
����������
�������

Citation: Bloch, A.; Casale-Brunet, S.;

Mattavelli, M. Performance

Estimation of High-Level Dataflow

Program on Heterogeneous

Platforms by Dynamic Network

Execution. J. Low Power Electron. Appl.

2022, 12, 36. https://doi.org/

10.3390/jlpea12030036

Academic Editor: Andrea Acquaviva

Received: 10 March 2022

Accepted: 18 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

Performance Estimation of High-Level Dataflow Program on
Heterogeneous Platforms by Dynamic Network Execution †

Aurelien Bloch * , Simone Casale-Brunet and Marco Mattavelli

EPFL SCI-STI-MM, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
simone.casalebrunet@epfl.ch (S.C.-B.); marco.mattavelli@epfl.ch (M.M.)
* Correspondence: aurelien.bloch@epfl.ch
† This paper is an extended version of our paper published in 14th IEEE MCSoC 2021.

Abstract: The performance of programs executed on heterogeneous parallel platforms largely de-
pends on the design choices regarding how to partition the processing on the various different
processing units. In other words, it depends on the assumptions and parameters that define the
partitioning, mapping, scheduling, and allocation of data exchanges among the various processing el-
ements of the platform executing the program. The advantage of programs written in languages using
the dataflow model of computation (MoC) is that executing the program with different configurations
and parameter settings does not require rewriting the application software for each configuration
setting, but only requires generating a new synthesis of the execution code corresponding to different
parameters. The synthesis stage of dataflow programs is usually supported by automatic code
generation tools. Another competitive advantage of dataflow software methodologies is that they
are well-suited to support designs on heterogeneous parallel systems as they are inherently free of
memory access contention issues and naturally expose the available intrinsic parallelism. So as to
fully exploit these advantages and to be able to efficiently search the configuration space to find
the design points that better satisfy the desired design constraints, it is necessary to develop tools
and associated methodologies capable of evaluating the performance of different configurations and
to drive the search for good design configurations, according to the desired performance criteria.
The number of possible design assumptions and associated parameter settings is usually so large
(i.e., the dimensions and size of the design space) that intuition as well as trial and error are clearly
unfeasible, inefficient approaches. This paper describes a method for the clock-accurate profiling
of software applications developed using the dataflow programming paradigm such as the formal
RVL-CAL language. The profiling can be applied when the application program has been compiled
and executed on GPU/CPU heterogeneous hardware platforms utilizing two main methodologies,
denoted as static and dynamic. This paper also describes how a method for the qualitative evaluation
of the performance of such programs as a function of the supplied configuration parameters can be
successfully applied to heterogeneous platforms. The technique was illustrated using two different
application software examples and several design points.

Keywords: dynamic dataflow programs; RVC-CAL; profiling; performance estimation parallel
computing; source-to-source compiler; GPU programming heterogeneous systems

1. Introduction

The search for higher computational capacity of processing platforms is still driven
by the growing needs of the current applications’ programs. The difficulty of satisfying
Moore’s law by developing smaller circuit components together with the challenges brought
by the increasing logic gate frequency, pushes the roll-out of heterogeneous processing
platforms. Indeed, exploiting deeper levels of domain-specific hardware specialization
is considered as a solution to the fact that the straightforward multiplication of similar

J. Low Power Electron. Appl. 2022, 12, 36. https://doi.org/10.3390/jlpea12030036 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12030036
https://doi.org/10.3390/jlpea12030036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0003-3893-5103
https://orcid.org/0000-0001-7840-1398
https://orcid.org/0000-0002-7742-0332
https://doi.org/10.3390/jlpea12030036
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12030036?type=check_update&version=1

J. Low Power Electron. Appl. 2022, 12, 36 2 of 21

and off-the-shelf processing elements is no longer sufficient to deliver the necessary aug-
mented processing power. More recently, industries are shifting to increasingly complex
heterogeneous hardware for custom usage (i.e., Microsoft arm [1], Nvidia Grace [2], Apple
silicon [3]). They are clear attempts to answer these increased processing needs; however,
they introduce new challenges and the need to resolve existing problems by efficiently
programming them.

Design methods, based on abstract dataflow programming software, have been demon-
strated to be suitable approaches providing an answer to the problem of dealing with large
design spaces and the difficulty of exploring them, and the portability challenges intrin-
sic when facing heterogeneous platforms [4,5]. Moreover, dataflow languages expose by
construction the data parallelism and algorithm parallelism that are naturally available
in the process of executing various tasks on the target data. Many settings (i.e., mapping
of the software kernel onto the suitable hardware processing element) could be quickly
evaluated without demanding costly and complete redesigns of the application program as
would be required when utilizing conventional imperative software programs, for which
the different parallelization possibilities mandate expensive handmade rewriting of the
program, with the side-effect of consuming significant amounts of designer hours.

Nevertheless, dataflow methodologies make it easy to partition and map, in any
arbitrary way, a design with the guarantee that any configuration can consistently generate
the correct implementations without the necessity of rewriting the software. However,
they introduce novel research questions in terms of determining the best performance
settings related to the scheduling, mapping, and partitioning for the specific, and possibly
heterogeneous, platform at hand. Regardless of the sophistication of the software design,
the size of the potential configuration set that needs to be evaluated is often too large.
This fact makes design exploration excessively time-consuming, or intractable, for a direct
developer’s trial-and-error attempt, particularly when the attempt is to exhaustively test the
admissible points in the parameter space. This fact makes evident the necessity of having
systematic and automatic methods of recognizing and assessing efficient configurations
and designs. TURNUS [6,7] is a design space exploration software tool based on the
research conducted by the authors of this article with this intent. The framework was
designed using a high-level abstract model of computation (MoC) as a result of the dataflow
network structure and the acting model of execution. It was labeled with the measurements
from the profiling of every atomic computation acquired on the actual heterogeneous
hardware. Consecutively, the analysis of the execution model could identify performance
configurations by automatically and efficiently exploring the admissible design space.

To generalize the methodology for additional use with platforms including GPU
hardware, the source-to-source compiler backend that generated specialized software code
for dataflow application programs, as presented in [8–10], would require further expansion.
According to the results of this study, the automatic generation of a platform-specific
instrumented code aggregating clock-accurate profiling metrics for CUDA/C++ [11] from a
dataflow model of the application software was completed at a granularity level that would
be particularly suitable for TURNUS’s analysis. The procedures depicted in this article also
expanded on the analysis methodology and the associated tools described in [12] by adding
support for the actual analysis of GPU/CPU heterogeneous performance weights (i.e.,
elapsed time per type of processing related to the programming model: communication,
computation, and scheduling).

The novel propositions reported in this article are as follows:

• The development of a method to generate an instrumented code in C++/CUDA
from an RVC-CAL actors’ network that, when executed on the appropriate hardware
platform, automatically generated the weights (i.e., performance measures) of the
actors’ runtime for both platforms, in case it would be executed on the GPU or the
CPU system.

• The development of a method for utilizing the performance measures to estimate
the overall performance of any configuration of an RVC-CAL dataflow application

J. Low Power Electron. Appl. 2022, 12, 36 3 of 21

without the necessity to configure, synthesize, compile, execute, and profile each
configuration on a heterogeneous system.

• A methodology for generating code compatible with the creation of an application
program for which the network layout could be dynamically configured at runtime.

• An alternative methodology to use the newly introduced dynamic network methodol-
ogy to generate the runtime profile metrics for use in performance estimation.

The paper is divided into the following sections: Section 2 provides an overview
of the profiling framework and methodologies utilized for GPU/CPU co-processing sys-
tems, as developed in previous research. Section 3 lays out the necessary background for
understanding the work implemented in this article, including all the required concepts
concerning the dataflow MoC; the design space exploration process; and the prerequisites,
functionalities, and implications of the exact performance estimation phases. Section 4
describes the principal proposition of the article including the clock-accurate profiling
for synthesizing dataflow programs on GPU/CPU heterogeneous hardware with both
dynamic and static strategies, and a methodology that used heterogeneous profiling mea-
sures for estimation of the performance. Section 5 showcases the process by depicting the
precision obtained with different application programs while analyzing and comparing
their estimated and measured performances. Ultimately, Section 6 summarizes the article
and describes the goals, directives, and possible objectives for future research.

2. Related Work
2.1. GPU Profiling

There are various possibilities for profiling a GPU application written using CUDA,
either from NVidia directly, such as their NVIDIA Visual Profiler (NVVP) tool [13], or
from other research tools including SASSI [14], CUDA Memtrace [15], CUDAAdvisor [16],
Nvbit [17], or CUDA flux [18]. CUDA Memtrace, CUDAAdvisor, and CUDA flux are frame-
works that were released as open-source profilers and use the LLVM compiler toolchain
for instrumenting the LLVM intermediate representation during the compilation phase.
NVBit is a framework that uses a dynamic binary injection that instruments programs at
the NVIDIA assembly language layer (SASS) without the necessity to recompile, whereas
SASSI provides results with similar precision, but it requires software-level instrumenta-
tion. The NVIDIA Visual Profiler profiles programs at execution time without requiring
a recompilation.

The profilers briefly presented above are based on either sampling approaches, with
reported concerns regarding sampling frequency that needs to be accommodated to adjust
the overheads for their accuracy trade-offs, or they are based on a binary-level instruction
injection, a solution which results in the profiling not matching the dataflow model and
thus making it difficult to use the obtained profiling results in appropriate design space
exploration strategies. The methodology presented in this article takes advantage of the
fact that the CUDA/C++ software can automatically be written by the compiler, elimi-
nating the necessity for binary instruction injection and allowing the exact measurement
of performances with a granularity that matches the different program elements used
by the dataflow computation model. Strictly speaking, these metrics fitting the dataflow
model of computation could be generated by individually measuring the action processing
elapsed time, the scheduling elapsed time, and the time occurring in data reading/writing
at the scope of each actor execution. Nonetheless, these different profilers export various
performance metrics, as compared to the solely elapsed time (e.g., shared memory usage,
core usage, register pressure, etc.). Indeed, we do not exclude the possibility of integrating
some additional metrics to obtain more precise measurements during the execution of the
application software by the profiler framework, in order to achieve a more accurate and
effective design space exploration methodology.

J. Low Power Electron. Appl. 2022, 12, 36 4 of 21

2.2. Heterogeneous Dataflow Profiling

The literature contained various profiling applications for dataflow models in the com-
putation for heterogeneous systems. These included Sesame [19,20], SystemCoDesigner [21],
CoEx [22], and MAPS [23,24]. Sesame is a system-level simulation framework that tackles
the question of discovering an appropriate and performant target MPSoC platform archi-
tecture. Sesame uses different models for application and architecture: the architecture
model describes the architecture elements and defines their performance restrictions using
trace-driven simulation, while the application model describes the functional behavior of
an application. The application model is disconnected from the specific assumptions of the
hardware architecture; the caveat is that only KPN application models can be utilized and
investigated. SystemCoDesigner explores programs expressed in SysteMoC, a high-level
language built on top of SystemC. It generates hardware/software SoC with automatic
design space exploration methodologies. The model is converted into a behavioral SystemC
model. During DSE, the domain is explored using multi-objective optimization algorithms.
For each investigated design, the performance is estimated by using performance models
(which are generated automatically from the SystemC behavioral model) and the behav-
ioral synthesis results. MAPS is a DSE tool for KPN programs. Both the estimation of the
performance and the design space exploration are performed through an analysis of the
ETG. ETGs are generated by profiling and are augmented with timing information via
performance estimation. However, their definition is limited since only internal variables
and token dependencies are supported. It is equipped with a multi-application analysis
component that performs composability research in order to assess if a set of applications
may run simultaneously on the same platform, without interfering with each other. CoEx
provides a multigrained profiling approach that allows the selection of the level of detail at
which profiling occurs. It also contains a pre-architectural estimation engine. This engine
couples an abstract processor model together with an execution report of an application us-
ing a generated low-level code representation of the dataflow program that is successively
profiled through an instrumented platform-dependent execution, to generate an estimate
of achievable performance.

None of the presented frameworks offer support for heterogeneous systems that
include GPU elements. Our research focused on a methodology extension for GPUs. The
goal of this study was to certify and confirm that the methodologies developed for the
frameworks Orcc/Exelixi + TURNUS that already support Multicore, Manycore, and FPGA,
could be used with heterogeneous CPU/GPU platforms. We also described the challenges
involved so that GPU platforms could be added to the list of elements that could comprise
a heterogeneous system and that would be supported by the developed methodology. To
the best of our knowledge, there has not been an integrated method that automatically
supports all these platforms, with support for portability and design space exploration that
could facilitate porting applications to various systems and selecting efficient partitions
and mapping configurations. This study is a step towards achieving such a goal.

3. Dataflow Programs and Design Space Exploration

Dataflow process networks (DPN [25]) is a model of computation where a number of
concurrent processes communicate through unidirectional FIFO channels, where writes to
the channel are nonblocking and reads are blocking. In dataflow process networks, each
process consists of repeated firings of a dataflow actor. An actor defines a (often functional)
quantum of computation by dividing processes into actor firings.

Therefore, the continuous stream of data (tokens) connecting actors in a dataflow
network is entirely explicit, and the access to shared data is solely permitted by transmit-
ting packets of data. This research is based on a high-level dynamic dataflow model of
computation (MoC) based on a variant of the DPN presented above. A characteristic aspect
of this MoC is that an actor execution is defined by a series of atomic computations (firings).
During every firing, an actor could fetch a specific number of input data, push a specific
number of output data, and change its local memory when applicable (i.e., determined by

J. Low Power Electron. Appl. 2022, 12, 36 5 of 21

the processed input token values and the values of the state variables). The computational
element of a unique actor’s firing is defined by the "action". At every stage, depending on
its input token’s value and the values of its state variables, a single action is allowed to
be executed. The resultant lack of data race and critical section made the behavior of the
dataflow software more robust to various computational policies, whether they were fully
parallel or only interleaving the respective actor executions [7].

3.1. RVC-CAL

Over the past few decades, an abundance of various software languages have been
employed to implement the semantics of dataflow programs [26]. Imperative languages
(e.g., Python, Java, C, C++) were augmented including parallel operators, or new lan-
guages supporting dataflow features (e.g., SISAL [27], Ptolemy [28]) were developed and
standardized. In this diverse environment, the reconfigurable video coding cal actor lan-
guage (RVC-CAL) has been the only formalized dataflow programming language with
ISO compliance (International Organization for Standardization) that fully encompasses
the behavioral characteristics of the DPN MoC [29]. Every RVC-CAL actor is composed
of a collection of atomic firing functions, called actions, and a set of internal memory that
cannot be accessed by other neighboring actors. Only a single function can be executed in
parallel while the actor is executing. In other words, for every actor, the collection of firing
rules determines at which point the action is allowed to be fired. Each one of these rules
can be expressed as a function of the actor’s internal variables and on the availability and
value of the input tokens. More precisely, a firing rule can be defined as a Boolean function
with a selection of the action input pattern (i.e., that specifies the necessary number of
tokens for the action to be fired and that will be taken out of the FIFO buffers) and the
action guard condition (i.e., that is, a Boolean expression defined by the actor’s internal
memory and the values of the consumed input data). To illustrate these concepts, Figure 1
depicts a simple example of an RVC-CAL dataflow application software, in which Figure 1a
reports the graphical model of the network of actors of the example. The dataflow program
was composed of five instances of actors (Prod, PingPong, CopyTokensA, CopyTokensB,
and Merger). Figure 1b shows the RVC-CAL software code of the Prod actor. It had only
one action that output a single token per execution and bumped-up an internal counter.
A guard stopped the action from firing more than four times. In the implementation of
the PingPong actor in Figure 1d, a scheduled expression played the role of a finite state
machine (FSM), in which the execution of an action was the trigger of a change in an actor’s
state. The FSM provided an additional element (or language operator) that contributed
to the subsequent selection of the action to be executed. In this example, it directed two
actions that were executed in an alternating cycle.

An important property of RVC-CAL programming language is its abstraction level,
for which it can be considered as fully platform-agnostic: from its high-level represen-
tation of the program execution, it can generate optimized, low-level code for various
parallel, heterogeneous architectures and platforms. Within the scope of this study, the
framework utilized was open RVC-CAL compiler (Orcc) [30,31]. It is worth noting that
RVC-CAL compilation is also supported by other open-source compilers developed in the
past years, for example, Caltoopia [32,33], Tÿcho [34], Cal2Many [35,36], DAL [37], and
StreamBlocks [38].

J. Low Power Electron. Appl. 2022, 12, 36 6 of 21J. Low Power Electron. Appl. 2022, 1, 0 6 of 21

(a) An example with five actors (i.e., Prod, CopyTokenA, CopyTokenB, PingPong and Merger).

actor Prod () ==> i n t Out :
i n t cnt := 0 ;

produce : action ==> Out : [cnt]
guard cnt < 4
do cnt := cnt + 1 ; end

end

(b) Prod.cal

actor CopyTokens (S t r i n g name) i n t In ==> i n t Out :
copy : action In : [token] ==> Out : [token] end

end

(c) CopyTokens.cal

actor PingPong () i n t In ==> i n t Out :

ping : action In : [token] ==> Out : [token]
do p r i n t l n ("Ping:" + token) ; end

pong : action In : [token] ==> Out : [− token]
do p r i n t l n ("Pong:" + token) ; end

schedule fsm s_ping :
s_ping (ping) −−> s_pong ;
s_pong (pong) −−> s_ping ;

end
end

(d) PingPong.cal

actor Merger () i n t In1 , i n t In2 ==> :
i n t cnt := 0 ;

merge : action In1 : [token1] , In2 : [token2] ==>
do

p r i n t l n ("Merger(" + cnt + "):" + token1 + ";" + token2) ;
cnt := cnt + 1 ;

end
end

(e) Merger.cal

Figure 1. RVC-CAL program example: dataflow network topology and actors source code.Figure 1. RVC-CAL program example: dataflow network topology and actors source code.

J. Low Power Electron. Appl. 2022, 12, 36 7 of 21

3.2. Design Space Exploration

The objective of design space exploration and optimization is to find an efficient design
configuration leading to an efficient implementation so that the required system resources
are minimized and the performance requirements are met. Therefore, both reduction of
the utilization of hardware resources established on development choices (e.g., reduction
of total memory usage), and algorithmic optimizations (e.g., parallel algorithms) of the
application software were conducted during this phase of the implementation process.
In the scope of this study, TURNUS was used as a design space exploration software,
packaged in the form of an open-source framework. Via software interpretation applied
at the level of the RVC-CAL language supplied by the Orcc toolchain, it was possible
to obtain a performance-aware, platform-independent, and high-level emulation of the
abstract execution of an input application software. As outlined in Figure 2, during this
step, TURNUS was capable of evaluating the execution trace graph (ETG) of the software
application program [7]. The ETG is a graph-shaped replica of the dataflow program
execution, in which every directed edge represents a runtime dependency (i.e., internal
variable, finite state machine, guard, port, and tokens.) between two distinct action firings,
and every node represents one action execution. After being generated by the tool, the
graph could be processed so as to identify the longest succession of processing nodes,
or critical path (CP), by using appropriate profiling metrics. Based on this process, the
extraction of the information characteristics of the specific CP was used by TURNUS to
identify a mapping configuration according to the provided constraints (e.g., buffer sizes
of the interconnecting channels) that could minimize or maximize an objective function
(e.g., data throughput), as supplied by the user. In addition, the framework provided a
rapid performance assessment functionality based on the post-processing of the ETG data
structure. This machinery could also be utilized to quickly explore various design points
(i.e., partition settings) of the application program, and this could be accomplished while
reducing the amount of low-level synthesis needed to verify and evaluate the design.

ORCC

Profiling
and

Analysis

ConfigsCAL

Performance
Estimation

Code
Generation

Synthesis
or

Compilation

Implementation

Figure 2. Design space exploration and implementation design flow. Deep blue elements represent
the code-synthesized path of the tool, while light blue, the profiling and design space exploration
path of the tool.

J. Low Power Electron. Appl. 2022, 12, 36 8 of 21

3.3. Performance Estimation

One of the central features of an ETG is that it can be utilized to represent the entire
space of possible scheduling and mapping points of design (i.e., configurations) by using a
single actual implementation and execution of the application program as a starting point.
Indeed, by adding complementary edges (i.e., dependencies) on the graph, referred to as
scheduling dependencies, it was possible to evaluate the runtime behavior for various
partitions and configurations. More accurate and detailed information approximately the
execution of the application program was evaluated by adding appropriate weighted data
to every individual edge and node of the ETG. The weights of the arcs were subject to
the data transmission cost, or the w(si, sj), associated with writing and reading tokens
to and from the FIFO buffers, whereas the weights of the vertices corresponded to the
time of computation of each action execution, or the w(si). In both circumstances, the
operation of the application software on the target hardware platform was performed so
as to obtain the appropriate profiling weights. Discrete event system specification (DEVS)
is a formalized model on which the design space exploration framework TURNUS was
founded. It implements the performance estimation method that was utilized as a base for
the analysis of the executions and further extended in this article. A DEVS procedure is
designed as a collection of atomic elements represented by their transitions of states, time
functions, and output progress functions. The state transitions can be initiated by external
or internal events. The data transmission across atomic element occurs by means of signals
sent/received as the port values that define the template argument for the types of objects
produced/accepted, respectively, as output/input. Since the framework was intended to
model the complete behavior of a dataflow application program, in addition to considering
individual actors and FIFO buffers, the partitions of actors and buffers were also modeled.
The partitions were used to simulate the mapping of multiple logical elements on a single
processing core where the elements (i.e., actors or buffers) were not executed in parallel,
but one after the other, following precise scheduling rules. Figure 3 illustrates the various
components of such model: a more detailed description of this approach can be found
in [4], where all functional components were extensively described.

Figure 3. ETG post-processor model.

4. Performance Estimation Methodology

The following part of this section describes how the Exelixi CUDA backend [9] was
improved upon to generate instrumented code to achieve clock-accurate profiling and to
output the corresponding performance metrics. We also describe how such measures could

J. Low Power Electron. Appl. 2022, 12, 36 9 of 21

be utilized in the TURNUS post-processor to make an accurate estimation of the overall
application execution time.

4.1. Clock-Accurate Profiling

To obtain clock-accurate profiling capabilities in an automated method, a new setting
in the Exelixi CUDA backend was introduced. The first improvement was to change how
the parallel GPU partitions would behave (the partition in charge of the scheduling of all
actors) and how the inner scheduler of the actors executing on the GPU would behave
(i.e., the CUDA actors themselves). Moreover, in order to avoid any interference with the
measurements (e.g., hardware resources access conflicts, memory transfers, etc.), all actors
could only be executed in a sequential manner, and a sequential partition was created to
schedule, at most, a single GPU actor and a single CPU actor, in parallel. The ordering of
the actor scheduling was then switched from fully parallel to non-preemptive (i.e., an actor
executed actions as long as inputs, outputs, and predicates allowed it to do so and then
released the control back to the partition’s scheduler). The second improvement required for
a new implementation of the profiling method was how measurements would be obtained.
For clock-accurate metrics, the ability to read platform counters that increased at a fixed rate
was required. For the actors running on the CPU, an identical RDTSC intel register in [39]
was employed. For the actors running on the GPU, a different approach was required.
The NVidia hardware platform (utilized for obtaining the results reported in this article)
provided an equivalent functionality for profiling CUDA’s streaming multiprocessors.
Figure 4 shows the SASS assembly code utilized to access a steady and clock-accurate
performance measurement. These calls could be positioned on opposite sides of the portion
of code to be profiled.

In contrast with other software solutions for homogeneous hardware methods pre-
sented in previous research, we could not assume that the data transmission time for a
typical action would be comparable, as regardless of the chosen partition of the actor
(CPU or GPU), it would still be transmitting data. Moreover, cross-platform transmission
(i.e., GPU to CPU) is much more resource-demanding. Considering this, the organization
of the action software was revised to distinguish the data transmission from the action
computation. Figure 5 shows that initially, each input essential to the action computation
was read in a sequential manner before the action body, and the tokens produced as result
of the computation were written to the outputs. This allowed for sufficient differentiation
and measurement of communications and execution weights.

All these metrics from both the GPU and the CPU were aggregated in the profiling
class, which was responsible for computing the data statistics (i.e., mean, variance, min,
max, and Gaussian filtering) and for writing to the three output XML files, weight.cxdf,
weight.exdf, and weight.sxdf, that were composed of the measures for the communication,
action body computation, and scheduling metrics, respectively.

// -- PROFILE: START
asm volatile ("mov.u64 %0, %%clock64;" : "=l" (__c lock_1) : : "memory") ;

// section of code that needs profiling

// -- PROFILE: STOP
asm volatile ("mov.u64 %0, %%clock64;" : "=l" (__c lock_2) : : "memory") ;
actor_a −> p r o f i l i n g −>addFiring (ACTOR_ID : : actor_a ,
ACTION_ID : : act ion_a ,
(__c lock_2 − __clock_1)) ;

Figure 4. A simplified example of the utilization of Nvidia’s assembly language (i.e., SASS) was
required for reading the GPU’s stable autoincrementing register.

J. Low Power Electron. Appl. 2022, 12, 36 10 of 21

void action () {

}

Read Inputs

Write Outputs

Action body

Read 1

Read n
…

Write 1

Write m
…

Figure 5. Action profiling.

4.2. Static Heterogeneous Estimation

This section describes the approach that was developed for obtaining the profiling
metrics generated by our method, as explained in the last section. First, at issue was
how to manage the differences in frequency between the clock rates of the GPU and CPU.
Therefore, for every measure in the XML file, the clock rate of the hardware, on which the
measures had been extracted, was added. An extra input to the TURNUS post-processor
was thus provided to properly normalize all measurements. To obtain the CPU clock cycle
rate, the RDTSC register value was sampled after a fixed time, so as compute the clock
cycle rate utilized for the RDTSC register. For the GPU frequency, NVidia disclosed this
number via the CUDA API. Finally, another challenge we had to address was the frequency
variability. Regardless of the term used (e.g., dynamic clocking, boost, step speed, turbo
boost, etc.), various systems for clock rate volatility had been developed for each hardware.
These technologies were removed during sampling so as to improve the accuracy of the
performance estimation.

The static profiling method consisted of selecting and setting the configuration of the
network for the application software during profiling. It was necessary to pinpoint which
design settings had to be communicated to the Exelixi CUDA backend as a foundation for
the generation of the instrumented software. In order to consider all possible combinations
of different FIFO buffers and actor platform assignments, four distinct configurations
were needed to output the weights required to estimate the runtime of any configuration,
regardless of the sophistication of the software program and the number of potential points
of design. These four design points are shown in Figure 6. Examples one and two had all
actors assigned to either the CPU or the GPU, respectively. They were then able to measure
the action body computation and the scheduling time on each type of hardware platform.
However, considering only these two design points would not be sufficient as there was
no way to profile the data transmission time across the two platforms (HostFifo n°2 in
blue), but only the CPU-to-CPU transmission (Fifo n°1 in red) or GPU-to-GPU transmission
(CudaFifo n°3 in purple). To manage this potential limitation, two additional profiling steps
with a specifically developed compiler option that would always produce the HostFifo (i.e.,
FIFO for cross-platform data transmission) to connect each actor was utilized to obtain the
data transmission time for all the possible design points.

J. Low Power Electron. Appl. 2022, 12, 36 11 of 21

CPU

A

B

C

1

1

(a) Full CPU

GPU

A

B

C

3

3

(b) Full GPU

CPU

A

B

C

2

2

(c) CPU Host-
Fifo

GPU

A

B

C

2

2

CPU

(d) GPU HostFifo

Figure 6. Illustration of the four static configurations required during profiling.

4.3. SIMD Parallel Estimation

In [40], the authors extended the GPU actor methodology with the usage of SIMD
parallelization in the action’s execution. For the proper generation of the performance
weights, the following changes were necessary. Figure 7 shows the SASS assembly code
used to access the clock performance counter during a parallel SIMD action execution. The
first element considered was the if-statement with the thread index (thIdx) so that only
a single thread report the elapsed time for the entire thread batch in order to avoid race
contention to the shared weight collection (profiling). The second consideration was to
provide the number of threads in terms of th and bl that corresponded to the number of
CUDA thread blocks and the number of threads per block, respectively.

// -- PROFILE: START
if (thIdx == 0) {
asm volatile ("mov.u64 %0, %%clock64;" : "=l" (__c lock_1) : : "memory") ;
}

// section of code that needs profiling

// -- PROFILE: STOP
if (thIdx == 0) {
asm volatile ("mov.u64 %0, %%clock64;" : "=l" (__c lock_2) : : "memory") ;
actor_a −> p r o f i l i n g
−>addFiring (ACTOR_ID : : actor_a ,
ACTION_ID : : act ion_a ,
(__c lock_2 − __clock_1) ,
actor_a −>pact ion_a . th * actor_a −>pact ion_a . b l) ;
}

Figure 7. A simplified example of the utilization of Nvidia’s assembly language (i.e., SASS) was
required for reading the GPU’s stable autoincrementing register in parallel mode.

4.4. Dynamic Heterogeneous Estimation

In this section, an alternative methodology for the generation of performance weights
is presented. Instead of using four static sequential partitions where, at each point in time,
a single CPU or GPU actor would be evaluated, a single dynamic program where the
configuration of mapping and partitioning was generated and set dynamically during

J. Low Power Electron. Appl. 2022, 12, 36 12 of 21

the instantiation of the network. The goal of this change was to increase the speed of the
process and to better model what occurred on the hardware at runtime in terms of resource
conditions, such as the bus between the CPU and the GPU, or the available CUDA threads
on the GPU.

4.4.1. Model for Dynamic Network

In this section, a methodology to generate dynamic RVC-CAL networks is introduced.
Instead of repeating the entire four steps of the compilation flow each time a new configu-
ration was evaluated, a single final binary was created that could specify the partition and
mapping at runtime during the startup process of the application. Therefore, to test a new
configuration, it would be sufficient to change the input XML file and rerun the program.

1. Change the Exelixi CUDA backend parameters configurations files.
2. Generates code
3. Compile
4. Execute

For this methodology, the newly developed Exelixi CUDA backend option generates
a shadow CPU version that is not connected by default in the network for each actor
assigned to the parallel GPU partition, and depending on the input configuration file, the
proper version of the actor would be substituted. Figure 8 illustrates this methodology.
In this example, the application program had four actors (A, B, C, D) connected together,
back-to-back, by three FIFO buffers.

Figure 8a illustrates the former static methodology in which the actors A and D were
assigned to the CPU and B and C to the GPU. In this case, the Exelixi CUDA backend only
generated the appropriate code to match the configuration, as requested by the developer.

Figure 8b shows the alternative dynamic methodology, where for the actors B and
C assigned to the GPU, the Exelixi CUDA backend also generated shadow actors B∗ C∗,
respectively, targeted to the CPU. At runtime, during the setup process, the actors’ network
was dynamically instantiated with the appropriate versions. The code generated for the
handling of the FIFO buffers (e.g., reading, writing, updates notification) was changed
so that the same FIFO instance could be used by an actor running on either the CPU or
the GPU. Currently, this dynamic setup was performed once for the entire time of the
execution, and it could not be changed during execution, especially if the actor contained
internal state variables. This was due to the current implementation, where the internal
state of the actor was not mirrored, which is a limitation that can be removed in future
releases of the tool.

In the two examples, the FIFO connecting actors B and C were not the same (as the
color difference attests). Indeed, the one for the static example was a specific GPU-to-GPU
FIFO buffer that provided better performance. Due to the dynamic aspect of the second
example, this specialization of the FIFO buffer could not be utilized as all buffers had to be
HostFifo so that the dynamic switching between the actor and its shadow variant could
occur. For more details on the differences between these FIFO buffer implementations,
please refer to [8].

J. Low Power Electron. Appl. 2022, 12, 36 13 of 21

A B C D

(a) Static example

A

B

B* C*

C

D

(b) Dynamic example

Figure 8. A comparison between the dynamic network and the original static network.

4.4.2. Dynamic Methodology Estimation

In this section, we describe the newly introduced dynamic network methodology used
to generate the performance weights in the specific partition for which the performance
needed to be estimated.

Therefore, both the regular and the complementary shadow actors were injected with
instrumented code for measuring the elapsed time for communication, execution, and
scheduling. One of the main differences was the execution of the action selection for each
actor. Indeed, previously, a single CPU actor and a single GPU actor could be executing at
the same time, whereas with this second technique, the code could be executed regardless
of the configuration provided with the input XML files and could generate weights in
the exact configuration with all the same resource contention and utilization as occurred
during actual executions of the application program.

That the profiling could potentially be conducted in parallel provided a new imple-
mentation challenge. Therefore, each actor could instantiate its own profiling object to
avoid memory contention between actors reporting their measures. Furthermore, for GPU
actors, since actions could be executed in parallel, the usage of cuda::atomic variables
prevented a data race. At the end of the profiling, all the reported data were merged
together to make the appropriate computation so as to generate and output the report files.

This newly developed technique allowed for an updated and accurate full design
space exploration methodology. Figure 9 is an updated representation of Figure 2. Here,
the TURNUS design space exploration tool provided the configuration files to the already
compiled binary to generate updated weights. These weights could then be fed into the
performance estimation tool, thus completing the optimization cycle. This smaller and
tighter loop offered both a faster exploration of the design space, as the development time
to regenerate code as well as compile and test the configuration on the hardware platform
would be performed automatically, but it also allowed the weights generated to reflect the
actual usage of the hardware.

J. Low Power Electron. Appl. 2022, 12, 36 14 of 21

Profiling
and

Analysis

Performance
Estimation

Dynamic
app

Implementation

configs

weights

Figure 9. Design flow with dynamic networks. Deep blue elements represent the implementation
path of the tool, while light blue, the profiling and design space exploration path of the tool.

5. Experimental Evaluation

Two application software programs were used to assess and evaluate the performance
of the developed methodology. The goal was to verify if the application runtime estimation
had sufficient accuracy to explore the design space. Such estimates were performed using
two distinct tasks. The first one is the execution of the software implementation to generate
the profiling results as output using the executable synthesized by the Exelixi CUDA
backend. The second one is the utilization of the generated weights in the abstract model of
execution, from the RVC-CAL construction, and integrated within the TURNUS framework
to obtain the resulting estimation. These software application examples are well known,
and the corresponding software code can be freely downloaded from the open-source
orc-apps Github project [41].

5.1. Experimental Setup

For generating the experimental results, the platforms employed were the Nvidia
GeForce GTX 1660 SUPER for the GPU with 6 Gigabytes of VRAM, and the Intel Skylake
i5-6600 for the CPU with 16 Gigabytes of DDR4 memory. As described in Section 4.2, the
GPU clock speed was maintained at 1.8 GHz and the CPU clock speed at 2.9 GHz.

5.2. RVC-CAL JPEG Decoder

Figure 10 is a graphical representation of the network of the JPEG decoder software
application program, as first presented in [42], and based on the ITU-T. IS 1091 standard.
This program was composed of six connected actors. Excluding the Display and Src actors
that were managing, reading/writing the input/output, and operated on the CPU, all the
other actors could be indifferently mapped to the GPU or CPU partitions. The parser actor
was responsible of the bit-stream parsing and decoding stages, the Huffman actor was in
charge of decoding the Huffman codewords carrying the quantified and transformed YUV
4:2:0 data block information, the dequant actor computed the inverse quantization, and
finally, the idct2d actor performed the inverse discrete cosine transform.

The first set of results focused on a configuration with one partition, but a variety of
input image definitions, quality factors, and FIFO buffer sizes. The design for reference was
formed with the Display and Src actors in a unique sequential partition assigned to the CPU
while the other actors were assigned to the highly parallel GPU side. For each configuration
utilizing TURNUS, a related ETG was extracted. The binary being profiled and compiled
from the code produced by the Exelixi CUDA backend was run for each set of distinct input
sequence stimuli to output all the requested performance weights. The TURNUS ETG

J. Low Power Electron. Appl. 2022, 12, 36 15 of 21

post-processor had been utilized to compute an estimation of the execution time that the
application program would need to run. This time was then evaluated, side by side, with
the total time measured. Figure 11 presents the outcome, where the application had been
evaluated with height-distinct images and two different buffer sizes (512 and 1024 tokens).
Table 1 shows the different resolutions and quality factors of the input images used for the
experiments. The measures were normalized to the first image, and we observed that the
maximal divergence of estimation was approximately 6.00%. This revealed that regardless
of the sizes of the FIFO buffers and inputs used, the estimation of the performance could
be done with sufficient accuracy.

In the second set of results, we used the same temporal stimulus and mapping con-
figurations while continuing to compare the total time estimated to that measured. In
opposition to the first set of results and due to the same image being utilized as an input, a
unique ETG was extracted. Regarding the weights and as explained in Section 4.2, only
four different configurations were sufficient for generating the weights, and each TURNUS
estimation was executed with the proper composition of these weight files. Figure 12
presents the results with 16 possible partitions. The partitions corresponded to an arbitrary
selection for each actor to either map them to the highly parallel GPU side or the CPU se-
quential side. The measures were normalized (between [0, 1]), and the maximal divergence
of estimation was approximately 26.5%. As shown in the graph, the mappings in which the
estimated results had not been precise were the partitions providing the slowest runtime
(top-right) and would not be desirable partitions to select in the design exploration process.
This was likely due to the number of FIFO buffers at the boundary across GPU and CPU
being higher, as compared to the other mapping configurations. Moreover, for this kind of
FIFO buffer, the modeling was optimistic and did not consider all the factors such as the
access conflict and the congestion of the memory bus.

Significantly, the result showed that the performance deterioration and improvement
tendencies were clearly identified using the estimated time and without the necessity to
measure new weights or extract new ETGs for estimating the global performance for each
possible setting. This trend detection was the minimal requirement for allowing TURNUS’
heuristics to correctly explore the design space and identify performant configuration
points. The reason behind the qualitative evaluation of the methods was to ensure that
the mapping configurations could be ranked and that the most satisfactory ones would
automatically be selected without the necessity to perform a manual, resource-consuming
evaluation on the hardware platform, which would consist of synthesizing, generating,
compiling, and measuring each design point on the actual heterogeneous hardware.

Figure 10. Graphical representation for the JPEG decoder application in RVC-CAL.

Table 1. The different resolutions and quality factors of the input images used for the JPEG Decoder
results.

Resolution 4096 × 2240 2048 × 1536 4096 × 2240 2048 × 1536

QF 90 90 50 50

Resolution 1920 × 1080 1280 × 720 640 × 480 512 × 512

QF 55 65 80 75

J. Low Power Electron. Appl. 2022, 12, 36 16 of 21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured

Es
tim

at
ed

results identity line

(a) FIFO buffer sizes of 512 tokens

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured

Es
tim

at
ed

results identity line

(b) FIFO buffer sizes of 1024 tokens

Figure 11. Normalized comparison between the estimated and measured total runtime of the JPEG
application with height inputs and two FIFO buffer configurations (512 and 1024 tokens). The identity
line in orange corresponds to the 1:1 line for visual reference.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured

Es
tim

at
ed

results identity line

(a) FIFO buffer sizes of 512 tokens

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured

Es
tim

at
ed

results identity line

(b) FIFO buffer sizes of 1024 tokens

Figure 12. Normalized comparison between the estimated and measured total runtime of the JPEG
application with all 16 possible partitions and two FIFO buffer configurations (512 and 1024 tokens).
The identity line in orange corresponds to the 1:1 line for visual reference.

5.3. RVC-CAL Smith-Waterman Aligner

Figure 13 is a graphical representation of the network of the Smith–Waterman (S-W)
aligner software application designed in [43]. The S-W aligner conducts a local align-
ment of two sequences, such as protein, RNA, and DNA sequences. The initial sequence
A = {a1, a2, . . . , an} is typically considered the reference, and the second B = {b1, b2, . . . , bm},
the query (or read). The S-W is organized into two processing steps: a first stage, where
a cost matrix is computed, and a second stage where this matrix is backtracked, starting
from the highest matrix value. The backtrack path computes the alignment (in terms of
matches, mismatches, insertions, and deletions) between the query and the reference input
sequences. The RVC-CAL implementation utilized in the settings for this study was formed
with eleven connected actors. The principal elements were the four PE actors that were
the main components responsible for computing the matrix scores and the Aligner actor
that was in charge of computing the backtracking path on the matrix. Excluding the Source

J. Low Power Electron. Appl. 2022, 12, 36 17 of 21

element that was responsible for managing entry file readings and had to be run on the
CPU, all other actors could be mapped similarly to the GPU or CPU partitions.

Figure 13. Graphical representation for the Smith-Waterman aligner application in RVC-CAL.

Similar to the JPEG decoder software program, two sets of experiments were con-
ducted. The first set of experiments focused on a configuration with one partition, but
a variety of input sets and FIFO buffer sizes. Each input set was named lm_ln, with lm
being the length of the query (read), and ln, the length of the reference sequences. In this
experiment, all sequences were generated from human DNA data. The design for reference
was formed with the Source actor in a unique sequential partition assigned to the CPU
side and the other actors assigned to the highly parallel GPU side. A similar method was
then used to create the results presented in Figure 14, where four different inputs (150_250,
150_200, 100_250, and 100_200) and two buffer sizes (1024 and 256 tokens) were utilized.
The measures were normalized to the first input, and the maximal divergence of estimation
was approximately 15.6%. This revealed that regardless of the sizes of the FIFO buffers or
inputs used, the estimation of the performance could be calculated with sufficient accuracy.

In second set of results, a similar method was applied, as shown in Figure 15, and the
emphasis was on exhaustive testing of all 1024 possible mapping configurations per buffer
size. The partitions corresponded to an arbitrary selection for each actor to either map them
to the highly parallel GPU side or the CPU sequential side. The measures were normalized
(between [0, 1]), and the maximal divergence of estimation was approximately 22.7%.
The mappings for which the estimated results were not as precise were the partitions
with the slowest runtime (top-right), and these would not be desirable to select in the
design exploration process. This was due to the number of FIFO buffers at the boundary
across GPU and CPU being higher, as compared to the other mapping configurations
as had been reported in the investigation of the JPEG decoder. Nevertheless, the results
showed that the performance deterioration and improvement tendencies could be clearly
recognized by utilizing the estimated runtime according to the computed estimation with
the TURNUS framework.

J. Low Power Electron. Appl. 2022, 12, 36 18 of 21

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
0

0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

Measured

Es
tim

at
ed

results identity line

(a) FIFO buffer sizes of 256 tokens

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
0

0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4

Measured

Es
tim

at
ed

results identity line

(b) FIFO buffer sizes of 1024 tokens

Figure 14. Normalized comparison between the estimated and measured total runtime of the
Smith–Waterman aligner application with four inputs and two FIFO buffer configurations (256 and
1024 tokens). The identity line in orange corresponds to the 1:1 line for visual reference.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured

Es
tim

at
ed

results identity line

(a) FIFO buffer sizes of 256 tokens

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured

Es
tim

at
ed

results identity line

(b) FIFO buffer sizes of 1024 tokens

Figure 15. Normalized comparison between the estimated and measured total runtime of the Smith–
Waterman aligner application with all 1024 possible partitions and two FIFO buffer configurations
(256 and 1024 tokens). The identity line in orange corresponds to the 1:1 line for visual reference.

6. Conclusions and Future Work

The presented work described a method to estimate the time for a dataflow application
program to run using the RVC-CAL software program and a heterogeneous GPU/CPU
hardware system for the execution. Our study demonstrated that the precision of the esti-
mated runtime, regardless of the configuration (i.e., buffer sizing, mapping, and partition-
ing), remained efficient for searching the possible space of design. Utilizing the appropriate
operational research heuristics, this estimated runtime allowed for computer-assisted and
automatic exploration of the design space of heterogeneous GPU/CPU software programs.
The method was developed by advancing prior research that had been conducted by this
team previously. This included the implementation, for the Exelixi CUDA backend of
the synthesis of the CUDA software with injected instrumented code that measured and
output the profiling metrics as well as enhanced the capabilities of the TURNUS execution
simulator for the computation of the required estimates for the overall runtime. Two

J. Low Power Electron. Appl. 2022, 12, 36 19 of 21

software applications and a combination of different settings were used to test and validate
the precision and significance of the performance estimation.

As a possible evolution of the methodology presented in this article, one option would
be to incorporate multi-platform information in the TURNUS simulator and improve the
heuristic algorithms that we implemented so as to better exploit the exploration capabilities
of the design space that the framework and execution models, on which it was based, are
capable of providing. Such advancements would allow the investigation of the multidi-
mensional design space and identify ideal design points in terms of high-performance
GPU/CPU FIFO buffer sizing, partitioning, and mapping configurations. Furthermore, to
decrease the discrepancies that could appear between estimated and actual performances
for certain mapping configurations, an improved modeling and implementation of the
potential congestion occurring in the FIFO buffers connecting actors at the boundary sepa-
rating GPU and CPU could be necessary. Such refinement may result in further improving
the accuracy of the estimated performance results.

Author Contributions: Conceptualization, A.B.; methodology, A.B.; software, A.B.; validation, A.B.,
S.C.-B. and M.M.; investigation, A.B.; writing—original draft preparation, A.B.; writing—review and
editing, A.B., S.C.-B. and M.M.; supervision, M.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Microsoft ARM. Available online: https://www.microsoft.com/en-us/surface/business/surface-pro-x/processor (accessed on

9 March 2022).
2. NVIDIA Grace. Available online: https://nvidianews.nvidia.com/news/nvidia-introduces-grace-cpu-superchip (accessed on

9 March 2022).
3. Apple M1. Available online: https://www.apple.com/newsroom/2020/11/apple-unleashes-m1 (accessed on 9 March 2022).
4. Michalska, M.; Casale-Brunet, S.; Bezati, E.; Mattavelli, M. High-precision performance estimation for the design space exploration

of dynamic dataflow programs. IEEE Trans. Multi-Scale Comput. Syst. 2017, 4, 127–140. [CrossRef]
5. Goens, A.; Khasanov, R.; Castrillon, J.; Hähnel, M.; Smejkal, T.; Härtig, H. Tetris: A multi-application run-time system for

predictable execution of static mappings. In Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems, Sankt Goar, Germany, 12–14 June 2017; pp. 11–20.

6. TURNUS Source Code Repositoy. Available online: http://github.com/turnus (accessed on 9 March 2022).
7. Casale-Brunet, S. Analysis and Optimization of Dynamic Dataflow Programs. Ph.D. Thesis, EPFL STI, Lausanne, Switzerland,

2015. [CrossRef]
8. Bloch, A.; Bezati, E.; Mattavelli, M. Programming Heterogeneous CPU-GPU Systems by High-Level Dataflow Synthesis. In

Proceedings of the 2020 IEEE Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, 20–22 October 2020; pp. 1–6.
9. CAL Exelixi Backends Source Code Repositoy. Available online: https://bitbucket.org/exelixi/exelixi-backends (accessed on

9 March 2022).
10. Bezati, E.; Casale-Brunet, S.; Mosqueron, R.; Mattavelli, M. An Heterogeneous Compiler of Dataflow Programs for Zynq Platforms.

In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 1537–1541. [CrossRef]

11. NVIDIA CUDA Compute Unified Device Architecture. Available online: https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html (accessed on 9 March 2022).

12. Brunet, S.C.; Bezati, E.; Bloch, A.; Mattavelli, M. Profiling of dynamic dataflow programs on MPSoC multi-core architectures. In
Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 29 October–1
November 2017; pp. 504–508.

13. NVIDIA Visual Profiler. Available online: https://developer.nvidia.com/nvidia-visual-profiler (accessed on 9 March 2022).
14. Stephenson, M.; Hari, S.K.S.; Lee, Y.; Ebrahimi, E.; Johnson, D.R.; Nellans, D.; O’Connor, M.; Keckler, S.W. Flexible software

profiling of GPU architectures. In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), Portland, OR, USA, 13–17 June 2015; pp. 185–197.

https://www.microsoft.com/en-us/surface/business/surface-pro-x/processor
https://nvidianews.nvidia.com/news/nvidia-introduces-grace-cpu-superchip
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
http://doi.org/10.1109/TMSCS.2017.2774294
http://github.com/turnus
http://dx.doi.org/10.5075/epfl-thesis-6663
https://bitbucket.org/exelixi/exelixi-backends
http://dx.doi.org/10.1109/ICASSP.2019.8682525
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/nvidia-visual-profiler

J. Low Power Electron. Appl. 2022, 12, 36 20 of 21

15. Matz, A.; Fröning, H. Quantifying the NUMA behavior of partitioned GPGPU applications. In Proceedings of the 12th Workshop
on General Purpose Processing Using GPUs, Providence, RI, USA, 13 April 2019; pp. 53–62.

16. Shen, D.; Song, S.L.; Li, A.; Liu, X. Cudaadvisor: LLVM-based runtime profiling for modern GPUs. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, Vienna, Austria, 24–28 February 2018; pp. 214–227.

17. Villa, O.; Stephenson, M.; Nellans, D.; Keckler, S.W. NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA, 12–16
October 2019; pp. 372–383.

18. Braun, L.; Fröning, H. CUDA flux: A lightweight instruction profiler for CUDA applications. In Proceedings of the 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), Denver,
CO, USA, 18 November 2019; pp. 73–81.

19. Pimentel, A.D.; Erbas, C.; Polstra, S. A systematic approach to exploring embedded system architectures at multiple abstraction
levels. IEEE Trans. Comput. 2006, 55, 99–112. [CrossRef]

20. van Stralen, P.; Pimentel, A.D. Signature-based microprocessor power modeling for rapid system-level design space exploration.
In Proceedings of the 2007 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia, Salzburg, Austria,
4–5 October 2007; pp. 33–38.

21. Keinert, J.; Streubūhr, M.; Schlichter, T.; Falk, J.; Gladigau, J.; Haubelt, C.; Teich, J.; Meredith, M. SystemCoDesigner—An
automatic ESL synthesis approach by design space exploration and behavioral synthesis for streaming applications. ACM Trans.
Des. Autom. Electron. Syst. (TODAES) 2009, 14, 1–23. [CrossRef]

22. Eusse, J.F.; Williams, C.; Leupers, R. Coex: A novel profiling-based algorithm/architecture co-exploration for asip design. ACM
Trans. Reconfigurable Technol. Syst. (TRETS) 2015, 8, 1–16. [CrossRef]

23. Chakraborty, S.; Künzli, S.; Thiele, L.; Herkersdorf, A.; Sagmeister, P. Performance evaluation of network processor architectures:
Combining simulation with analytical estimation. Comput. Netw. 2003, 41, 641–665. [CrossRef]

24. Ceng, J.; Castrillón, J.; Sheng, W.; Scharwächter, H.; Leupers, R.; Ascheid, G.; Meyr, H.; Isshiki, T.; Kunieda, H. MAPS: An
integrated framework for MPSoC application parallelization. In Proceedings of the 45th annual Design Automation Conference,
Anaheim, CA, USA, 8–13 June 2008; pp. 754–759.

25. Lee, E.; Parks, T. Dataflow Process Networks. Proc. IEEE 1995, 83, 773–801. [CrossRef]
26. Johnston, W.; Hanna, J.; Millar, R. Advances in dataflow programming languages. ACM Comput. Surv. (CSUR) 2004, 36, 1–34.

[CrossRef]
27. Feo, J.T.; Cann, D.C.; Oldehoeft, R.R. A report on the Sisal language project. J. Parallel Distrib. Comput. 1990, 10, 349–366.

[CrossRef]
28. Eker, J.; Janneck, J.; Lee, E.; Liu, J.; Liu, X.; Ludvig, J.; Neuendorffer, S.; Sachs, S.; Xiong, Y. Taming heterogeneity—The Ptolemy

approach. Proc. IEEE 2003, 91, 127–144. [CrossRef]
29. ISO/IEC 23001-4:2011. Available online: https://www.iso.org/standard/59979.html (accessed on 9 March 2022).
30. Yviquel, H.; Lorence, A.; Jerbi, K.; Cocherel, G.; Sanchez, A.; Raulet, M. Orcc: Multimedia Development Made Easy. In

Proceedings of the 21st ACM International Conference on Multimedia, MM’13, Barcelona, Spain, 21–25 October 2013; pp. 863–866.
31. Orcc Source Code Repositoy. Available online: http://github.com/orcc/orcc (accessed on 9 March 2022).
32. Siyoum, F.; Geilen, M.; Eker, J.; von Platen, C.; Corporaal, H. Automated extraction of scenario sequences from disciplined

dataflow networks. In Proceedings of the 2013 Eleventh ACM/IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE 2013), Portland, OR, USA, 18–20 October 2013; pp. 47–56.

33. Caltoopia. Available online: https://github.com/Caltoopia (accessed on 9 March 2022).
34. Cedersjö, G.; Janneck, J.W. Tÿcho: A framework for compiling stream programs. ACM Trans. Embed. Comput. Syst. (TECS) 2019,

18, 1–25. [CrossRef]
35. Gebrewahid, E. Tools to Compile Dataflow Programs for Manycores. Ph.D. Thesis, Halmstad University Press, Halmstad,

Sweden, 2017.
36. Savas, S.; Ul-Abdin, Z.; Nordström, T. A framework to generate domain-specific manycore architectures from dataflow programs.

Microprocess. Microsyst. 2020, 72, 102908. [CrossRef]
37. Boutellier, J.; Ghazi, A. Multicore execution of dynamic dataflow programs on the Distributed Application Layer. In Proceedings

of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015;
pp. 893–897.

38. Bezati, E.; Emami, M.; Janneck, J.; Larus, J. StreamBlocks: A compiler for heterogeneous dataflow computing (technical report).
arXiv 2021, arXiv:2107.09333.

39. Michalska, M.; Casale-Brunet, S.; Bezati, E.; Mattavelli, M. High-precision performance estimation of dynamic dataflow programs.
In Proceedings of the 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC),
Lyon, France, 21–23 September 2016; pp. 101–108.

40. Bloch, A.; Brunet, S.C.; Mattavelli, M. SIMD Parallel Execution on GPU from High-Level Dataflow Synthesis. In Proceedings of
the 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Singapore, 20–23
December 2021; pp. 62–68.

41. Orcc-Apps Source Code Repositoy. Available online: https://github.com/orcc/orc-apps (accessed on 9 March 2022).

http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.1145/2629563
http://dx.doi.org/10.1016/S1389-1286(02)00454-1
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1145/1013208.1013209
http://dx.doi.org/10.1016/0743-7315(90)90035-N
http://dx.doi.org/10.1109/JPROC.2002.805829
https://www.iso.org/standard/59979.html
http://github.com/orcc/orcc
https://github.com/Caltoopia
http://dx.doi.org/10.1145/3362692
http://dx.doi.org/10.1016/j.micpro.2019.102908
https://github.com/orcc/orc-apps

J. Low Power Electron. Appl. 2022, 12, 36 21 of 21

42. Bezati, E.; Yviquel, H.; Raulet, M.; Mattavelli, M. A unified hardware/software co-synthesis solution for signal processing
systems. In Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP), Tampere,
Finland, 2–4 November 2011; pp. 1–6.

43. Casale-Brunet, S.; Bezati, E.; Mattavelli, M. High level synthesis of Smith-Waterman dataflow implementations. In Proceedings of
the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March
2017; pp. 1173–1177.

	Introduction
	Related Work
	GPU Profiling
	Heterogeneous Dataflow Profiling

	Dataflow Programs and Design Space Exploration
	RVC-CAL
	Design Space Exploration
	Performance Estimation

	Performance Estimation Methodology
	Clock-Accurate Profiling
	Static Heterogeneous Estimation
	SIMD Parallel Estimation
	Dynamic Heterogeneous Estimation
	Model for Dynamic Network
	Dynamic Methodology Estimation

	Experimental Evaluation
	Experimental Setup
	RVC-CAL JPEG Decoder
	RVC-CAL Smith-Waterman Aligner

	Conclusions and Future Work
	References

