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Abstract: Some manufacturing companies now use recycled aluminum alloys. It is important that
they have the necessary data relating to the control of the machinability of these alloys. Thus, this
study on the machinability in the turning of two recycled aluminum alloys by a 6061 R and 6061 R-T6
smelter was conducted. The aim of this study is to provide solutions to the problem posed, which is
whether recycled aluminum alloys have good machinability skills, such as virgin aluminum alloys.
To provide these solutions, the experimental designs were used to study the influence of cutting
parameters and conditions (feed, cutting speed, lubrication) and material hardness on machinability
characteristics (surface roughness, mass concentration of metal particles, and chip morphology). The
results of this study show that the two alloys studied have good machinability. The feed, hardness
and lubrication significantly influence the machinability of these two alloys. Predictive models to
assess the machinability of these recycled alloys have been established.

Keywords: machinability; surface roughness; chips morphology; metal particle mass concentration;
turning; lubrication

1. Introduction

Virgin aluminum is a widely used metal in the manufacturing field, and its use
means that natural bauxite resources could tend towards exhaustion, since the remelting of
aluminum always leads to a loss of quality [1]. The question is then whether this loss of
quality can have an influence on the machinability of recycled aluminum. By remaining
in the manufacturing field, the chips produced during machining can be recovered and
processed according to different processes for new forms. This is currently carried out
with the shavings of aluminum alloys, which are formed hot or cold by compaction or
extrusion, by molding or sintering. These processes are widely used to study mechanical
and chemical properties [2,3]. The AA6060 aluminum alloy chips were recycled and
processed by the hot extrusion for a number of studies. Studies have shown that the
recycled alloy has mechanical and microstructure properties similar to those of the virgin
alloy from foundries [4]. When A7075 machining chips and dust are hot extruded, this
alloy has good cohesion between the chips and dust that play a very good binder role,
and [5,6] good surface quality and good mechanical properties.

In the literature, there is much more work on the machinability of virgin aluminum
alloys, and the characteristics considered are the general surface roughness, formation of
chips, burrs, and cutting power, including the emission of metal particles [7]. The study
of these characteristics depends on several criteria: the cutting parameters, the cutting
conditions, the geometry of the cutting tool and many others. The study on 6061-T6
aluminum alloy machined with lubrication, on the one hand, dry, on the other hand, and
in mode MQL [8] showed that the increase in cutting speed leads to a decrease in surface
roughness, whatever the value of the feed. Surface roughness increases with increasing
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feed. Lubrication minimizes the deterioration of the machined surface. Additionally, using
the optimum cutting conditions, dry machining and MQL produced parts of comparable
quality to those obtained by wet machining. In the same way, according to the cutting
speed [9], A319 (at T0 and T6) analyzed the shavings of aluminum alloys and A356 (at T0
and T6) [10] analyzed the bronze aluminum alloy chips.

Two other characteristics, the height of the burrs and the surface roughness of the 2024,
7075 and 7050 aluminum alloys in drilling using cutting speed and feed as parameters [11],
were considered to show that the feed was the parameter most influencing the height of
the burrs. The cutting speed and then the feed influenced the roughness. The geometry of
the tool also has effects on the surface condition. The authors of [12] studied the effects
of cutting angles and showed that the wear on the tool is high when the cutting angle
increases and the roughness value tends to increase. Using this same aluminum alloy, the
authors of [13] studied the effect of the cutting speed of the feed and the cutting depth on
the surface roughness when dry machining. They showed that the optimum roughness has
been achieved when the pass feed and the cutting depth are as low as possible, and when
the cutting speed is high. This study observed that increasing the cutting speed tends to
improve the surface finish. However, the increase in the cutting depth slightly influences
the surface roughness.

In general, machining generates very high temperatures, sometimes requiring the
use of R. Khettabi lubricants [14], but the use of these lubricants increases the machining
costs and presents difficulties for the recycling of chips. Dry machining is therefore used to
avoid these difficulties. However, dry machining produces metallic particles, which have a
considerable impact on the operator’s health [15,16]. Considering the emission of particles,
as a characteristic of machinability, which can be defined in terms of mass concentration, its
mastery is more than necessary today. Several studies on the production of metal particles
have been carried out. They show that the amount of metal particles produced during the
drilling of 6061 and A356 aluminum alloys is influenced by the material and type of heat
treatment, temperature and chips formation. These four parameters can be added to the
cutting depth [17,18]. The production of these particles is very important at the beginning
of the machining and decreases when the depths are slightly larger [19], and the emission
of the particles during the cutting process is a function of the material. Ductile materials
generate more fine and ultrafine particles than fragile materials, as the formation of the
chip correlates with the mass concentration of the metal particles. Most of the work on
the mass concentration of metal particles during machining is generally done on virgin
materials, and in particular on the drilling of aluminum alloys. Very few studies on the
mass concentration of metal particles in the machining of aluminum alloys for recycling
are done. Using lubrication during machining significantly reduces the mass concentration
of metal particles by at least 70% [18].

Studies on the machinability of recycled aluminum alloys, mainly those resulting
from the recycling of machining chips, are not yet very repainted. However, one of
the most recent examples is [19], which shows a clear difference in the machinability
between the two recycled aluminum alloys and indicates a significant lubrication effect
on surface roughness and chip morphology. The question of whether recycled aluminum
can have good machinability as virgin aluminum is still worth raising. This study was
conducted to try to provide some answers to this problem. It aims to highlight models
with good machinability resistance of some recycled aluminum alloys. The machining
is carried out in dry turning and with lubrication on two recycled aluminum alloys,
obtained by melting the machining chips of the aluminum alloy 6061. In this study, we
first show the existence of a hardness difference between the two recycled alloys. In a
second step, by making a comparison, we show the influence of feed, heat treatment and
lubrication on machinability (surface roughness, mass concentration of metal particles and
chips morphology) of these recycled aluminum alloys and present models for evaluating
the machinability of recycled alloys. Three main parts make up this study, namely the
methodology used, the machinability of recycled alloys, and the conclusion of this study.
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We present the notations:
MQL: minimum quantity lubrication.
Y: size studied;
X1, X2 . . . : factors influencing Y;
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Figure 1. Process for obtaining recycled aluminum alloys.

6061 R and 6061 R-T6 aluminum alloys were analyzed under a scanning electron
microscope (SEM), and the results showed a clear difference between the two recycled
alloys. Figure 2 shows the condition of the recycled alloy before and after heat treatment.
The presence of pores, the location of which is heterogeneous, is observed. These pores
have different sizes and shapes. The dimensions range from 0.01 to 0.06 mm and shapes.

Figure 2. Presentation of recycled alloy (a) condition before heat treatments (b) condition after
heat treatments.
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The hardness of alloys recycled by foundry is also different from that of virgin alu-
minum alloys. These aluminum alloys recycled by smelters are more fragile, whether
heat-treated or not, unlike virgin aluminum alloys, which are ductile.

The recycled aluminum alloys obtained were compared with virgin aluminum alloys.
This comparison showed some differences in chemical composition. Table 1 show the
content of each addition element.

Table 1. Chemical composition of recycled aluminum alloys.

Al Si Fe Cu Mn Mg

97.65% 0.7% 0.2% 0.1% 0.15% 1.2%

The hardness tests were carried out on a durometer, characterized by many scales.
This durometer features a 3.175 mm diameter tungsten carbide ball, for a load of 980.665 N.
The material tested is an aluminum alloy. Table 2 shows the hardness values measured on
each recycled aluminum alloy.

Table 2. Hardness measured for each recycled aluminum alloy.

6061 R 6061 R-T6

45 HV (MPa) 85 HV (MPa)

The second part consisted of machinability tests for the study of surface roughness
(Ra), chip morphology and the mass concentration of metal particles (Cm). For surface
roughness, the parameters and cutting conditions (Table 3) were used to perform all
machinability tests. The machining operation (over a length of 200 mm, diameter of the
workpiece is 50 mm and a cutting depth of 0.6 mm), with rotation frequencies 640, 1000 and
1260 rpm, was performed with cutting inserts that were uncoated grade positive KC5410
(r
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= 0.8 mm, α = 11◦). The lubricant used (BLASOCUT® BC 20 SW) is a mixture of mineral
oils, emulsifiers, EP additives (chlorinated paraffin, C14–17) and inhibitors.

Table 3. Cutting parameters used in experimental tests.

Advance: f
(mm/rev)

Cutting Speed: vc
(m/min)

Maxi 0.2 100
Mini 0.05 210

The data in Table 3 are taken with reference to the study by the authors of [20], who
had previously investigated the machinability of recycled aluminum alloys. To stay in
the same logic, it was considered necessary to fix the use of the cutting speeds considered
by [20]. Since the study was made for finishing operations, the feed is considered in an
interval ranging from 0.05 mm/rev to 0.2 mm/rev.

The experimental design method (factor design 32: response surface) was used. It
studied the effects of feed and cutting speed (15 tests include six in the center), on surface
roughness. Initially, the multifactorial method made it possible to organize and execute the
experiments in an optimal manner in order to define the input parameters most influencing
the surface roughness (Ra). The multifactorial model was adopted on the basis of the
standard notation (1) to define the models for the assessment of surface roughness as a
function of the feed and cutting speed and their interactions.

Y = f (X1 + X2 + X3 + . . . + Xk) + ε (1)

Since the feed is the parameter that most affects surface roughness, the uni-factorial
method was used for further machinability tests, at a cutting speed of 100 m/min and
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at a cutting depth of 0.6 mm. These tests made it possible to study the evolution of the
surface roughness (measured with a Surftest 301 (Mitutoyo), the mass concentration of
metal particles (measured with a Dust Tract) and chip morphology.

The simple regression procedure was used to design statistical models describing
the impact of the feed on surface roughness and concentration of metal particles. The
choice of the best simple regression model was made by determining the correlation
coefficient (Equation (2)), the highest R2 statistic (Equation (3)) and taking into account
the confidence and prediction limits (Equations (4) and (5)). The chips were collected, and
their morphologies observed under an optical microscope.

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(2)

R2 =
β̂2

1Sxx

β̂2
1Sxx +

n
∑

i=1

(
yi − β̂0 − β̂1xi

)2
(3)

ŷ ± t α
2 n−2σ̂

√
1
n
+

(x + x)
Sxx

2
(4)

ŷ ± t α
2 n−2σ̂

√
1 +

1
n
+

(x + x)
Sxx

2
(5)

3. Results and discussion
3.1. Surface Roughness

The experimental designs were used to perform the machinability tests, in order to
measure the surface roughness. Table 4 contains the parameters taken into account to
perform the tests. There are nine tests for both parameters: feed (0.05 mm/rev for the low
level and 0.2 mm/rev for the high level) and cutting speed (100 m/min for the low level
and 210 m/min for the high level). This experiment also includes six tests in the center for
the two parameters (0.13 m/rev for the feed and 155 m/min for the cutting speed) which
are represented by the repeated values in the table. Figure 3 shows the roughness profile
of the measurement performed on the 6061 R-T6 alloy wet machined. This profile gave
the surface roughness on several parameters including the arithmetic mean deviation (Ra)
which was chosen for the study.

Figure 3. Roughness profile measured on wet machined 6061 R-T6 alloy.
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Table 4. Average surface roughness values as a function of feed and cutting speed.

Dry
Machining Machining with Lubrication

f
(mm/rev)

vc
(m/min)

6061 R
(µm)

6061 R-T6
(µm)

6061 R
(µm)

6061 R-T6
(µm)

0.2 155 4.771 3.856 2.618 1.5
0.05 210 3.336 1.971 1.69 0.866
0.13 100 3.907 2.662 1.91 1.108
0.2 100 4.513 3.724 2.506 1.375
0.05 155 2.83 1.889 1.67 0.873
0.05 100 2.602 1.867 1.633 0.824
0.13 210 4.611 3.703 2.1 0.951
0.13 155 3.801 3.655 1.9 0.965
0.2 210 5.023 3.976 2.879 1.479
0.13 155 3.801 3.655 1.9 0.966
0.13 155 3.801 3.655 1.9 0.968
0.13 155 3.801 3.653 1.9 0.965
0.13 155 3.803 3.655 1.904 0.965
0.13 155 3.801 3.655 1.906 0.965
0.13 155 3.801 3.657 1.9 0.968

The surface roughness was measured after each loading operation under experimental
conditions. With a 95% confidence interval, all designs were randomized and the degree
of freedom for error is 9. After the tests, the surface roughness was measured six times
in order to rank an average value. These average values are given in Table 4. The results
obtained were analyzed to study the influence of each experimental parameter on the
surface roughness of the two recycled alloys.

Tables 5 and 6 present the ANOVA for the two alloys 6061R and 6061R-T6 taking
into account each machining mode. These tables break down the variability of the surface
roughness of the 6061 R and 6061 R-T6 alloys, for each of the effects of the parameters and
their interactions (giving the sum of squares, the root mean square, the F ratio and the
probability). The data in these tables show that the factors with the probability less than
0.05 have a significant influence on the surface roughness.

Table 5. Analysis of variance on surface roughness for 6061 R alloy and 6061 R-T6 alloy dry machined.

Source Sum of Squares Root Mean Square F Report Probability

6061-R 6061-R T6 6061-R 6061-R T6 6061-R 6061-R T6 6061-R 6061-R T6

f 5.113 5.662 5.113 5.662 388.59 123.10 0.000 0.000
vc 0.636 0.322 0.636 0.322 48.39 7.00 0.0001 0.026
f-f 0.04 0.703 0.04 0.703 3.11 15.30 0.111 0.003
f-vc 0.012 0.008 0.012 0.008 0.92 0.19 0.362 0.674
vc-vc 0.223 0.178 0.223 0.178 16.95 3.89 0.002 0.08
Tatal error 0.118 0.414 0.013 0.046
Sum 6.11 8.203
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Table 6. Analysis of variance on surface roughness for 6061 R alloy and 6061 R-T6 alloy machined with lubrication.

Source Sum of Squares Root Mean Square F report Probability

6061-R 6061-R T6 6061-R 6061-R T6 6061-R 6061-R T6 6061-R 6061-R T6

f 1.51 0.534 1.51 0.534 2146.97 172.19 0.000 0.000
Vc 0.061 0.00002 0.061 0.00002 87.97 0.01 0.000 0.927
f-f 0.17 0.101 0.17 0.101 242.91 32.74 0.000 0.0003
f-vc 0.024 0.0006 0.024 0.0006 35.19 0.22 0.0002 0.653
vc-vc 0.014 0.0003 0.014 0.0003 20.71 0.11 0.0014 0.747
Tatal error 0.006 0.0279 0.0007 0.003
Sum 1.829 0.67

Analysis of the results shows:

� For the recycled 6061 R dry machined alloy, there are three significant and positive
influences (feed, cutting speed and interaction cutting speed-cutting speed). When
machining, this alloy is carried out with lubrication; there are five significant and
positive influences (feed, feed–feed, cutting speed, feed-cutting speed then cutting
speed-cutting speed).

� For the recycled 6061 R-T6 dry machined alloy, there are three significant influences,
including the influence of the feed that is positive, the influence of the interaction
feed–feed that is negative and the influence of the cutting speed that is positive. When
machining, this alloy is cut with lubrication; there are two significant and positive
influences (feed, interaction feed–feed).

All of these effects have probabilities less than 0.05, indicating that they are signifi-
cantly different from zero at the 95% confidence level.

Figures 4 and 5 show the response surfaces of the surface roughness of each recycled
alloy, obtained by varying the feed (from 0.05 to 0.2 mm/rev) and the cutting speed (from
100 to 210 m/min), at a cutting depth of 0.6 mm. In all cases, there is a very large significant
and positive influence of feed on surface roughness, and a small significant and positive
influence of the cutting speed on the surface roughness.

The analysis of these response surfaces shows that, for all alloys, when the feed in-
creases from 0.05 to 0.2 mm/rev, the roughness increases considerably. The best surface fin-
ish is achieved when the machining operation is performed at a low feed (f = 0.05 mm/rev).
When the cutting speed increases from 100 to 210 m/min, the surface roughness increases
slightly. With the exception of the recycled 6061 R-T6 alloy machined with the lubrication,
as the cutting speed increases from 100 to 210 m/min, the surface roughness appears
constant. The best surface finish is achieved when the machining operation is carried out
at a cutting speed of 100 m/min.

In all cases, the forms of surface roughness change are very different depending on the
recycled alloy and whether lubrication is used or not. There is also a marked improvement
in surface roughness when lubrication is used and also when the material is harder. Models
6 to 9 are used to assess surface roughness, taking into account feed rate and cutting speed
under machining conditions.

Models 6 to 9 are established on the basis of these average values of the data in Table 4.
These models allow the evaluation of the surface roughness as a function of the feed and the
cutting speed.
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Figure 4. Response surface as a function of feed rate and cutting speed during dry machining (a)
6061 R alloy and (b) 6061R-T6 alloy.

Figure 5. Response surface as a function of feed and cutting speed when lubrication is used during
machining (a) alloy 6061 R and (b) alloy 6061R-T6.

� Dry machining
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Ra6061R = 2.94 + 19.7 ∗ f − 0.021 ∗ Vc − 21.27 ∗ f 2 − 0.013 ∗ f ∗ Vc + 0.0001 ∗ Vc2 (6)

Ra6061R−T6 = −1.866 + 33.264 ∗ f + 0.028 ∗ Vc − 88.235 ∗ f 2 + 0.011 ∗ f ∗ Vc − 0.00008 ∗ Vc2 (7)

� Machining with lubrication

Ra6061R = 2.364 − 7.132 ∗ f − 0.008 ∗ Vc + 43.472 ∗ f 2 + 0.02 ∗ f ∗ Vc + 0.00002 ∗ Vc2 (8)

Ra6061R−T6 = 1.136 − 4.889 ∗ f − 0.001 ∗ Vc + 33.53 ∗ f 2 + 0.003 ∗ f ∗ Vc + 0.000003 ∗ Vc2 (9)

The best surface finish is obtained at a cutting speed of 100 m/min and a feed of
0.05 mm/rev for all recycled alloys with or without lubrication, so another series of tests
was carried out on the two recycled alloys 6061 R and 60601 R T6, considering the feed
which is the parameter having the greatest influence. Table 7 shows the average values of
surface roughness obtained by varying the feed and with a cutting speed of 100 m/min.

Table 7. Average values of surface roughness.

Dry
Machining Machining with Lubrication

f
(mm/rev)

6061 R
(µm)

6061 R-T6
(µm)

6061 R
(µm)

6061 R-T6
(µm)

0.05 2.602 1.867 1.633 0.824
0.06 2.644 1.899 1.654 0.856
0.07 2.817 1.922 1.694 0.882
0.08 3.146 2.13 1.775 0.914
0.1 3.323 2.358 1.861 0.944

0.11 3.55 2.52 1.899 0.961
0.13 3.907 2.662 1.91 1.108
0.16 4.003 3.02 2.163 1.186
0.18 4.297 3.26 2.338 1.224
0.2 4.513 3.724 2.506 1.375

For each of these measurements, given the average values contained in Table 7, the
average absolute errors are, respectively:

� 0.0679 and 0.0162 for 6061 R and 6061 R-T6 alloys dry machined.
� 0.0249 and 0.0160 for 6061 R and 6061 R-T6 alloys machined with lubrication.

The tests were carried out by varying the feed from 0.02 to 0.2 mm and considering the
constant cutting speed of 100 m/min and a cutting depth of 0.6 mm to study the evolution
of the surface roughness as a function of the feed. Figures 6 and 7 show the evolution
of the surface roughness of each recycled alloy. When the machining of the two recycled
alloys 6061 R and 6061 R-T6 is carried out dry and with lubrication, it appears that the heat
treatment also has an influence on the surface roughness. Whatever the hardness of the
alloy and the machining conditions, the roughness increases with the increase of the feed
at the cutting speed of 100 m/min.
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Figure 6. Evolution of the surface roughness as a function of the feed during dry machining of
recycled alloys 6061 R and 6061R-T6.

Figure 7. Evolution of the surface roughness as a function of the feed during machining with
lubrication of recycled alloys 6061 R and 6061R-T6.

By analyzing the curves in Figures 6 and 7, we observe that the surface roughness
of each recycled alloy evolves differently. To define the models for assessing the surface
roughness of each recycled alloy, Equations (2)–(5) were considered. The correlation
coefficients for the surface roughness of recycled alloys 6061 R and 6061 R-T6 machined
dry and with lubrication are, respectively, 0.992, 0.994, 0.994 and 0.991 and statistics R2

are 98.51%, 98.95%, 98.81% and 98.25%. This led to the definition of all models for the
assessment of surface roughness by the forms of Equations (10)–(13).

� Dry machining

Ra6061R = 0.573 + 8.82 ∗
√

f (10)

Ra6061R−T6 = (1.158 + 3.716 ∗ f )2 (11)

� Machining with lubrication

Ra6061R = 1.6 + 22.69 ∗ f 2 (12)
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Ra6061R−T6 =
1

(1.34 − 3.156 ∗ f )
(13)

The surface roughness of these recycled alloys has been compared to that of the virgin
alloy. Note that for the virgin alloy and the recycled alloy, the lead is the common factor
with the greatest significant influence. However, machined under the same conditions, the
surface finish of the virgin alloy is much better. The surface finish of the machined 6061
R-T6 alloy with lubrication approximates that of the virgin alloy.

3.2. Mass Concentration of Metal Particles

The machinability tests were performed by varying the feed from 0.05 to 0.2 mm and
considering the cutting speed of 100 m/min and the cutting depth of 0.6 mm to study the
mass concentration of metal particles as a function of the feed. Table 8 shows the mass
concentration values of the metal particles produced during the various tests. These values
allowed Figures 8 and 9 to show the evolution of the mass concentration of metal particles
as a function of the feed.

Table 8. Mass concentration of metal particles (Cm).

Dry
Machining Machining with Lubrication

f
(mm/rev) 6061 R (µg/m3)

6061 R-T6
(µg/m3)

6061 R
(µg/m3)

6061 R-T6
(µg/m3)

0.05 3890 2530 701 455

0.06 3133 1805 563 325

0.07 2280 1538 412 275

0.08 1866 1220 336 218

0.1 1410 821 250 147

0.11 1056 688 190 123

0.13 907 580 162 104

0.16 819 538 145 97

0.18 732 462 131 83

0.2 614 428 110 77

The dry machining of the two recycled alloys produces more metal particles. This is
due to the temperature as indicated [14–16]. For dry machining, the mass concentration
of metal particles in the recycled 6061 R alloy is higher than in the 6061 R-T6 alloy. The
production of metal particles in machining with lubrication is well-reduced to about 82%,
a value close to that of [18]. Whatever the hardness and machining conditions, the mass
concentration of metal particles decreases with the increase of the feed at the cutting speed
of 100 m/min.

By analyzing the curves in Figures 8 and 9, it is observed that the mass concentration
of metal particles of each recycled alloy evolves differently. To define models for evaluating
the mass concentration of metal particles in each recycled alloy, Equations (2)–(5) were
considered. The correlation coefficients for the mass concentration of metallic particles in
recycled alloys 6061 R and 6061 R-T6 dry machined and wet machined are 0.995, 0.995, 0.993
and 0.987, respectively. The R2 statistics are 99.12%, 99.03%, 98.65% and 97.54%, respectively.
This led to the definition of all models for the evaluation of the mass concentration of
metallic particles by the forms of Equations (14)–(17).
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Figure 8. Evolution of the mass concentration of metal particles as a function of the feed during dry
machining of recycled alloys 6061 R and 6061R-T6.

Figure 9. Evolution of the mass concentration of metal particles as a function of the feed during
machining with lubrication of recycled alloys 6061 R and 6061R-T6.

� Dry machining

Cm
6061R =

(
11.68 +

2.551
f

)2
(14)

Cm
6061R−T6 =

(
9.77 +

2
f

)2
(15)

� Machining with lubrication

Cm
6061R =

1
(−0.00178 + 0.063 ∗ f )

(16)

Cm
6061R−T6 =

(
5.587 +

0.65
f

)2
(17)
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The machining of the two recycled alloys—6061 R and 6061 R-T6—shows that the
heat treatment has an influence on the mass concentration of the metal particles. However,
the influence of lubrication is more significant. By correlating the mass concentration of
metal particles with surface roughness, it is observed that:

� The mass concentration of metal particles decreases when the surface roughness value
is high, regardless of the machining condition (dry machining or with lubrication).

The mass concentration of metal particles of these recycled alloys has been compared
to that of the virgin alloy. Machined under the same conditions, the mass concentration of
the metal particles has practically the same evolution, but the production of these particles
is higher for the virgin alloys.

3.3. Chips Morphology

Figures 10 and 11 show the shavings of recycled alloys 6061 R and 6061 R-T6, taken
during dry machining and with lubrication, at a cutting speed of 100 m/min and a cutting
depth of 0.6 mm. There is a clear difference between the shavings of these two recycled
alloys. For 6061 R alloy, regardless of the feed (0.05 to 0.2 mm/rev), the shavings are long,
fragmented and appear to be thicker. The cutting tool does not cut the material easily. We
observed more a phenomenon of tearing of the material, and the chips that rubbed on the
surface of the part before breaking. This could explain the large surface roughness values.
For the 6061 R-T6 alloy, the shavings are very short and fragmented when the feed varies
from 0.05 to 0.1 mm/rev. Beyond that, the shavings are similar to those of the 6061 R alloy,
but less long. From the feed of 0.13 mm/rev, the tool does not easily cut the material. We
also observed the same phenomenon of tearing of the material, but the chips acted less
on the surface of the part before breaking. The comparison of the morphology of these
shavings clearly shows the influence of heat treatment on the morphology of the shavings
when the recycled alloy is dry machined.

Figure 10. Morphology of chips of recycled alloys 6061 R and 6061 R-T6 dry machining.
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Figure 11. Morphology of chips of recycled alloys 6061 R and 6061 R-T6 machining with lubrication.

There is a clear difference between the shavings of these two recycled alloys. For the
6061 R alloy, the shavings are very short and fragmented when the feed varies from 0.05 to
0.1 mm/rev. From the feed of 0.13 mm/rev, the shavings are shorter. The phenomenon of
material pulling is less accentuated, and the chips rub less on the surface of the part, thanks
to the lubricant, which plays its role as evacuator. For the 6061 R-T6 alloy, regardless of
the feed (0.05 to 0.2 mm/rev), the shavings are very short, fragmented and less thick. The
cutting tool easily cuts the material, and the chips almost do not rub on the surface of the
part, thanks to the lubricant, which plays its role as evacuator. This could explain the small
surface roughness values. The comparison of the morphology of these shavings shows
well the influence of lubrication on the morphology of the shavings when the alloy is not
heat-treated.

Another comparison was made between the chips of these two recycled alloys. It
has been observed that, during dry machining, the chips of the non-heat-treated alloy are
longer than those of the heat-treated alloy. When machining with lubrication, there is a
similarity in shape and size between the alloy chips in both conditions. These results make
it possible to understand that the combination of the feed and the hardness of the material
have a strong influence on the morphology of the chips of the two recycled alloys 6061 R
and 6061 R-T6.

The morphology of the chips was also compared, and a big difference was observed
when the machining was carried out under the same conditions. The virgin alloy chips
are long, they do not break quickly, and they deteriorate the surface finish. In contrast, the
shavings of the recycled alloy are shorter for the recycled alloy.

The authors of [20,21] have studied the machinability in the turning of recycled
aluminum alloys by foundry, and in [19], the same procedure has been carried out by
drilling. The purpose of their studies was to assess the surface roughness and mass
concentration of metal particles. The evaluation models established in their studies are of
the form Ra or Cm = A*fα (A is a constant dependent on the material, and α the coefficient
of influence dependent on the material). However, it turns out that this form does not
necessarily give a model that brings the experimental curve closer to the fitted curve. This
study thus complements those of [18,20,21] by specifying the need to search for the best
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correlation coefficients (r) and R2 statistics to define the best models for assessing surface
roughness and mass concentration of metal particles.

4. Conclusions

This study showed that dry machining results in longer shavings that alter the surface
of the workpiece and thus impact the surface finish. Furthermore, this machining condi-
tion increases the temperature that promotes the mass concentration of metal particles,
especially for 6061 R recycled alloy, which is more ductile than 6061 R-T6 recycled alloy.

The use of lubrication during the machining of the two recycled alloys causes chip
fragmentation, gives a good surface finish and reduces the mass concentration of metal
particles to almost 82%. The lubrication, the high hardness and the reduction of the feed
give a good surface finish for the two recycled alloys.

Both 6061 R and 6061 R-T6 recycled alloys have good machinability. Thus, we note
that the feed, the hardness of the material and the lubrication considerably influence the
machinability of the two recycled alloys. The machinability of the two recycled alloys can
be assessed by considering the predictive models established in this study.
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