementioned input ”channel last” format
(the 12 bytes represent four RGB sequences). This operation is performed by the splitter
unit (SU). The sorted data create three channels that go to the MWU. The address for each
packet of data from each channel is determined there. Finally, the data are written to RAM.
The entire process is managed by the input layer control unit (IL_CU) block.

Figure 10. Schematic of the input layer (IL) accelerator—receiving data from the AXI4-Stream stream,
changing the “channel last” representation to “channel first”, and writing to RAM. Denotations: GU—
grouper unit, SU—splitter unit (byte reordering is represented by coloured arrows), MWU—memory
writer unit, IL_CU—input layer control unit.



J. Low Power Electron. Appl. 2022, 12, 30 14 of 35

5.4. Depthwise Convolution Layer

We implemented the depthwise (DW) convolution based on a fine-grained pipelined
processing. The scheme is shown in Figure 11. The input data are read from RAM by
the sliding window unit (SWU). It uses counters for the address of the input data and
its position in the feature map—row, column and channel. The data are formed into
a stream. In the case of the padded version, for padding elements, the incrementation of
the input data address is paused and the value of 0 is inserted into the stream. Through
the appropriate delay lines, the context of a given pixel is generated. Based on the position
counters mentioned above, the validity of the context is determined. For multi-depthwise
convolution, the data read cycle is repeated multiple times. The weights for a given
filter/channel are read from ROM and stored in registers. This is carried out by the weight
loading unit (WLU). While the weights are read, the rest of the accelerator components
are paused.

For the stored weights and the generated context, the value of their scalar product is
determined. This is carried out within the depthwise processing unit (DW_PU)—Figure 12.
Here, we have used the cascade connection capability of the DSPs [29]. Each subsequent
DSP performs multiplication operations and sums the result with the result from the
previous element of the cascade. The delayed (D_x) weight (Wx) and context (Dx) signals,
respectively, are multiplied after performing the corresponding data character expansion to
higher bits. For the first DSP, it is possible to use a bias element (B), which is aligned to the
multiplication result, so that the fractional parts are of the same length. The result of the
last element of the cascade is limited (LIMIT) to the range resulting from the bit size of the
convolution result (the intermediate result quantisation used during training). The next
DSP performs the affine transformation. Transformed and delayed normalisation weights
(BN) are used accordingly. The last block implements the re-limitation of the result, as well
as the application of the ReLU activation function.

Figure 11. Depthwise layer accelerator scheme. The entire block depending on configuration
consumes up to 10 DSP48 modules. Denotations: SWU—sliding window unit, WLU—weights
loading unit, DW_PU—depthwise processing unit, DW_CU—depthwise control unit. SWU is
implemented with a basic fine-grained stream method for context generation. WLU stores weights in
serial-parallel register.

The convolution result already obtained for each point is grouped in the GU module.
Then, the grouped data go to the single-channel MWU module. The target memory address
is assigned there. Reaching the last address finishes the computation of the depthwise
convolution module.

The accelerator design allows for the implementation of a 3× 3 convolution with an ar-
bitrary fixed-point format for input data, weights, bias, normalisation weights, intermediate
results and output data. A version with and without padding is available.
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Figure 12. Depthwise processing unit—cascaded connected DSPs. The design is based on [29].
The L2 and DSP10 blocks are optional depending on the configuration. The LIMIT blocks limit the
input data to a range given by the fixed-point notation parameters or the applied ReLU activation.
The mentioned DSP10 block implements the normalisation operation as an affine transformation.
In addition, the corresponding delays of the D_x signals are present.

5.5. Pointwise Convolution Layer

The pointwise (PW) layer diagram is shown in Figure 13. Pointwise convolution does
not require context gathering as in depthwise convolution. Instead, it is necessary to iterate
through all the input data channels for each point in the feature map. This is carried out by
the point streamer unit (PSU), which generates the corresponding data stream. In addition,
a data validity signal and a point-ending signal are also generated. Pointwise convolution
is also characterised by a larger number of weights. Using an analogous mechanism as in
DW would require all weights and input data to be accumulated in registers, and the same
number of DSPs to calculate the scalar product. Instead, the weights are read in a cyclic
manner from the ROM. This is performed through the cyclic streamer unit (CSU). The bias
and normalisation weights are read first. They are accumulated in appropriate registers.
Then. the weights of the subsequent channels are read. When the last channel is reached,
iteration starts from the first channel of a given filter. This creates a cyclic stream of weights.
Reading “non-cyclic” weights (read only once, bias and normalisation weights stored in
registers) causes some latency to the data stream. This requires the synchronisation of the
streams. The pointwise control unit (PW_CU) performs this task (and general control of
the acceleration operation).

The calculation of the scalar product of the two streams is performed by the pointwise
processing unit (PW_PU) modules (Figure 14). Valid input data and weights are multiplied
and then accumulated in the internal register of the DSP module [30]. If the incoming
data are the last element of the scalar product (LAST), then the new point (NP) flip-flop is
set. This allows for the accumulator to be initialised with the bias value (B). The arrival
of valid data resets the NP. Also, if the data are not valid, its product is not accumulated.
The NP and VALID signals are also delayed accordingly. The data obtained from the
accumulation are processed analogously to those for depthwise convolution. The value is
limited, normalised and finally limited again using the ReLU function.
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Figure 13. Pointwise convolution layer accelerator’s scheme. The input data stream is generated by
the point stream unit (PSU)—the module uses proper counters to iterate over channels and determines
signal of last channel of each point. Appropriate weights are streamed by the cyclic streamer
unit (CSU)—incremented ADDR_CNTR (counter) is reset to ADDR_BEGIN when WEIGHT_CNTR
(counter) achieves size of filter. Based on both streams, the pointwise processing units (PW_PU_x)
calculate dot products. Next, the max pool unit (MPU) performs a max pool 2D operation on each
channel. For each channel, for the next two elements, max function is applied. The result is properly
delayed. Next, the results of subsequent lines are compared and the higher value is selected. The
validity of the results and delay lines clock are dependent on the row and column of the pixel. The
results are grouped in the grouper units (GU_x). For each group, the memory writer unit (MWU)
assigns the memory address. The whole process is controlled by the pointwise control unit (PW_CU).

For the resulting data pipeline, a max pooling 2D operation with stride 2 is performed.
This is implemented by the max pooling unit (MPU in Figure 13). From two consecutive
values, the larger one is selected. Next, it is delayed with a delay line of a dimension of half
the number of columns. The output value is then compared with the input value, and the
larger one is selected. If the input of the delay line is an odd row, the result is considered as
the maximum in the block. This value is considered to be valid in the output stream. The
resulting data are grouped into GU modules. The MWU then determines the address of
the data in the target memory.

Since the convolution result is obtained relatively sparsely, it is possible to parallelise
P times the computations. This requires a wider ROM that allows P weights to be read
in each clock. Furthermore, P PW_PU and GU are used. MPU and MWU are used for P
channels. However, P should be limited to, at most, the number of input channels. When
the max pooling operation is used and the dimensions of the input feature map are even, it
is possible to limit P to two or four times the base constraint. Note that not for every value
of P is a shorter processing time obtained. In addition, the parameter P also affects BRAM
(ROM) usage. The DSP usage is equal to 1 + P(1 + BN), where the first value 1 indicates
the DSP used by the PSU, the second value 1 indicates the multiplication and accumulation
of PW_PU and BN indicates normalisation usage (value 1 or 0).

Similarly to the DW accelerator, static parameters for the format of the numbers may
be used. Also available are versions using bias, normalisation, ReLU and max pooling
(2× 2 kernel with stride 2× 2, with or without ceil mode).
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Figure 14. Pointwise processing unit—multiplication and accumulation (MAC). The design is based
on [30]. DATA, WEIGHT and BIAS are 8-bit signals that represent input feature and filter weight and
bias. BN is a pair of 8-bit signals—weights ofnormalisation. LAST is a one-bit signal that is high if
DATA comes from the last channel of input data. DSP1 implements the MAC operation. The new
point (NP) flip-flop allows the accumulator to be initialised with a bias value. DSP1 uses internal
multiplexing based on NP state and data validation signal (VALID). The L2 and DSP2 blocks are
optional depending on the configuration. The LIMIT blocks limit the input data to a range given
by the fixed-point notation parameters or the applied ReLU activation. The mentioned DSP2 block
implements the normalisation operation as an affine transformation with delayed BN weighs by
D_BN block.

5.6. Max Finder

The last convolutional layer is the YOLO layer. The task of the entire network is to find
only one object. This requires the successive application of the operations: max—for the
validity channels ( f0 in Equation (4)) and argmax—for the others ( f1– f4 in Equations (5)–(8)).
We designed a dedicated accelerator—max finder unit (Figure 15)—to perform this task.
The max finder streamer unit (MFSU) generates a stream of input data. For data from the
stream, the column, row and anchor to which the incoming pixel belongs are determined.
This is carried out by the position counter unit (PCU). The data from the stream and
its position are then processed by the max finder control unit (MF_CU). This module is
based on a machine of nine states. In the first state, among the validity channels of a
pixel, the one with the largest value is searched. When the pixel value is larger than the
previous one, the maximum value—max—and its position (anchor, row, and column) are
updated—argmax.

In the second state, the object parameters from the channels at the position of argmax
are determined. When the position of a given pixel in the stream is equivalent to argmax,
its value is sent to the GU and then to the MWU. This is repeated four times (for X, Y, W
and H). When the entire data have been processed, the state is transitioned to the next one.
In this and the next four states, the validity value, anchor index, column and row are sent
to the GU. In the seventh state, waiting to write the results to the output memory occurs.
In the next state, the acceleration completion flag is set and a transition is made to the idle
state. The size of the output data is only eight bytes. This allows is to limit the transfer to
external memory.
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Figure 15. Max finder unit (MFU)—finding parameters of the object for the highest validity. The max
finder streamer unit (MFSU) generates a data stream. For each element of the stream, the position counter
unit (PCU) assigns coordinates of map and anchor positions. The max finder control unit (MF_CU)
implements the main functionality—it finds coordinates of the most probable object and its parameters.
The resulting single bytes of object description are grouped in the grouper unit (GU). The aforementioned
description are values of the anchor channels ( fv, fx, fy, fw and fh in Equations (4)–(8)), location of the
object on the grid and anchor index. Next, the memory writer unit assigns the address for each group.

5.7. Output Layer

Each accelerator stores the results in block RAM. External modules (such as a processor
or other processing logic) cannot access it directly, so data transfer functionality is required.
This is carried out by the output layer (OL), which performs a one-byte read from the
(block) RAM. The data are grouped into double words and sent over the AXI4-Stream bus.
The sending of the last packet of data marks the end of the module’s operation.

5.8. Implementation

The implementation of individual components was carried out using the SystemVer-
ilog language. We used static parametrisation of the modules. To properly connect the
layer accelerators to the memory or to the master control module—LN_CU—we used the
Jinja templates [31]. This allowed us to use any order and number (limited by hardware
resources) of supported layers. The multi-depthwise layer accelerator first performs filter-
ing of all channels with one filter each. In the PyTorch environment, this is carried out by
first filtering one channel with all filters, and then subsequent channels. In order to obtain
the correct processing results from the accelerator, we performed a reordering of the filters.
This also resulted in the reordering of the output channels. The consecutive depthwise
layer required an additional change in filter order. In contrast, the pointwise layers do not
require a change in filter order, but only in their weights. The order of the output channels
here follows the PyTorch model. Furthermore, the YOLO layer contains odd dimensions
(15× 7× 13). This does not allow for grouping the data by four bytes. To prevent this, we
supplemented the layer with a sixteenth filter.

We implemented RAM and ROM in the form of a tree. The leaves of the tree are
the BRAM blocks with latency 2 and width 32 bits, for RAM. For ROM, the width was
determined by the applied parallelisation (equal to 1 for DW). The total latency of the tree
was adjusted to the value given by the parameter. This allowed for the same memory
communication latency value to be used for all layers.

We packed the accelerator as an IP core. The resulting block was connected by the AXI4-
Stream interfaces with direct memory access (DMA). This allows for data exchange between
the processor system (PS) and the programmable logic (PL) accelerator of the target Zynq
UltraScale + MPSoC family heterogeneous chip. This is depicted in Figure 16. For the layer
parallelisation shown in Table 1, the hardware acceleration results were consistent with
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the quantised software model. We obtained a 0.6616 IoU accuracy, 196.3 fps throughput
and 49.878 J energy consumption. We conducted these measurements at 300 MHz and for
the hardware test set. Furthermore, the coarse-grained latency is six accelerator processing
cycles, which is equal to the number of macroblocks.

Table 1. Applied parallelisation of pointwise accelerators.

Layer 2. PW 5. PW 8. PW 11. PW 14. PW 17. PW 19. PW

Parallelisation 8 16 18 18 22 32 2

Figure 16. Block design with our accelerator and inverter of reset signal highlighted—our accelerator
is reset with logical 1.

6. Energy Usage Optimisation

The use of hardware acceleration allows for a higher processing throughput. However,
the additional circuit consumes energy, so it is advisable to optimise this parameter. Recon-
figurable devices allow us to make changes in the developed architecture or to adjust the
appropriate operating frequency of the chip. These properties allow for the accelerator to
be tuned to reduce the total energy consumption. For the accelerator described in Section 5,
we determined the relationships that allowed us to reduce the energy consumption.

Assume that the system power P(p, f ) is expressed by Equation (20). By PPL(p, f )
and PPS, we denote the power of the programmable logic and the power of the processor
system, respectively. As variables, we chose the computational parallelisation p of the PW
layers (for simplicity, we assume the same for all layers) and the operating frequency of the
reconfigurable part f .

P(p, f ) = PPS + PPL(p, f ) (20)

The energy consumption e of the system needed to perform the detection process of N
images reaching a throughput of f ps(p, f ) is defined by Equation (21).

e(p, f ) =
N

f ps(p, f )
(PPS + PPL(p, f )) (21)
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In Table 2, we present the approximate processing times for each layer (normalised
relative to the largest). We determined them based on the number of clock cycles needed to
obtain the full result. We omitted here such elements as the times of loading weights of
DW convolution, bias or PW normalisation, as well as the times of waiting for the end of
writing to memory (resulting from latency). Furthermore, we assumed that communication
over the AXI4-Stream bus is latency-free.

Table 2. Normalised approximated times of execution. They were determined based on the multipli-
cation of the input features maps’ sizes and the number of readings of the whole map. The weights
reloading or initialisation times were ignored. The normalisation was performed by dividing all
results by their largest value. The processing of PW layers takes much longer than DW layers.

Macroblock

State
0 1 2 3

0 IL 0.0015 DW 0.0117 PW 0.0938 DW 0.0039

1 DW 0.0078 PW 0.2500 DW 0.0039 DW 0.0078

2 PW 0.5000 DW 0.0020 DW 0.0039 PW 0.5000

3 DW 0.0010 DW 0.0020 PW 0.5000 DW 0.0020

4 DW 0.0039 PW 1.0000 DW 0.0020 PW 0.0312

5 MF 0.0001 OL 0.0000

Moreover, the approximate power PPL(p, f ) can be expressed by (22). We assume
a linear increase in power with p for the PW layers. We take the dependence of the power
on frequency to be β( f ). By PDW and PPW , we denote the power of the accelerators (all
layers of a given type) DW and PW, respectively (for acceleration using only one PW).

PPL(p, f ) = β( f )(PDW + pPPW) (22)

Table 3 presents the maximum durations of each state for the PW and non-PW layers.
The DW layers (non-PW in general) computation times are much shorter compared to
the duration of the state. The aforementioned state duration (as well as the whole cycle)
depends on the processing times of the PW layers. In turn, these layers depend on the
parallelisation p. This allows us to formulate the assumption (23), where f0 and f ps0 are
constants—the base frequency and the base fps value.

f ps(p, f ) = p ∗ f
f0
∗ f ps0 (23)

The equation of energy consumption takes the form of Equation (24).

e(p, f ) =
N

p ∗ f
f0
∗ f ps0

(PPS + β( f )PDW + pβ( f )PPW) (24)

Table 3. Maximal times of processing for each state for selected layer types. The duration of each
state depends on the processing times of the PW layers.

Layer Type

State
0 1 2 3 Sum

PW 0.5000 1.0000 0.5000 0.5000 2.500

non-PW 0.0078 0.0117 0.0039 0.0078 0.0312

all 0.5000 1.0000 0.5000 0.5000 2.500
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6.1. Dependence on Parallelisation

We take f as a constant and parallelisations p1 and p2 such that p1 < p2. For p2,
to achieve less energy consumption than for p1, the relation (25) is required.

e(p2, f ) < e(p1, f ) (25)

N
f
f0
∗ f ps0

= const. (26)

1
p2

(PPS + β( f )PDW + p2β( f )PPW) <
1
p1

(PPS + β( f )PDW + p1β( f )PPW) (27)

PPS + β( f )PDW
p2

+ β( f )PPW <
PPS + β( f )PDW

p1
+ β( f )PPW (28)

1
p2

<
1
p1

(29)

p1 < p2 (30)

This inequality is always true. We can conclude that increasing the parallelisation of the
computation reduces the power consumption of the system. Increasing the parallelisation
is limited by the hardware resources, as well as the number of filters in a given layer.

6.2. Dependence on Frequency

We assume p as a constant and PPL as the dynamic power without loss of generality (the
power of PPS is unknown) for Equation (24). The dependence of power PPL on frequency f can
be expressed by Equation (31) [32] and energy consumption through Equation (32).

β( f ) =
f
f0

(31)

e(p, f ) =
N

p ∗ f
f0
∗ f ps0

(PPS +
f
f0

PPL) (32)

We assume frequencies f1 and f2 such that f1 < f2. A reduction in energy consumption
is possible if and only if the relation in Equation (33) is satisfied.

e(p, f2) < e(p, f1) (33)

N f0

p ∗ f ps0
= const. (34)

1
f2
(PPS +

f2

f0
PPL) <

1
f1
(PPS +

f1

f0
PPL) (35)

PPS
f2

<
PPS
f1

(36)

f1 < f2 (37)

The relationship in Equation (37) is also true. We can conclude that increasing the
frequency of the reprogrammable part reduces the power consumption of the whole system.
The limitation is the maximum frequency at which the designed accelerator works properly.

6.3. Evaluation

For the determined dependencies, we conducted experiments/tests for several values
of parallelisation (value sets) and at different frequencies. We also performed tests above
the maximum frequency (300 MHz), for which, the system operates deterministically. The
parallelisation values are given in Table 4. We present the results of the experiments in Table 5
and Figure 17. The results allow us to conclude the validity of the determined inequalities. It
should also be noted that energy consumption decreased with increasing (electrical) power.
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Table 4. Sets of parallelisation with labels. Configuration P32 allows for maximal performance. The
next two have two and four times smaller parallelisms. The last one is the minimal configuration.

Label
Layer 2. PW 5. PW 8. PW 11. PW 14. PW 17. PW 19. PW

P32 8 16 18 18 22 32 2

P16 4 8 9 9 11 16 1

P8 2 4 4 4 5 8 1

P1 1 1 1 1 1 1 1

Table 5. Evaluation results—energy consumptions and fps for different parallelisations and frequen-
cies. There is a noticeable decrease in energy consumption for higher parallelisations and higher
frequencies—for higher throughput in general.

Label Frequency 1

[MHz]
Throughput [fps] Energy [J] Power [W]

P32

375 236 44.845 3.528

300 195 48.414 3.147

250 167 55.032 3.063

215 145 58.829 2.843

150 105 73.990 2.590

100 71 101.134 2.394

50 35 181.750 2.120

P16

375 130 74.805 3.242

300 105 87.393 3.059

250 88 93.597 2.746

215 76 109.306 2.769

150 53 139.347 2.462

100 35 196.697 2.295

50 17 361.815 2.050

P8

375 65 138.635 3.004

300 52 165.928 2.876

250 43 191.968 2.752

215 37 212.532 2.621

150 26 278.281 2.412

100 17 390.941 2.215

50 8 729.939 2.115

P1

375 12 714.737 2.859

300 10 813.676 2.712

250 8 928.440 2.476

215 7 1034.701 2.414

150 5 1409.458 2.349

100 3.3 1979.160 2.177

50 1.7 3727.046 2.112
1 For 375 MHz, results of accelerator are non-deterministic. We included this frequency to check optimisation rules only.
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Figure 17. Result of the experiments. Energy dependency on frequency and parallelisation. Ap-
plying higher frequencies and higher parallelism allows us to decrease total energy consumption
(CPU + FPGA) for the processing of a fixed size dataset. The parallelism is limited by the available re-
sources. The frequency is limited by the value that allows for correct results. The energy consumption
saturates slightly with the increase in the frequency.

6.4. Conclusions

For both relationships presented, a higher (electrical) power and a shorter processing
time are obtained. This results in a reduced energy consumption. It can be concluded
that a linear increase in power, together with the same linear increase in throughput,
reduces the energy consumption of the whole system. Therefore, the proposed optimisation
would involve using batch processing—turning on the accelerator for a short period
of time, processing the data and then turning it off. This allows us to save energy for
systems where large amounts of data are processed, but not in a time-deterministic manner.
However, it should be noted that real-time systems require a fast and deterministic response
time, so this approach is applicable only in specific cases (when batch processing has no
negative impact).

7. Finn Accelerator

FINN [8,33] is an experimental framework for the acceleration of deep neural networks
in AMD Xilinx MPSoC devices. The compiler has four main components:

• Brevitas library for training quantised models;
• Finn-hlslib [34] library written in Vivado HLS C++ environment, where the key

modules are implemented;
• A compiler that transforms the model description into basic modules of the finn-hlslib

library;
• A driver generator for communication between the processing system and the pro-

grammable logic on the MPSoC.

The FINN environment puts some constraints on the network architecture. First,
the depthwise separable convolution mechanism, which greatly reduces computational
complexity, is not directly supported. In the latest version of the compiler, an experimen-
tal build of the MobileNet-v1 DCNN, which uses separable convolutions, is available.
However, only a few devices are supported, and the build requires a different, architecture-
specific workflow. Taking into account the above, every (DW, PW, DW) triplet of the
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LittleNet architecture (4) was replaced with a regular convolution. The ReLU activations
were also replaced with the clamp function supported in FINN:

clamp(−1,1)(x) = min(max(x,−1), 1) (38)

It is a function embedded in the default Brevitas quantiser used in the FINN frame-
work. We concluded that it introduces sufficient non-linearity to the model. The resulting
architecture is similar to UltraNet [35]. Furthermore, the use of additional ReLU activations
did not result in an improvement in detection quality. Finally, for hardware acceleration
using FINN, the architecture shown in Figure 18a was used.

One of the limitations of the compiler is also the requirement of a square input to
the model. As a result of that, the training was performed for 3× 160× 320 input images
and, during the inference on the device, two images were fed to the model merged into
one 3× 320× 320 input. This may introduce slight differences in output feature maps
compared to two separate inferences in 3× 160× 320; however, no practical differences in
detection quality were observed during the evaluation. For training, the loss function from
Equation (9) was used with the CIoU box regression metric.

3x3 conv 30 channels + BN

clamp (−1, 1)

3x3 conv 16 channels + BN

Maxpool

clamp (−1, 1)

3x3 conv 32 channels + BN

Maxpool

clamp (−1, 1)

3x3 conv 64 channels + BN

Maxpool

clamp (−1, 1)

3x3 conv 64 channels + BN

Maxpool

clamp (−1, 1)

3x3 conv 64 channels + BN

3 16

8 16

8 16

8 8

4 4

62

PESIMD

    (a)                                          (b)
Figure 18. (a) Convolutional architecture used in the FINN accelerator and (b) folding parameters for
each layer. The number of processing elements (PE) and SIMD lanes used for each layer determines
the level of parallelism. Note that the use of maxpool layers results in the reduction in spatial
dimensions of the processed tensor. Therefore, fewer FPGA resources are needed for later layers of
the network. For details, refer to Section 7.2.
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7.1. Streaming Dataflow Architecture

In the FINN accelerator, a fine-grained streaming computing architecture is used. The
basic operation used by convolutional layers is a dot product, which consists of elementwise
multiplication and the accumulation of products. The diagram of the elementary processing
element (PE) used for dot product computation in FINN is shown in Figure 19. The
processing begins with SIMD products of A-bit inputs and W-bit weights, which are
stored in on-chip memory. The products are summed in parallel in an adder tree to be
sequentially accumulated towards the currently computed dot product. The final result
is acquired by comparing the accumulation results with values from threshold memory,
which represents the activation function used. The next degree of concurrency is obtained
by using P processing elements to form the MVTU (matrix-vector-threshold unit), which
computes the P output channels in parallel (Figure 20).

weight
memory

input
vector

...

threshold
memory

adder
tree

multipliers

index

+

accumulator

output
vector

Figure 19. Single processing element (PE) used for dot product computation in FINN framework.
Q input channels with A-bit precision are processed in parallel. The W-bit weights are stored in
on-chip memory to avoid memory bandwidth bottlenecks. As a result of the fine-grained architecture
of the system, the processed input pixels are accumulated sequentially before an output channel is
computed. The values from the threshold memory are used for comparisons with the accumulated
result to implement the required activation function.

PE #1

PE #2

PE #P

...

lowered image
stream

output image
stream

Matrix-vector-threshold unit

Figure 20. Matrix-vector-threshold unit used for fully connected and convolutional layers in FINN.
The module processes the data stream generated by the sliding window unit (SWU), which reduces
convolution operation to a multiplication between filter and image matrices. The columns of the filter
matrix are split between SIMD lanes and each row is mapped to a different PE.
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In order to lower the convolution operation to a matrix–matrix product, an image
context of the filter size must be extracted from the layer input. This is carried out by the
sliding window unit (SWU), which, for a convolution kernel of size K and stride S, writes
K
S horizontal lines of the input tensor to the on-chip memory. The data are read from the
memory with interleaved channels, so all channels of a given pixel are sent together in
the output data stream. The interleaving allows us to avoid unnecessary buffering of the
input channels in order to gather enough information to produce a single output pixel. It
does not introduce errors in convolution results because of the commutative property of
addition. The order of accumulating products in an image context and the results from
input channels is not important. The example of an SWU operation for K = 2, S = 1,
two input channels and two output channels is shown in Figure 21. Each column of the
constructed image matrix contains all channels of all pixels in a single 2× 2 image context.
The construction of the filter matrix requires no data manipulation because it is carried out
offline by the proper initialisation of the on-chip weight memory during the synthesis of
the design.
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Figure 21. The figure shows the process of reducing the convolution operation to a matrix–matrix
multiplication. In this example, two-channel 2× 3 input is processed by four 2× 2 convolutional
filters to produce two-channel 1× 2 output. The proper filter matrix is kept inside weight memory
of every PE and the image matrix is constructed by the SWU during inference. The result of the
convolution is a product of the filter matrix and the image matrix. Every column of the image matrix
contains image context for a single filter location and each row of the filter matrix contains weights
corresponding to a single output channel.

7.2. Folding

The choice of SIMD and P parameters determines how the filter and image ma-
trices are partitioned between PEs and thus allows us to balance the processing speed
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and resource usage. Consider a K× K convolution with Cin input and Cout output chan-
nels. Between subsequent convolutional layers (each consists of a SWU followed by
an MVTU), a data stream of width SIMD · A is being sent, where SIMD ≤ Cin and
Cin mod SIMD = 0. Every PE inside the MVTU produces a single pixel of a single output
channel in Cin

SIMD · K2 cycles. In addition, P processing elements can be used inside the
MVTU (P <= Cout and Cout mod P = 0), resulting in the processing of P rows of the filter
matrix in parallel. Ultimately, all channels of a single output pixel are computed by the
layer in Cin

SIMD
Cout

P · K2 cycles.
Another factor that we should also pay attention to is the varying spatial dimensions

of processed tensors; for example, due to maxpool operations. A tensor containing Nin

pixels is processed by an MVTU in Nin · Cin
SIMD

Cout
P · K2. The product represents the total

layer folding and should be constant for subsequent layers in order to avoid wasting
FPGA resources for PEs that have to wait for the input data or the overflowing of FIFOs
between layers. The folding parameters of each layer of the used architecture are shown
in Figure 18b. The first layer of the network has the most pixels to process, so maximum
parallelisation with P = Cout and SIMD = Cin was applied. For the second layer, Cout

2 PEs
and Cin

2 SIMD lanes were used, because there are four times fewer pixels to process due
to maxpooling. The rule was propagated for every next layer to maintain constant total
folding, with the last layer being an exception. Here, a slight overhead of resources was
applied, because the number of output channels must be divisible by P and the number of
input channels by SIMD.

7.3. Training Results

As a baseline, we trained the model using eight-bit precision. The weights from this
training were also used for acceleration using Vitis AI, which we describe in Section 8. The
implementation of an eight-bit model using FINN would require many more resources
than those available on the Ultra96-V2 target device. Thus, the model was further trained
using quantisation with fewer bits. The training process is shown in Figure 22.

Using a lower precision yielded a drastic reduction in LUT utilisation, which is the
main resource for the MVTU implementation. Table 6 presents the LUT utilisation and
detection IoU for different levels of quantisation. In order to meet the resource constraints
of the Ultra96-V2 board, the precision of weights and activations had to be lowered to
four bits.

Table 6. Comparison of detection quality and resource utilisation for different degrees of quantisation.

Precision LUT Utilisation (% of Available) IoU on Hardware Test Set

8-bit 301,968 (428%) 0.7153

5-bit 85,932 (122%) 0.6970

4-bit 54,079 (77%) 0.6513

In conclusion, the FINN framework allows for theend-to-end implementation of
convolutional neural networks on FPGAs, from quantisation-aware training to deployment
on the target device. However, it comes with some limitations to the model architecture and
an overhead in resource utilisation compared to a custom SystemVerilog implementation
due to the usage of HLS.
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Figure 22. The training procedure of the YoloFINN architecture. The dashed red line denotes the
moment of changing the precision from 8 to 4 bits. Such level of quantisation was necessary to meet
the constraints of the embedded platform.

8. Vitis AI

For thesequential acceleration type, we chose the DPU (deep learning processor unit)
of the Vitis AI environment [9]. It is a general purpose accelerator and allows for the execu-
tion of many types of layers, including standard convolutional, depthwise and transposed
layers, pooling layers, concatenation, normalisation, elementwise, upsampling and ac-
tivation functions such as ReLU, ReLU6, LeakyReLU or softmax [36]. Implementations
of functions such as the sigmoid and hyperbolic tangent are available for selected hard-
ware platforms. For edge devices in the target architecture, up to four DPU cores can
be used (limited by the resources of the chip). Moreover, it is possible to select one of
eight architecture types representing different computational powers. Additional DPU
parameters allow for the configuration of memory and DSP resource consumption, as well
as the types of operations performed (elementwise, depthwise), channel augmentation
or power configuration. During acceleration, one DPU performs operations of only one
layer (merged with other selected layers). Calculations are performed on eight-bit data
in a fixed-point representation with a sign. Moreover, once generated, the DPU allows
for the acceleration of arbitrary architectures (based on supported operations) without the
re-generation of programmable logic configuration.

The Vitis AI environment allows us to quantise and compile the trained model in
one of the popular frameworks, such as PyTorch, TensorFlow or Caffe. Depending on the
framework, different steps are required. For PyTorch, the quantisation step is performed
using the provided programming interface on a subset of the training data. As a result,
files containing information about the quantisation used and the model architecture are
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generated. The next stage involves compiling the quantised model for the selected DPU
version. This is performed by a dedicated compiler. Finally, a file with the model represen-
tation and information about the number of network nodes and the number of subgraphs
performed on the DPU, among other things, is obtained. Network architectures that con-
tain unsupported operations are separated into subgraphs executed on the DPU or CPU,
respectively.

The evaluation of the compiled model is performed using the Vitis AI Run Time library
(VART) available from Python and C++ languages. In addition, the DPU-PYNQ [37] library
is also available for the PYNQ environment.

Evaluation

For comparison with other accelerators, we quantised and compiled the trained model
architectures in the Vitis AI environment. We performed the quantisation process on
200 images of the validation set. For the evaluation, we used the PYNQ-DPU and DPU in
the configuration:

• Architecture B1600;
• High RAM usage;
• Without distributed RAM;
• Channel augmentation;
• Depthwise convolution;
• Without average pooling;
• Without elementwise multiplication;
• Activation functions: ReLU, ReLU6 and LeakyReLU;
• High DSP48 usage;
• With energy saving mode.

The chosen configuration was intended to maximise the computational power of the
DPU for the available hardware resources presented in the next section. In addition, it
was required to enable the acceleration of the developed DCNN architectures. During
quantisation, we found that the multi-depthwise layers were not properly transformed to
the quantised model. We replaced them by separating into single depthwise convolutions
and then concatenating them. This is represented by the scheme in Figure 23. However,
the performed transformation required changes to the subsequent layers:

• Depthwise—filters reordering;
• Pointwise—filters’ weights reordering.

Figure 23. Multi-depthwise convolution replaced by concatenated 3 single depthwise convolutions.
The presented transformation allows for multi-depthwise convolution acceleration with Vitis AI DPU.
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In the YoloFINN model, we used activation as a value limitation in the range of ±1.
This type of operation is not directly supported by the Vitis AI environment. We replaced
this function by (39).

clamp(x) = ReLU(x + 1) + (−ReLU(x− 1)− 1) (39)

This representation uses three depthwise convolutions with bias, a ReLU activation
function for two of them and one elementwise addition operation.

We present the results of the evaluation in Table 7. The energy consumption obtained
is almost linearly related to the throughput (more precisely, to the computation time). This
is obviously due to the use of the same accelerator. However, the second architecture
consumes more energy. This is due to both the higher computational effort—larger feature
maps and more complex operations—and the lower throughput obtained.

Table 7. Evaluation results of acceleration with Vitis AI. Both models achieves similar accuracy,
but with different throughputs and energy consumptions. The YoloFINN network has higher
computational complexity, especially due to the applied activation approximation.

Model IoU fps Energy [J] Power [W]

LittleNet 0.6625 123.3 68.332 2.808

YoloFINN 0.6746 53.2 175.818 3.118

9. Comparison of the Used Accelerators

The proposed solutions were tested on the same computing platform—the Avnet
Ultra96-V2 development board. It contains the Zynq UltraScale+ MPSoC ZCU3EG chip
(SoC FPGA) composed of two ARM processors and reprogrammable logic:

• 71k CLB LUTs;
• 141k CLB flip-flops;
• 360 DSP48;
• 7.6 Mb BRAM (216 × 36b blocks);
• Up to 1.8 Mb of distributed RAM.

The resources available are relatively small. This provides an additional challenge for
the compared implementation methods. In addition, the entire system works under Linux
from the PYNQ distribution version 2.6 suitably customised by the PYNQ-DPU library.

Experiments were carried out on samples from the hardware test set (Section 3). We
measured the energy by reading the instantaneous power values from the controllers in the
hardware platform accessible through the PYNQ library. The readout of the main power
regulator was not available. Therefore, we measured the sum of the power of the slave
regulators (all available from the PYNQ library). We determined the power consumption
as the result of the product of the computation time and the average power value recorded
with a period of 0.05 s. Moreover, the evaluation of all solutions was based on multi-
threaded processing. Three parallel operations were implemented: data pre-processing,
hardware acceleration and post-processing.

In Table 8, we present the results obtained for both compared network architectures
using different acceleration methods. The effectiveness of the floating-point model and the
one running in hardware is summarised, as well as the obtained throughputs and energy
consumptions. In turn, the resource consumption for the selected architectures is presented
in Table 9.
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Table 8. Results of acceleration with different methods. Abbreviations: C-G—coarse-grained, F-G—fine-
grained, Seq.—sequential. The highest throughput is achieved by our C-G solution. YoloFINN
architecture gives better accuracy results, but with higher computational complexity than LittleNet.

Model IoU f loat Method Quantisation IoUHW fps E [J] P [W]

LittleNet 0.6682
C-G 8-bit 0.6616 196 49.88 3.259

Seq. 8-bit 0.6625 123.3 68.33 2.808

YoloFINN 0.7209
F-G 4-bit 0.6608 111 79.83 2.954

Seq. 8-bit 0.6746 53.2 175.82 3.118

Table 9. Resource usage for each architecture. Our coarse-grained solution can be considered as
memory-hungry. On the other hand, the implementation with FINN uses more LUTs than other
resources. Vitis AI DPU consumes less resources than our solution, but more than FINN.

HW Architecture LUT LUT RAM FF BRAM DSP

LN P32 33,029 7077 64,918 198.5 349

LN P16 25,321 4724 47,339 198.5 238

LN P8 21,025 3772 39,328 202.5 187

LN P1 17,120 3044 30,023 205.0 140

Vitis AI DPU 1 45,051 0 63,033 168.0 262

Vitis AI DPU 2 34,924 2875 57,094 163.0 312

YoloFINN 4-bit 54,079 8002 57,118 26.5 10
1 Resource utilisation designated on the basis of documentation [38]; 2 Resource utilisation designated on the
basis of Vivado’s implementation reports.

As a result of quantisation, the accuracy of the LittleNet architecture decreased
slightly for both methods. However, this value is higher for Vitis AI. In addition, Vi-
tis AI quantisation took significantly less time than training with quantisation. LittleNetAcc
(LittleNet accelerator) achieved a significantly higher throughput and lower power con-
sumption. However, the coarse-grained architecture consumed more resources, especially
memory resources.

In the case of the YoloFINN model, the quantisation resulted in a better accuracy
than Vitis AI as well. However, it should be noted here that the initial model was trained
from the beginning using eight-bit quantisation, obtaining an IoU 0.7153 accuracy for the
hardware test set. For the FINN implementation, the model was also trained using four-bit
quantisation, obtaining a slightly worse accuracy value. This significantly reduced the
consumption of memory and DSP resources, with only a slightly higher LUT consumption.
When comparing the throughputs obtained, it can be seen that a higher value is obtained
for FINN. However, the applied activation function uses an operation that is not directly
supported. The use of approximation here may have significantly affected the throughput.

10. Comparison with Similar Networks Architectures

A comparison of the proposed neural network architectures with state-of-the-art
solutions is not fully possible due to the not so popular task of classless single object
detection (SOD). Therefore, we can only present the number of parameters of the detection
architectures and their special features—Table 10. Both of our proposed architectures
contain the smallest number of parameters among those listed. This is a characteristic
feature of the SOD problem, which is simpler than object detection. A similar order
of magnitude characterises SkyNet and UltraNet. Both were designed for the same task
(SOD), but trained on a different dataset. However, our proposals still have a smaller
number of parameters. The designed LittleNet architecture initially assumed a hardware
implementation using a coarse-grained acceleration. We based our design on SkyNet, but the
dimensions of the initial layers would prevent the full feature maps from being cached in
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BRAM resources. Therefore, we minimised the required amount of memory by reducing
the number of pointwise convolution filters and applying multi-depthwise convolution.
Moreover, we applied additional coefficients to scale the anchor box sizes. This allowed
us to make the detection quality independent of anchor box sizes, which is especially
important for quantised networks. YoloFINN, on the other hand, is somewhat similar
to UltraNet; however, it has more than twice as few parameters and a lower activation
threshold of −1. Additionally, we list the architectures of YOLOv3-tiny and MobileNetV2
in Table 10 as solutions to the detection task with classification for mobile devices. Both
have a significantly higher number of parameters, but this is determined by a much more
complex task. The comparison presented cannot be considered as a complete evaluation of
the proposed neural network architectures, as this was not the main objective of our work.

Table 10. Parameter numbers and characteristics of selected networks architectures.

Network Architecture Dataset Parameters Features

YOLOv3-tiny [39] COCO 8.818 M multi-scale detection, standard convolu-
tions, upsampling

MobileNetV2 [40] COCO 4.3 M separable convolution, inverted residual
blocks

SkyNet [20] DAC SDC 0.309 M separable convolution, PSO algorithm used
for structure optimisation

UltraNet [35] DAC SDC 0.256 M clamp(0; 1), standard convolution with
quantisation

LittleNet (our) VOT+VTB 0.244 M multi-depthwise convolution, linear activa-
tion for some layers, anchors multipliers

YoloFINN (our) VOT+VTB 0.115 M clamp(−1; 1) activation function

11. Summary

In this paper, we have compared three approaches to DCNN hardware acceleration:
sequential (Vitis AI), fine-grained (FINN) and coarse-grained (LittleNet’s own accelerator).
Vitis AI offers constant resource consumption that is independent of the depth of the
network. Furthermore, it is possible to reuse the bitstream obtained for another network
architecture. The prerequisite here is the use of operations supported by the given configu-
ration. Certain operations that are not directly supported can be implemented using the
available operations. Implementing the solution in this environment is relatively simple. It
only requires static quantisation on a subset of the training data and then the compilation
of the model. However, the general purpose architecture does not allow for the complete
freedom of network architecture. For unsupported operations, the processing bandwidth
is limited.

For acceleration with the FINN environment, we obtained a relatively low resource
consumption. However, this is due to the use of a four-bit representation. The eight-bit
quantisation resulted in exceeding the available Avnet Ultra96-V2 hardware resources.
The use of separable convolutions proved to be more difficult than the use of more com-
putationally complex standard convolutions. However, a relatively high throughput can
be achieved.

Coarse-grained acceleration allowed for the highest throughput. However, because the
implementation was of a custom design, this was the most complex and time-consuming
task. The accelerator used two types of convolution, depthwise and pointwise, as well as
modules for max and argmax operations. This architecture is characterised by a relatively
high resource consumption. Although logical and arithmetic resources can be adapted,
memory resources are determined by the dimensions of the feature maps. This limits the
applicability of the solution to relatively small networks. For larger models, it is possible to
increase memory sharing within macroblocks. Moreover, it should be noted that, in the case
of depthwise convolution, a relatively small number of operations are obtained per element
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of the resulting feature map. This results in a greater demand on memory resources, of
which, there are relatively few, than on logic-arithmetic resources. Using full convolutions
would increase the number of operations, thereby increasing memory efficiency—a given
memory element represents a more complex feature.

In order to reduce the energy consumption of the system, we have determined the
dependencies on frequency and processing parallelisation. Note that they do not reduce
the electrical power of the system, but, on the contrary, the power is increased. The
optimisation relies on the reduction in the runtime of constant elements (such as CPU,
counters or communication). Furthermore, the parallelisation condition assumes that, as
the processing power increases, the processing time decreases.

Future Work

The proposed coarse-grained accelerator allows for only a few operations. This could
be extended to include standard convolution. Moreover, each macroblock uses several accel-
erators of the same type. It is also possible to share DSPs inside a macroblock, as proposed
in [41]. In our previous implementation, we used a simple dual-port RAM. This allowed
for only reading and writing to a single address in memory. Using full dual-port memory
will reduce the number of reads of the pointwise and standard convolution weights.
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