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Abstract: Convolutional Neural Networks (CNNs), due to their recent successes, have gained
lots of attention in various vision-based applications. They have proven to produce incredible
results, especially on big data, that require high processing demands. However, CNN processing
demands have limited their usage in embedded edge devices with constrained energy budgets
and hardware. This paper proposes an efficient new architecture, namely Ocelli includes a ternary
compute pixel (TCP) consisting of a CMOS-based pixel and a compute add-on. The proposed
Ocelli architecture offers several features; (I) Because of the compute add-on, TCPs can produce
ternary values (i.e., −1, 0, +1) regarding the light intensity as pixels’ inputs; (II) Ocelli realizes
analog convolutions enabling low-precision ternary weight neural networks. Since the first layer’s
convolution operations are the performance bottleneck of accelerators, Ocelli mitigates the overhead
of analog buffers and analog-to-digital converters. Moreover, our design supports a zero-skipping
scheme to further power reduction; (III) Ocelli exploits non-volatile magnetic RAMs to store CNN’s
weights, which remarkably reduces the static power consumption; and finally, (IV) Ocelli has two
modes, including sensing and processing. Once the object is detected, the architecture switches to
the typical sensing mode to capture the image. Compared to the conventional pixels, it achieves
an average 10% efficiency on its lane detection power consumption compared with existing edge
detection algorithms. Moreover, considering different CNN workloads, our design shows more than
23% power efficiency over conventional designs, while it can achieve better accuracy.

Keywords: processing-in-pixel; intelligent sensing; magnetic RAM; low-power image sensor

1. Introduction

Internet of Things (IoT) devices are projected to attain an $1100B market by 2025 [1].
Energy harvesting systems (EHSs) and wireless sensor networks (WSNs) with ambient
energy sources and low maintenance have impacted a wide range of IoT applications such
as wearable devices, agriculture, smart cities, and many more, while in scene interpretation,
IoT nodes include sensory systems enabling massive data collection from the environment
and people to process with on-/off-chip processors (1018 bytes/s or ops). These emerging
systems require both continuous sensing and instant processing. Nonetheless, the high
energy data conversion/transmission of raw data and the limited available energy from
ambient energy sources make designing energy-efficient and low bandwidth CMOS vi-
sion sensors challenging. Moreover, even using low-power sensors to realize artificial
intelligence tasks such as object detection faces serious challenges for their tractability in
computational and storage resources. Effective techniques in both software and hardware
domains have been developed to improve CNN efficiency by alleviating the “power and
memory wall” bottleneck.

In algorithm-based approaches, the use of shallower but wider CNN models, quantizing
parameters, and low-precision computing has been explored thoroughly [2–4]. From the hard-
ware point of view, the underlying operations should be realized using efficient mechanisms
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such as beyond CMOS technology nodes, and non-Von Neumann architectures [5–7]. This
paves the way for new sensor paradigms such as processing-near-sensor (PNS), processing-in-
sensor (PIS), and processing-in-pixel (PIP), where digital outputs of a pixel are accelerated
near/in the sensor. The vision sensors’ processing energy has been reduced significantly,
from 0.1 pJ/OP to 1 pJ/OP, by leveraging these methods. Besides, a remarkable reduction in
off-chip data transfer energy has been reported. In addition to reducing the processing power,
the sensing part should be optimally designed, enabling an acceptable accuracy.

2. Near/In-Sensor Processing Background

Systematic integration of computing and sensor arrays has been widely studied to
eliminate off-chip data transmission and reduce ADC bandwidth by combining CMOS
image sensors and processors in one chip, known as PNS [8–12], or even integrating
pixels and computation unit so-called PIS [13–16]. In [9], photocurrents are transformed
into pulse-width modulation signals, and a dedicated analog processor is designed to
execute feature extraction reducing ADC power consumption. In [17], 3D-stacked column-
parallel ADCs and Processing Elements (PE) are implemented to run spatiotemporal image
processing. In [18], a CMOS image sensor with dual-mode delta-sigma ADCs is designed to
process 1st-conv, layer of binarized-weight neural networks (BWNN). RedEye [6] executes
the convolution operation using charge-sharing tunable capacitors. Although this design
shows energy reduction compared to a CPU/GPU by sacrificing accuracy, to achieve high
accuracy computation, the required energy per frame increases dramatically by 100×.
MACSEN [5] as a PIS platform processes the 1st-conv. layer of BWNNs with the correlated
double sampling procedure achieving 1000 fps speed in computation mode. However, it
suffers from humongous area-overhead and power consumption mainly due to the SRAM-
based PIS method. In [19], a pulse-domain algorithm uses fundamental building blocks,
photodiode arrays, and an ADC to perform near-sensor image processing that reduces
design complexity and enhances both cost and speed. Finally, the PIP scheme allows
simultaneous sensing and computing. Thus, several works accelerated the first layers using
PIP architecture and submitted the rest to the digital neural network accelerator [20,21].
Putting all together, there are three main bottlenecks in IoT imaging systems that this work
explores and aims to solve: (1) the conversion and storage of pixel values consume most of
the power (>96% [22]) in conventional image sensors; (2) the computation imposes a large
area-overhead and power consumption in more recent PNS/PIS units and requires extra
memory for intermediate data storage; and (3) the system is hardwired so the functionality
is limited to simple pre-processing tasks such as 1st-layer BWNN computation and cannot
go beyond that.

3. Proposed Ternary Compute Pixel

Figure 1a depicts a possible high-performance and energy-efficient architecture en-
abling machine learning tasks for edge devices. It consists of an m× n Compute Focal
Plane (CFP) array, row and column controllers (Ctrl), command decoder, sensor timing Ctrl,
and sensor I/O operating in two modes, i.e., sensing and processing. The CFP is designed
to co-integrate sensing and processing of the 1st-layer of ternary weight neural network
(TWNN), targeting a low-power but high classification accuracy. Because the first layer’s
convolution operations are the performance bottleneck of almost all hardware/software
co-design accelerators [23], the proposed Ocelli is introduced as a promising solution to
efficiently perform computation and sensing for the first layer of NNs. To further accelerate,
the output of the first layer is transmitted to an on-chip deep learning accelerator unit to
compute the remaining TWNN layers. Designing a domain-specific accelerator is out of
scope. Once the object is roughly detected, the architecture switches to the sensing mode
like a traditional rolling-shutter CMOS image sensor. In order to enable an integrated
sensing and processing mode, a conventional 4T-pixel is upgraded to a ternary compute
pixel (TCP), which is composed of a pixel, including five transistors and one photodiode
(PD), and compute add-ons (CAs) as shown in Figure 1b. The compute add-on includes
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three transistors, where T6 and T7 operate as deep triode region current sources and a
2:1 multiplexer (MUX) controlled by a non-volatile memory (NVM) element. There are
two common signals among TCPs, RowIndex (Ri) and ComputeRow (CR) signals. The
Ri signal is controlled by Row Ctrl and shared across pixels located in the same row to
enable access during the row-wise sensing mode. However, the CR is a unique, controlling
signal connected to entire TCP units activated during processing mode. A sense bit-line
(SBL) is shared across the pixels on the same column connected to sensor peripherals for
integrated sensing-processing mode. Moreover, TCPs share s compute bit-lines (CBLs), each
connected to a sense amplifier for processing. The 1st-layer ternary weights (i.e., −1, 0, +1)
corresponding to each pixel is pre-stored into NVMs based on Equation (1), where wi
denotes the full precision weight tensor, w′i is the weight after quantization, and ∆th is
symmetric threshold [3]:

w′i =

{
− 1× sign(wi) |wi| ≥ ∆th
0 |wi| < ∆th

(1)

We selected STT-MRAM [24] as the NVM unit using parameters listed in Table 1,
depicted in Figure 1b. The binary data is stored as the magnetization direction in the MTJ’s
free layer, which could be programmed through the current-induced STT by NVM write
driver. A reference resistor is then used to realize a voltage divider circuit to read out the
weight value from memory. Although STT-MRAM provides interesting features such as
near-zero standby power and high integration density, it can be replaced by other NVM
technologies. Due to the high write power of STT-MRAM, the network weights are written
once and then leveraged during the inference phase without any update.

Figure 1. (a) The general Ocelli architecture consists of an m× n TCP array. (b) The proposed TCP
includes a pixel and a CA, shared (c) ADCs, and (d) sense amplifier designs.

Table 1. Simulation Parameters of STT-MTJ.

Parameter Description Value

Area MTJ Surface 100 × 65 × π/4 nm2

Reference MTJ Surface 100 × 45 × π/4 nm3

tox Thickness of oxide barrier 0.85 nm
α Gilbert Damping factor 0.007

t f ree Thickness of free layer 1.3 nm
µB Bohr Magneton 9.27e−24 J·T−1

P Polarization (DWNM, MTJ) 0.75, 0.5
Ms Saturation magnetization 200 8e5 A·m−1

IC0 Threshold Current Density e10–e12 A·m−2

RAP, RP MTJ-1/MTJ-2 Resistance 2.5 KΩ, 1.25 KΩ
Rp Reference MTJ Resistance 1.8 KΩ

TMR TMR ratio 100%
Hk Out of Plane Anisotropy Field 1600∼1800 Oe
ku Uniaxial Anisotropy 400e3 J/m3
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The TCP has one more transistor (T1) than the conventional 4T-pixel, which is connected
to the enable (En) signal. This extra transistor supports a zero-skipping scheme that can
enable/disable TCPs. If the weight is zero, the TCP is OFF, considered an ineffective pixel,
and its capacitor does not charge, resulting in a significant power saving. The effectiveness of
this approach is demonstrated by applying it to the neural networks with quantized weights,
especially in extremely high sparsity ratios (e.g., 95%), such as BWNNs and TWNNs. It is
worth mentioning that for a wide variety of image processing tasks such as sharpening, edge
detection, and smoothing, they can be readily implemented within a TCP due to their simple
filters (masks). In TCP architecture, to create positive and negative currents, the drains of T6
and T7 are connected to VDD and -VDD/3, respectively. After exposure, the set of input sensor
voltages (VPD) is applied to the gates of T6, generating a current set on the CBLs lines. If the
binary value equals ‘1’ (wi = +1), T6 acts as a current source and generates a positive current on
the shared CBL, shown by the red dashed line in Figure 1b. However, if the binary value equals
‘0’ (wi = −1), T7 produces the same current magnitude but in the opposite direction, indicated
by the blue dashed line shown in Figure 1b. The generated currents directly correlate with
the input’s intensity (voltage value of CPD). By leveraging this mechanism, every input pixel
value is converted to a weighted current according to the NVM, and En is interpreted as the
multiplication in TWNNs. Then, by disabling T1, values of T6 and T7 gates will be completely
discharged to zero, which means none of the transistors can produce current. More pixels with
even non-zero weights can be turned off to save more power at the cost of accuracy degradation.
If En = 0, the TCP turns on, and it can operate in one of the two sensing or processing modes.

3.1. Sensing Mode

In the sensing mode, initially setting Rst = ‘high’, the PD connected to the T2 transistor
turns into inverse polarization. In this way, turning on the access transistor T4 and k1 switch
at the shared ADC (Figure 1c) allows the C1 capacitor to charge through SBL fully. By turning
off T2, PD generates a photo-current concerning the external light intensity, which in turn
leads to a voltage drop (VPD) at the gate of T3. Once again, by turning on T4 and this time k2
switch, C2 is selected to record the voltage drop. Therefore, the voltage values before and after
the image light exposure, i.e., V1 and V2 in Figure 1c, are sampled. The difference between
two voltages is sensed with an amplifier, while this value is proportional to the voltage drop
on VPD. In other words, the voltage at the cathode of PD can be read at the pixel output.
Throughout the sensing mode, the CR signal is grounded. Reading the pixels’ values in the
sensing mode is performed in a row-by-row manner; therefore, reading all pixels requires r
clock cycles, where r is the number of rows. Figure 2a depicts the sensing mode, where the
first row and n columns are selected and connected to the dedicated ADCs.

Figure 2. Ocelli’s functionalities in two modes. (a) The sensing mode for a 1× n TCP array and (b)
the processing mode for a m× 1 TCP array.

3.2. Processing Mode

Figure 2b shows a selected r× 1 TCP array. In the processing mode, the CPD capacitor
is initialized to the fully-charged state by setting Rst = ‘high’, similar to the sensing mode.
During an evaluation cycle, by turning off T1, T2, and T3, the Row Ctrl activates the CR
signal while the Ri signals are deactivated. This activates the entire array for a single-cycle
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multiply-accumulate operation. In this mode, the CA is utilized to leverage pixel’s VPD as
a sampling voltage in s-NVM units to simultaneously generate (/pull) current through T6
(/T7) on the CBL. To implement multiplications between the pixel value identified by VPD
and the binary weight stored in NVM, a 2:1 MUX unit is devised in every TCP, taking the
T6s and T7 source signals as inputs and NVM sensed data as the selector.

Although NVM elements can only store binary values, i.e., ‘0’ and ‘1’, the proposed
Ocelli is able to produce ternary values. To do so, first, the absolute values of pre-trained
weights (w′i) are connected to the En signal; the NVM components are then filled by ‘0’ and ‘1’
to denote weights −1 and +1, respectively. Table 2 summarizes the CA output based on the
En signal and NVM value where β is the β ratio of the transistors. Due to the specific features
of STT-MRAM, the Ocelli obtains a high speed, reliability, and low power consumption in
processing mode compared to previous designs. It is noteworthy that the TCP can disconnect
PD using T5 to stop discharging CPD and freeze the pixel value. Then, the values are read
in a row-by-row manner, and because of preventing unnecessary CPD discharge, power
consumption reduces, and better-quality images might be captured. The current flow of each
transistor is measured using Equation (2) based on the transistors’ working regions:

iD = Kn
[
vgs −VT

]2 iD = Kn

[
2(vgs −VT)vds − v2

ds

]
(2)

Kn = 1/2µnCoxW/L (3)

where vgs (vds) is the voltage between of gate and source (drain and source), VT is the
threshold voltage, and Kn is MOSFET transconductance. The MOSFET transconductance is
determined by the manufacturing process and calculated based on Equation (3), where µn
is the mobility of electrons at the surface of the channel, Cox is oxide capacitance, and W and
L are width and length of the chancel, respectively. According to the equations, the current
flow of the transistors has a direct relation with vgs and Kn. In the proposed design, T6 and
T7 have different vgs voltages. Therefore, to produce approximately the same current using
T6 and T7, we change the width of the transistors based on Equation (3). In this paper, we
define β regarding transistors’ parameters to produce the same current in both transistors.

Table 2. Provided currents by a CA regarding En signal and the stored weights.

Enable Bit
(En)

Stored
NVM Value

Represented
Weight

Output
Current

1 x 0 0
0 0 −1 CPD× β
0 1 1 −CPD× β

The developed sense amplifier, shown in Figures 1d and 2b, requires two clock phases:
pre-charge (Clk ‘high’) and sensing (Clk ‘low’). The summation current corresponding to
VPDs, on CBL, is converted to the voltage (Vsense) at the input of the sense amplifier. This
voltage is compared with the reference voltage by applying a proportional current over a
processing reference resistor (Rpro) activated by the mode signal, as shown in Figure 1d.
In our design, the sense amplifier output (Vout) sets to 0 for values lower than ‘0’ and sets
to 1 for higher than ‘0’. According to Kirchhoff’s law, the multiplications of MACs are
performed using the conductance of the nodes consisting of the weights and the generated
voltages based on the input light intensities, while the accumulation is done by summing
the currents. Note that T6’s and T7’s gate capacitors, as well as parasitic capacitors, will be
fully charged to VDD through T1 and T2 in the pre-charge cycle; this will significantly keep
the pixel sensitivity high when the number of CAs increases.

4. Simulation Results

In this paper, simulations are conducted using the HSpice simulator for a 45 nm PTM low
power metal gate at room temperature (25 ◦C). Figure 3 shows the functionality of one TCP.
In this figure, as shown in 1 , when En equals VDD, VPD is never charged, and the produced
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current on CBL is approximately zero. On the other hand, in 2 , by changing the EN value to
zero, with the first Rst clock (0), CPD is charged to VDD, and when Rst is returned to 1 again,
and discharge is VDD, CPD start discharging. At the end of 2 , the value of the VPD has
remained the same. Everything in 3 is similar to 2 except the weight values. Before starting
the sensing and processing phases, the pre-trained weights should be written into NVMs and
remain unchanged in the TCPs. Nevertheless, to evaluate the output current, we changed the
TCP weights. This simulation indicates TCP with negative and positive weights produces a
current value of approximately −5 µA and +5 µA, respectively.

4.53.5 5.5 6.5
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1

0

0.5
1
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0.5
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0
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1 2 3

Figure 3. Transient simulation waveform of a TCP with a single CA.

The transient simulation results of an 8× 1 TCP array are shown in Figure 4. Herein,
eight TCPs are connected to the CBL. The results are obtained in the presence of 15% process
variation in transistor sizing for 1000 simulation runs. Furthermore, the proposed pixel
simulates various situations, including temperature and mismatching of both capacitor
and transistor sizes. As shown in Figure 5a,b, the proposed design is more resilient in
both situations. To verify Ocelli’s functionalities, the evaluation phase can be divided
into two phases. In phase 1 , some sensors were disabled. Therefore, the sum of the
current according to their weight becomes approximately −1 µA in the evaluation phase
at the rising edge of the Clk signal. As previously mentioned, the current value smaller
than 0 interprets as ‘0’, and bigger than 0 denotes as ‘1’. Therefore in 1 , the output of
the SA (out) is 0, whereas, in 2 , the weights changed and generated a positive current,
and out became 1. As depicted in Figure 4, the proposed pixel is resilient during the process
variation, and all waveforms approximately have the same value in each iteration.
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Figure 4. Transient simulation waveform of an 8× 1 TCP array.
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Figure 5. Relationship between the power consumption and two factors, (a) temperature, and (b)
process variation.

Comparison Results

We demonstrate the advantages of the Ocelli design through an application-level
evaluation. Regarding edge detection techniques, although the Soble mask is the most
widely used algorithm, implementing two 3× 3 matrices, the X-direction and the Y-direction,
consisting of five different weights {−2,−1, . . . 2} is challenging. Thus, in our study, three
energy-efficient filters are considered: the Prewitt (two 3× 3 matrices), the Roberts (two 2×
2 matrices), and the Column-Comparing (CC) technique (one 2 × 2 matrix) including
{−1, 0, 1} weights [25]. Figure 6 illustrates the power consumption results for three sensors
after the masks have been applied. As a first observation, the simpler a mask is, the less
accurate the results, and correspondingly, the less power is consumed. The CC mask is the
smallest and simplest one that shows power efficiency at the cost of lower accuracy.

 
 
 
 
 
 

Filter Prewitt Roberts Column-Comparing Original 

Obtained Image 

   
 

size: 240 × 160 Power 
(µW) 

3T-pixel 0.0657 0.0311 0.0156 
4T-pixel 0.0635 0.0300 0.0150 

TCP 0.0595 0.0269 0.0135 
PFOM 
(%) 

Sobel 
(baseline) 99.73 97.54 95.39  

Figure 6. The obtained images, accuracy, and power consumption results using the examined pixels
by applying the three low-cost mask algorithms.

In this study, Pratt’s figure of merit (PFOM) [26] is used in order to analyze the
accuracy of the edge detected images since determining their accuracy is difficult. In PFOM,
a comparison is conducted between the detected edges and the ideal image to determine
how many pixels are different. Therefore, the closer the PFOM (%) comes to 100, the more
ideal it is. Here the Sobel mask is considered as a baseline because it is the most highly-used
one for diagonal detection [27].

The second observation is that the proposed Ocelli shows the most optimal results due
to its zero-skipping and ternary weights. We obtained our results based on a grayscale image
of 240× 160 with a stride of 1 and padding of 0. We demonstrate the advantages of the pro-
posed design through various NN workloads. Since these modern workloads have different
degrees of weight sparsity ratio, from 60% to 90% [23], developing an efficient and promis-
ing approach is vital but challenging. Table 3 illustrates three various application domains,
which cover a wide range of machine learning models. To make a fair comparison, three PIP
designs, including 3T and 4T-pixels, and the proposed TCP are considered. The first two
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architectures can implement BWNNs (−1, +1), while our TCP implements TWNN (−1, 0, +1).
After performing the first layer’s computations, the remaining layers can be accelerated with
an identical NN accelerator. The obtained power-normalized results considering the first
layers are summarized in Table 3. The results show that the Ocelli architecture provides better
power efficiency while higher accuracy can be achieved rather than BWNNs based on 3T and
4T-pixels [3]. This improvement is because of the zero-skipping technique realized by the TCP.
It is worth noting that we can alter BWNNs’ values from (−1, +1) to (0, +1), which causes
several issues like no guarantee for convergence.

Table 3. Normalized power consumption of the first layers for different highly-used CNN models.

Domain DNN Model [23] Power Consumption (1st Layer)

Ocelli (TCP) 3T-Pixel 4T-Pixel

Image Classification

MobileNets 1 1.25 1.21
SqueezeNet 1 1.23 1.19

AlexNet 1 1.26 1.22
ResNet-50 1 1.30 1.26
VGG-16 1 1.31 1.27

Object Detection SDD-MobileNets 1 1.25 1.21

5. Conclusions

This paper proposed an efficient processing-in-pixel approach enabling edge inference.
The proposed Ocelli architecture provides ternary values that realize low-precision TWNNs
at the cost of a small area overhead. The proposed Ocelli targets the first layer of NNs to
significantly reduce the overhead of analog buffers and analog-to-digital converters. More-
over, it supports the zero-skipping technique, vital for evolving DNN models. The Ocelli
design achieves better performance than a BWNN using conventional 3T and 4T -pixels,
while it can show better accuracy due to its higher precision.
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