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Abstract: In subtractive manufacturing, process monitoring systems are used to observe the manu-

facturing process, to predict maintenance actions and to suggest process optimizations. One chal-

lenge, however, is that the observable signals are influenced not only by the degradation of the 

cutting tool, but also by deviations in machinability among material batches. Thus it is necessary to 

first predict the respective material batch before making maintenance decisions. In this study, an 

approach is shown for batch-aware tool condition monitoring using feature extraction and unsu-

pervised learning to analyze high-frequency control data in order to detect clusters of materials with 

different machinability, and subsequently optimize the respective manufacturing process. This ap-

proach is validated using cutting experiments and implemented as an edge framework. 
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1. Introduction 

The continuous pressure to reduce costs is one of the main challenges in subtractive 

manufacturing, especially for small- and medium-sized enterprises as well as contract 

manufacturers. To this end, the OberA research project is investigating how digital man-

ufacturing solutions can be utilized in these environments to optimize machining pro-

cesses during daily work. One of the main goals is optimal tool utilization, resulting in 

reduced tooling costs and greener manufacturing through increased resource efficiency. 

Tool condition monitoring (TCM) systems have been widely researched. Such TCM 

systems allow the condition of the cutting tool to be monitored, so that it can be used for 

as long as possible but is nevertheless replaced before it breaks. Within TCM, a broad 

distinction can be made between direct and indirect observation methods. In the case of 

direct observation, laser scanners [1] or cameras [2] are used to directly assess the wear 

condition of the respective cutting tool. For indirect observation, signals such as acoustic 

emission [3], power [4], current [5], torque [6], or vibrations [7] are used to deduce the 

tool’s condition. While these approaches have the advantage of easy application to online 

monitoring, they are prone to noise from the environment [8,9]. 

One such influence are variations between material batches, which were shown to 

have significant influence on the material and its machinability [10]. The root cause for 

these deviations can be found in the underlying material manufacturing processes, be-

tween different suppliers and material lots, such as variations in the material and its 

chemical composition, fabrication procedure, or heat treatment. These lead to variations 

in properties such as grain size or microstructure, which directly influence the machina-

bility of the respective material [11]. 
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In order to facilitate meaningful tool condition monitoring, it is therefore important 

to know the exact material batch currently being machined, so that its influences on the 

machine signals can be modelled. A review of material identification systems can be found 

in [12]. It is shown that there are several material identification approaches researched in 

subtractive manufacturing, which aim at identifying various major materials, material 

sub-classes, specific materials, material grades, and material batches. While there are sev-

eral approaches for identifying different materials during machining, such as aluminum 

and steel [13–15], aluminum and carbon-fiber-reinforced plastics (CFRP) [16,17], titanium 

and CFRP [18,19], and steel and ceramic [20], there are only a few approaches investigat-

ing batch-specific material identification [10,21]. 

According to the review in [12], most approaches in the area of automated material 

identification use sophisticated feature engineering, which so far has not been investi-

gated for material batch identification in subtractive manufacturing. Thus, this study ex-

tends the previous work from [10] by investigating a variety of features for a new valida-

tion scenario. 

The remaining paper is structured as follows. In Section 2, the proposed method for 

batch-aware tool condition monitoring is proposed. In Section 3, the experimental proce-

dure for validating the results is shown while presenting the findings of this study. These 

findings are discussed in Section 4, while Section 5 concludes this paper with a summary 

and an outlook of future research activities.  

2. Methods 

In this section, the proposed method for batch-aware tool condition monitoring is 

described (see Figure 1). High-frequency control data are acquired from the machine tool’s 

numerical control (NC) by a connected edge device. On the edge device, data prepro-

cessing is carried out to reduce the signal impact of cutting conditions. Subsequently, fea-

ture extraction is used to aggregate the high-dimensional and high-frequency data into 

low-dimensional feature vectors. These feature vectors are used for batch analysis, con-

sisting of the identification of clusters of material batches with similar machinability. The 

influence of the material batch on the signals can hence be considered for the subsequent 

tool condition monitoring. 

 

Figure 1. System overview for batch-aware tool condition monitoring. 

2.1. Data Acquisition 

In this study, turning processes are investigated. Internal signals such as the position 

and torque values of all axes are used, as these are typically provided by modern machine 

tools [22], thus avoiding the need for additional sensor integration. Specifically, the posi-

tion and torque values of the main spindle and the feed drives are acquired, with a fre-

quency of 500 Hz. These signals are forwarded to a connected edge device. Furthermore, 

low-frequency data such as override, the cutting conditions and the machine code are 

tracked. 
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2.2. Preprocessing 

As an initial data preprocessing step, the continuously acquired machining data need 

to be referenced to the respective cutting operations under investigation. This is achieved 

by placing specific lines in the machine code, which indicate the relevant cutting opera-

tion. These lines can be read by the edge device, enabling the connection between the 

machining data and the cutting operations of interest. The individual cuts are identified 

by analyzing the set values of x- and z-feed drives, so that data that do not correspond to 

a cutting operation (e.g., tool repositioning) can be eliminated. 

Secondly, the absolute position values of all drives are differentiated twice to yield 

the respective acceleration signals. Thereby, low-frequent vibrations can be observed. 

Finally, the spindle torque Mc is normalized by the part diameter d, deriving a metric 

M’ (see Equation (1)) which correlates with the cutting force.  

�′ =  �� / (�/2). (1)

2.3. Feature Extraction 

As the spindle torque and the position signals are only needed for preprocessing, 

they are not used further for feature extraction. Thus, only the torque of the x- and z-feed 

drives, the computed normalized spindle torque, and the acceleration signals for the x- 

and z-feed drives are analyzed. 

These are now used to derive features, as shown in Figure 2. Here, the common sta-

tistical features mean and standard deviation are used, as well as sophisticated features 

such as acceleration impact hardness, acceleration impact spectral centroid, acceleration 

movement spectral roughness, waviness, spikiness, regularity, friction feature, sound im-

pact hardness, spectral low high ratio, spectral impact centroid and spectral spread. De-

tails regarding these features can be found in [23]. These features are computed in a sliding 

window manner. Thus, the segmented signal is not analyzed on its own, but a sliding 

window of length 1 s is iterated over the signal. For each window, one feature vector is 

computed. To do this, all available signals are analyzed individually by the various fea-

ture computation formulas to derive a single feature Xi. The set of all computed features 

is now considered as feature vector X. 

 

Figure 2. Procedure for extracting low-dimensional features from high-frequency control data. 

2.4. Clustering 

To visualize the features in 2D, the t-distributed stochastic neighbor embedding (t-

SNE) method [24] is used. Thereby, a low-dimensional embedding of high-dimensional 

data is computed based on similarities, allowing for a 2D visualization of the multidimen-

sional feature vector. Using visual analytics, the resulting scatter plot is investigated for 
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the formation of clusters, which are then related to observed batch effects throughout pro-

duction.  

2.5. Tool Condition Monitoring 

With the material batch identified by the clustering procedure, tool condition moni-

toring can be carried out separately for each cluster. Thereby, it is ensured that signal de-

viations must originate from a degrading tool condition, as potential material deviations 

are ruled out in the previous step and all samples belong to the same material batch. In 

this work, the normalized spindle torque is used as a metric to investigate the degrading 

tool condition throughout time for each material batch found.  

3. Results 

3.1. Experimental Procedure 

Cutting experiments are conducted in an operational setting of small-sized lot pro-

duction of shafts using a CNC-lathe with a Sinumerik 840D SL control unit. For data ac-

quisition and logic execution, the Sinumerik Edge edge device is used. The cutting process 

consists of four roughing operations followed by a single finishing cut. For the roughing 

operations, a cutting depth ap of 4.5 mm is used, while the finishing cut has an ap of 1.4 mm. 

In total, 150 cutting sequences are monitored, with each sequence lasting 90 s for all five 

cuts combined. The data were acquired over two days in total. Due to small tolerance 

deviations of the raw shape of the workpiece, the exact cutting depth varies for the first 

roughing operation. Therefore, the first roughing operation as well as the finishing oper-

ation with ap of 1.4 mm are discarded, as the cutting conditions differ for these operations. 

Thereby, the analysis focuses on the three roughing operations with a known and constant 

cutting depth of 4.5 mm, eliminating potential sources of signal error. Furthermore, the 

first and last second of each cut is discarded to avoid transient effects. 

All sequences are carried out under identical conditions. Throughout operation, the 

used cutting tools experience wear and are exchanged once the operator judges that they 

reach their end-of-life, with the exchange times being recorded by the operator. The worn-

out cutting tool inserts are evaluated using a tool maker’s microscope (see Figure 3) and 

the image evaluation procedure proposed in [25]. Thereby, ground-truth data about the 

actual tool condition are generated. In total, nine such tool exchanges occurred during the 

150 investigated sequences.  

 

Figure 3. Microscope image of a representative cutting tool insert after reaching its end-of-life. 

3.2. Data Preprocessing 

Figure 4a shows typical data for the spindle torque over the lifecycle of one tool, 

which was used to cut 15 workpieces. Each datapoint corresponds to 1 s of data from the 

cuts with a cutting depth of 4.5 mm. The torque Mc is clearly distinguishable for each of 

the three cuts at different workpiece diameters, but Figure 4b shows that the normalized 

spindle torque M’ falls onto the same curve for all three diameters. This universal behavior 

confirms the correctness of the data analysis. 
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(a) (b) 

Figure 4. By refactoring the spindle torque signal (a) to the normalized spindle torque (b), the signal impact of cutting at 

various diameters can be compensated. 

The high-frequency data are then aggregated using feature extraction, described in  

Section 2.3. For each of the six signals, all features are calculated. Thereby, the data of 

162,000 datapoints per sequence can be reduced to 48 feature vectors of 60 features each. 

3.3. Clustering 

Using these features, a cluster map is computed to investigate potential material 

batch influences, which can be seen in Figure 5a. Here, the color gradient represents the 

time the respective cut was conducted; thus, data from the first experiment are shown in 

yellow, data from the last experiment in purple, and all remaining cuts in-between. The 

cluster map shows that no clear clusters with similar colors are forming; thus, it can be 

assumed that all investigated samples belong to the same material batch. This agrees with 

ground-truth data acquired from the process planning, as only one lot of material was 

used during the investigated time. In contrast, Figure 5b shows the cluster map of the 

dataset investigated in [10]. Here, two clusters can be clearly distinguished, which align 

well with the different machineabilities found in the related study. 

  

(a) (b) 

Figure 5. Comparing the feature vector distribution from this study (a) to the dataset from a previous study (b), no clear sepa-

rable clusters can be observed, indicating that all samples belong to the same material batch. 
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3.4. Tool Condition Assessment 

Based on the findings so far, it can be assumed that all workpieces are from the same 

material batch, thus the remaining systematic deviations in signal information must be 

caused by decreasing tool condition. Figure 6 shows the normalized spindle torque signal 

for all experiments with tool change events marked in gray. For all cutting tools, a clear 

correlation can be seen between the computed spindle torque signal and the decreasing 

tool condition, indicated by an increasing normalized spindle torque. 

 

Figure 6. The computed normalized spindle torque M’ increases towards the end of each tool’s life-

time. The axis shows the wall clock time (month, day, and hour). 

Furthermore, the absolute value of tool condition is investigated as well. Tool wear 

was measured at the insert radius with the image evaluation procedure [25], yielding the 

average flank wear width. These values thus represent the ground truth of the wear at the 

end of each tool’s lifetime and are represented as circles in Figure 7. Assuming that the 

wear develops linearly with usage time, the smoothed normalized spindle torque can then 

be plotted as a function of the interpolated wear (lines in Figure 7). Experiments #3, #4, 

and #6 reach their end-of-life rather early with measured flank wear widths in the range 

120 µm to 170 µm. However, they show rather high normalized spindle torques, such as 

experiments #7 and #9, which reach a flank wear width of about 240 µm. The remaining 

experiments #1, #2, #5, #7, #8, and #9 show varying degrees of tool condition, ranging from 

200 µm to 310 µm. However, there seems to be a good correlation between measured nor-

malized spindle torques and interpolated flank wear width, as the trend curves of these 

experiments align well with each other. 



J. Manuf. Mater. Process. 2021, 5, 103 7 of 9 
 

 

 

Figure 7. Apart from experiments #3, #4, and #6, the experiments align well with each other. 

4. Discussion 

As shown in Figure 6, the times at which the cutting tool was changed match per-

fectly with the times when the derived normalized spindle torque jumps from a high to a 

low value. Thus, the observed continuous increase in the normalized spindle torque can 

be explained by increasing tool wear. Figure 7 shows that in most cases, the maximum 

normalized spindle torque correlates with the value of the tool wear at the insert radius 

determined from the image evaluation procedure. Furthermore, under the reasonable as-

sumption that the tool wear develops linearly as a function of usage time, Figure 7 shows 

that in most cases, the normalized spindle torque correlates directly with the current state 

of tool wear. However, in experiments #3, #4, and #6, the tool shows less wear than ex-

pected from the computed normalized spindle torque. The reason for this is still under 

investigation. 

Data-driven approaches for TCM rely on the quality of feature extraction, since much 

of the information which the experienced operator uses today as an indication of the tool 

wear can hardly be recorded. However, the applied method based on the normalized 

spindle torque is consistent with the actual operator decision and, hence, represents a 

promising solution. 

It is clear that deeper investigation of the relationship between the final normalized 

spindle torque and the measured tool wear requires more data, spanning a wider range 

of final normalized spindle torques and material batches. 

5. Summary and Outlook 

In this study, the fundamentals for a novel batch-aware tool condition monitoring 

system are researched. Deviations in machinability among material batches make indirect 

condition assessment of cutting tools a challenging task. This paper therefore uses a ma-

terial identification system to identify potential variations in machinability, so that only 

data from material batches from the same machinability are further analyzed. 

Cutting experiments are carried out for a small-sized lot production, yielding high-

frequency control data and tool condition data as ground-truth. It is shown that all inves-

tigated workpieces in this study belong to the same machinability class, which allows the 

correlation between NC signal and tool condition to be meaningfully investigated. For 

each cutting tool used, a clear trend of increased normalized spindle torque with decreas-

ing tool condition is observed. Furthermore, the relations between computed normalized 

spindle torque and expected tool condition align well for most experiments. 
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In future research, the image acquisition unit for generating ground-truth data will 

be integrated into the machine tool, to enable automated data acquisition, and eliminate 

human error. Furthermore, the relations found between normalized spindle torque signal 

and tool condition will be verified on a larger dataset and transformed into an automated 

monitoring solution. 
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