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Abstract: This study mainly investigates the current and speed control strategies of a doubly-fed
induction generator (DFIG), which is applied to a tidal stream turbine (TST). Indeed, DFIG using
integer-order PI (IOPI) controller has been widely proposed in the applications with a similar system,
especially in wind energy conversion system (WECS). However, these conventional controllers cannot
deal with the problems caused by the parameter variations satisfactorily under complex and harsh
operation conditions, and may even deteriorate the performance. As a result, a fractional-order PI
(FOPI) controller is considered to improve the efficiency and performance of DFIG-based TST in
this paper. The FOPI controller, developed from the traditional IOPI controller and the fractional
calculus theory, has a lot of prominent merits in many aspects, such as robustness, stability, and
dynamic performance. In this paper, the proposed control strategies are embedded into the whole TST
model which contains the tidal stream turbine, and the generator. The obtained simulation results
demonstrate the prominent effectiveness and advantages of the proposed strategies compared with
the conventional IOPI controller in terms of overshoot, static error, adjustment time, and robustness.
It implies that FOPI controller could be a good candidate in TST applications.

Keywords: DFIG; fractional-order PI control; tidal stream turbine; robustness

1. Introduction

Due to serious environmental problems caused by fossil fuels, renewable energy has become
more and more attractive in recent years. As a result, renewable technologies have been improved
continuously. The ocean, much larger than the land surface, is considered as an abundant energy
resource which can theoretically provide five times the global energy demand [1,2]. Thus, there is
increasing interest in exploiting energies from the ocean. Unfortunately, among the five mainly ocean
energy forms, only marine current energy attracts the most attention owing to present technological
and economic considerations.

TST is very similar to WECS. Many mature technologies used in WECS can be employed in TST
partially, such as the generators and the control methods. Indeed, DFIG, which is always used in
WECS, is considered as a good candidate for TST [3]. Meanwhile, IOPI controller is also proposed due
to its prominent advantages, such as simple structure, good performance, and convenience to tune
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the parameters. The related research results have fully demonstrated that it can achieve satisfactory
effects for many objects in both theoretical analysis and actual operation. Indeed, the IOPI controller is
the most mature control method with a 90% share in control systems and widely used in industrial
processes such as metallurgy, chemical industry, electric power, and machinery [4]. Many researchers
have adopted the IOPI controller for TST with different generators in their studies [5–19]. However,
these papers mainly focused on the control strategies regarding the swell effect, flux-weakening strategy,
power smoothing strategy, MPPT strategy, loss minimization strategy, dispatching and frequency
strategies, etc.; and do not pay great attention to the robustness and dynamic performance of the
system. All these studies hardly considered the possible variation in the system parameters due to the
complicated underwater condition. Normally, an IOPI controller prefers an accurate model to tune the
parameters for better performance. Although it does overcome the variation in the system parameters
to a certain extent, this is at the cost of deteriorating system performance. It implies that it has poor
robustness (sensitive to parameter variations and external disturbances) and it is hard to control the
system with uncertainties.

Considering TST always operates under the complicated and uncertain underwater environment,
accurate models of the electrical and mechanical systems are hard to obtain and the parameters may
vary due to the external environment. Numerous different controllers were proposed by the researchers
for the different causes; most controllers were applied in the current loop.

In [20,21] HOSMC was developed for both PMSG and DFIG, validated in the experimental bench,
and compared with classical PI control. These studies mainly focused on the sensitivity of the system
regarding the tidal turbulence and swell effect. Afterward, HOSMC was adopted in the five-phase
PMSG based TST. This system was fully compared with three-phase PMSG-based TST under healthy
mode and open-circuit faults [22,23]. The achieved results showed that the five-phase PMSG system
would appear better performance than the classical three-phase PMSG system; HOSMC had superiority
in terms of fault-tolerant control effectiveness compared to PI control. Furthermore, HOSMC was also
selected for DSPM-based TST in [24] to deal with the nonlinear time-varying system. HOSMC indeed
has very good robust characteristics due to its independence on the model; however, the characteristics
of HOSMC itself introduced chattering which may degrade the system performance [25].

In [26], Gu Y.J. proposed one new fuzzy logic SMC strategy to track the maximum power point
accurately and smooth the power fluctuations. MPC and backstepping control were applied to deal
with the open-circuit fault in the three- and five-phase PMSG based TST [27,28]. All the results
showed good performance of the system in both the transient process and steady-state, even in a faulty
condition. However, these papers did not give any relative stability and robustness analyses, neither
did they provide time-domain nor frequency-domain characteristics. In [29], the authors proposed
NPC for hydrostatic transmission based TST. This proposed NPC could cope with the nonlinearities
and uncertainties of the system and had sufficient robustness to the uncertainties and disturbances.
Nevertheless, this system was hydrostatic transmission based-TST, neither direct-driven system nor
gear-driven system. Yin X.Y. presented a new adaptive backstepping control with uncertainty and
disturbance estimation [30]. This control was evaluated for maximum power and appeared better
performance compared to the classical backstepping control. Although this paper analyzed the system
robustness, it mainly focused on the external uncertainty and disturbance. Some other researchers also
applied adaptive backstepping control/fuzzy control for a standalone TST which used three-phase full
bridge diode rectifier [31–33]. The adaptive backstepping control was selected to regulate the duty
cycle of a DC-DC boost converter to extract the maximum power.

Besides, these references mainly focused on the current loop, there are still a few papers paying
attention to the speed loop. In [34], Ghefiri K, et al. developed a fuzzy gain scheduling-PI controller to
improve the rotational speed performance with a variable marine tidal current speed. The obtained
results showed that this control had good speed tracking performance and improved output power.
In [35–37], the authors chose ADRC for TST due to the ability to estimate the entire disturbance by
a nonlinear state observer and to compensate them in the control signal. All the simulation results
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showed that ADRC appeared faster convergence speed, smallest overshoot, and tracking errors
compared to PI and HOSMC controllers. However, this control would bring higher computational cost
and time due to its complex structure and calculating process.

In the last few years, the FOPI controller, the combination of the fractional calculus theory and
IOPI controller, has become increasingly attractive for control systems and applied successfully in
many practical systems such as power electronic converters and hard disk drive servo systems [38,39].
The FOPI controller has one additional control dimension with the order of integral λ to deal with
the problems such as: parameter uncertainty, external disturbance, robustness, and stability [40,41].
If the actual systems are described with their fractional properties, the nature and behavior of the
object can be better revealed due to the memory and hereditary effects of fractional calculus, and the
models should be more precise [42,43]. The fractional-order controller is not only suitable for the
fractional-order system model, but also fully demonstrates its superiority for the integer-order system
model [44,45].

Some researchers have already focused on the application of FOPI controller in the machine
system [39,41,46–59]. These references mainly focused on the controller parameters tuning methods
according to different criteria.

In [41,46], MATLAB optimization toolbox FMINCON was adopted to minimize the phase margin;
Newton iteration method was selected to maximize the gain margin in [47]; ITAE was used as the
criterion of optimal parameters tuning in [48–51]; reference [48] applied PSO to find the minimum
ITAE; Dieng A. utilized PSO to optimize a special objective function which could minimize the torque
ripple [52–54]; in [55], a new non-linear function containing ITSE, settling-time, rising time, and
maximum overshoot was minimized by PSO and BFO. There are still a few papers studying on the
robustness of internal parameter variations and external disturbances [39,56,57]. Indeed, most of these
papers compared the performance of IOPI and FOPI controllers. Nevertheless, the parameters of FOPI
controller obtained in these papers were all optimized in different ways; while the parameters of IOPI
controller were normally achieved by the time-domain design method. Thus, the performance of
FOPI controller was undoubtedly much better than that of IOPI controller. According to the literature,
in [58,59], the FOPI controller parameters were developed with the same open-loop gain crossover
frequency and phase margin as the IOPI controller. However, this paper mainly discussed the starting
characteristics of FOPI/IOPI controllers with fractional-order and integer-order model.

In this paper, FOPI controller is applied for both current and speed loops of DFIG-based TST;
the robustness of the internal and external disturbances will be analyzed; the performance will be
compared systematically with that of IOPI controller; the overall system performance will also be
evaluated. Consequently, this paper is organized as follows. TST is firstly introduced. The turbine, and
DFIG are modeled respectively. Subsequently, the fundamental principle and design of IOPI controller
are introduced briefly. Then, the FOPI controller is implemented by the phase-and-amplitude-margin
method. Finally, the performance of DFIG-based TST using IOPI and FOPI controllers is realized,
analyzed, and compared.

2. Model of DFIG-Based TST

In order to simply the system, the only turbine and generator will be modeled. The drive train
and the converter are assumed to be ideal without any losses.

2.1. Tidal Stream Turbine Modeling

Like wind energy, regardless of turbine design, only a small portion of the hydrodynamic energy
can be absorbed from the water. The amount of extractable mechanical power Pm is expressed
by (1) [18,60].

Pm =
1
2

CpρAV3
tide (1)
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where the coefficient Cp highly depends on TSR/λ, the pitch angle β and the number and the geometry
of the blades. The theoretical maximum Cp is 16/27 (0.59259). For TST, the maximum Cp is around in
the range 0.35–0.5 [61].

Principally, the Betz’s coefficient Cp is determined by the drag (‘D’) and lift (‘L’) forces on the
blade. These two forces depend on many factors, such as the seawater density ρ, the resultant velocity
‘W’ (m/s), the attack angle ‘α’ (rad) of the water flow, the blade chord ‘chord (r)’ (m), the drag and
lift coefficients ‘CD(α)’ & ‘CL(α)’. The local drag and lift gradients ‘dD’ & ‘dL’ on the blade section
between radius r and elementary radius (r + dr) are defined in (2). The simple explanation of the
blade section is shown in Figure 1. According to this figure, the resultant velocity ‘W’ is defined in (3)
consequently [62].

Figure 1. Blade section.

{ dD
dr = 1

2ρCD(α)W2chord(r)
dL
dr = 1

2ρCL(α)W2chord(r)
(2)

W2 = [Vtide(1− a)]2 + [Ωturbiner(1 + b)]2 (3)

According to the blade element momentum theory, the relation between the Cp gradients and λ

can be easily achieved in (4) [62].

dCp

dr
=

λ(1− a)2chord(r)NbrCFT

R3π sin2 ϕ
(4)

{
CFT = CL(α) sin(ϕ) −CD(α) cos(ϕ)
CFN = CL(α) cos(ϕ) + CD(α) sin(ϕ)

(5)

Based on this theory and the data from NACA0012, the Cp-TSR/λ variation of the studied
three-blade horizontal axis turbine with different β is given in Figure 2. According to this figure, the
power coefficient Cp reached the maximum value at 0.3553 when β equates to 0◦ and TSR (λ) is 4.6.
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Figure 2. Cp-TSR/λ curve with different pitch angles β.

2.2. DFIG Modeling

For the DFIG-based TST, it has many advantages. Principally, DFIG makes the system easily
operate in variable speed, lower the converter costs and power losses [61]. To control the active
and reactive power without coupling, DFIG is generally defined in the synchronously d–q frame.
Consequently, the model in the d–q coordinate axis of the stator is described in (6) [21,63].

Vsd = Rsisd +
d
dtφsd −ωsφsq

Vsq = Rsisq +
d
dtφsq +ωsφsd

Vrd = Rrird +
d
dtφrd − (ωs −ωr)φrq

Vrq = Rrirq +
d
dtφrq + (ωs −ωr)φrd

φsd = Lsisd + Lmird
φsq = Lsisq + Lmirq

φrd = Lrird + Lmisd
φrq = Lrirq + Lmisq

Γem = 3
2 npLm

(
isqird − irqisd

)
Jm

d
dt Ωm = Γem − Γm − fvΩm

Ps = 1.5
(
Vsdisd + Vsqisq

)
Qs = 1.5

(
Vsqisd −Vsdisq

)

(6)

According to the stator flux oriented vector control adopted in this paper, the voltage vector
coinciding with the q-axis is 90

◦

ahead of the flux vector which coincides with d-axis when the stator
resistance is neglected. Therefore, the flux and voltage equations of the stator can be simplified via (7).
Then, the flux and the voltage of the rotor can be rewritten in (8).

φsd = φs

φsq = 0
Vsd = 0
Vsq = Vs = ωsφsd

(7)
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

φrd = Lrσird +
LmVs
Lsωs

φrq = Lrσirq

Vrd = Rrird + Lrσ
dird
dt − slωsLrσirq = Rrird + Lrσ

dird
dt −ωslLrσirq

Vrq = Rrirq + Lrσ
dirq
dt + slωsLrσird + sl LmVs

Ls
= Rrirq + Lrσ

dirq
dt +ωslLrσird + sl LmVs

Ls

σ= 1− L2
m

LrLs

ωsl = slωs = ωs −ωr = ωs − npΩm

Ωm = NgearΩturbine

(8)

According to the equations (6), (7) and (8), the stator current equations can be easily obtained
in (9). The d-axis stator flux transfer function can be rewritten in (10). isd =

φs
Ls
−

Lm
Ls

ird

isq = −
Lm
Ls

irq
(9)

φsd(s) =
Lm

Ls
Rs

s + 1
ird(s) (10)

3. Conventional Integer-Order PI Controller

3.1. Control Strategy

For DFIG-based TST, the controller of the machine side mainly aims to extract the maximum
energy from marine current flow. Generally speaking, DFIG has several control strategies, such as
torque-speed control strategy and power control strategy. These two strategies have a quite similar
double closed-loop structure which can easily control the torque-speed/active power and reactive
power respectively without coupling. Due to the intuitiveness of the torque-speed control strategy, it is
proposed in this paper.

For this strategy, the turbine speed, which would extract the maximum power from the tidal
current, is deduced by the optimal tip-speed ratio method. Subsequently, the rotor current reference
irq* is achieved by ASR; the rotor current reference ird* can be obtained in (11) which is developed from
the stator reactive power and stator flux equations. Then, RSC realizes the excitation control with the
control signal of ACR. ASR and ACR can be either FOPI controller or IOPI controller. The processes to
obtain the controllers are detailed in the following sections. The basic diagram of this control strategy
is given in Figure 3.

ird =
Ls

Lm

(
φs

Ls
−

Qs

1.5ωsφs

)
=

Ls

Lm

( Vs

ωsLs
−

Qs

1.5Vs

)
(11)

3.2. Current Loop

Based on (8), the current open-loop transfer function is represented in (12).

Ge,op(s) =
(
kpe +

kie
s

)
1

σLrs + Rr
=

kpe
σLr

s + kie
σLr

s
(
s + Rr

σLr

) (12)

For IOPI controller of ACR, the parameters are determined by the pole placement method in this
paper [64,65]. Thus, the relative closed-loop transfer function can be later simply developed in the
following (13). When the time trends to zero, the first item of the molecule will be zero. Consequently,
according to the automatic control theory, the settling time tse of this second-order system can be
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approximated in (14) for ±5% error bandwidth [39,64,66]. Then, the parameters kpe and kie are deduced
in (15) subsequently [63].

Ge,cl(s) =
Ge,op

1 + Ge,op
=

kpe
σLr

s + kie
σLr

s2 +
Rr+kpe
σLr

s + kie
σLr

≈
ω2

ne

s2 + 2ξωnes +ω2
ne

(13)

tse =
3

ξωne
(14) kpe =

6σLr
tse
−Rr

kie =
9σLr
ξ2t2

se

(15)

Figure 3. Diagram of torque-speed control strategy of DFIG.

3.3. Speed Loop

The external speed loop aims to follow the optimal speed reference for the maximum power
extraction from the tidal current flow. In this section, the current loop is considered as 1 for simplification.
Based on the assumption, the relative speed open and closed loops transfer functions are presented
in (16) and (17) separately. Then, the controller parameters of ASR could be developed by the same
method as the current loop in (18).

Gm,op(s) =
(
kpm +

kim
s

)
1

Jms + fv
=

kpm
Jm

s + kim
Jm

s
(
s + fv

Jm

) (16)

Gm,cl(s) =

kpm
Jm

s + kim
Jm

s2 +
fv+kpm

Jm
s + kim

Jm

≈
ω2

nm

s2 + 2ξωnms +ω2
nm

(17)
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 kpm = 6Jm
tsm
− fv

kim = 9Jm
ξ2t2

sm

(18)

4. Fractional-Order PI Controller

Although the fractional calculus is quite an ancient mathematical subject, it is usually applied to
develop more practical and accurate models and to improve the traditional control algorithms right
now. Consequently, the researchers regard it as one powerful and effective instrument for ameliorating
engineering solutions [40].

Until now, many researchers have proposed various fixed structures for the fractional-order
controller, such as: different generations of CRONE controller proposed by A. Oustaloup [67], TID
controller [68], FOPID controller and the fractional-order lead-lag compensator [69,70]. According to
the algorithms of the different generations of the CRONE controller, FOPID controller has a strong
suppression effect on high-frequency and low-frequency disturbances; that is to say, the robustness of
the fractional-order controller is much better than the traditional IOPID controller [71].

4.1. Basic Introduction of Fractional-Order PID Controller

FOPID controller is also known as the PIλDµ controller. For this controller, the fractional-order
integrator 1/sλ and differentiator sµ replace the integer-order integrator 1/s and differentiator s of IOPID
controller. Thus, the relative general form is simplified in (19). λ and µ are bounded between 0 and 2:
0 < λ < 2, 0 < µ < 2 [72,73].

C(s) = Kp +
Ki

sλ
+ Kdsµ (19)

The relationship between the IOPID and FOPID controllers are presented in Figure 4. If λ = µ =

1, FOPID controller becomes IOPID controller. Therefore, FOPID controller can be considered as an
exception of IOPID controller. When Kd = 0 or Ki = 0, FOPID controller turns to be FOPI or FOPD
controller. As a result, they can simply be regarded as a subclass of FOPID controller and an extension
of the traditional IOPI or IOPD controller.

Figure 4. Range of IOPID and FOPID controllers.

From this figure, IOPID controller can only change the parameters at the four points; while for the
FOPID controller, it can take the values in this quadrant. Because of these two adjustable parameters λ
and µ, they can highly improve the performance and robustness of the whole system. However, it
undoubtedly makes the process of parameter tuning more complex [69].

Theoretically, the fractional-order system is an infinite dimension system. The conventional
analysis approach of the integer-order system cannot be applied directly. Therefore, some appropriate
methods are proposed by the researchers to analyze the fractional-order systems. Right now, the
discretization and approximation of the rational functions of the fractional-order systems becomes one
of the main methods [74]. In this paper, the Oustaloup approximation method is selected to solve the
fractional-order problem [75].
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4.2. Design of FOPI Controller

There are many different parameter tuning algorithms for FOPID controller. At present, the mainly
used methods include optimization method, dominant pole algorithm, phase-and-amplitude-margin
method, etc. [45,63,76,77].

In this paper, phase-and-amplitude-margin method is applied to design this robust controller.
For this method, the phase margin must be regarded as the most important criterion to obtain the
relative stability of the system. If the gain crossover frequency ωc and the phase margin γc are
determined, the controller parameters can be easily achieved according to the tuning rules. The
parameter tuning process is detailed in the following steps [56–58,63,78,79].

(1) Determination of the phase-frequency characteristics at ωc:

Arg[G( jωc)] = Arg[C( jωc)P( jωc)] = −π+ γc (20)

(2) Determination of the amplitude-frequency characteristics at ωc:∣∣∣G( jωc)
∣∣∣
dB =

∣∣∣C( jωc)
∣∣∣∣∣∣P( jωc)

∣∣∣
dB = 0dB (21)

(3) Robustness to the variations of the system gain:

The robust stability condition must be added to ensure the robust characteristics of the system.
Thus, the phase in the open-loop Bode diagram should be flat near the gain crossover frequency ωc.
When the gain of the system increases or decreases by 20%, the phase-to-frequency derivative in Bode
diagram is 0 dB at the gain crossover frequency ωc and the overshoot of the dynamic response almost
remains the same. To obtain such good robustness characteristics, the transfer function of the open-loop
must satisfy (22).

d(Arg[C( jωc)P( jωc)])

dω

∣∣∣∣∣∣
ω=ωc

= 0 (22)

Usually, the unified FOPI controller is simply described as (23). Then, the relative frequency
response can be developed in the following (24).

C(s) = Kp

(
1 +

Ki

sλ

)
(23)

C( jω) = Kp

(
1 + Kiω

−λ cos
(
λπ
2

)
− jKiω

−λ sin
(
λπ
2

))
(24)

According to the transfer functions in (12) and (16), they can be all approximated as a first-order
system. The standard transfer function is given in (25).

P′ (s) =
K

Ts + 1
(25)

where: T = σLr/Rr for the current loop and T = Jm/fv for the speed loop.
Subsequently, the standard form of the system could be rewritten in (26) and the open-loop

transfer function is presented in (27).

P(s) =
1

Ts + 1
(26)

G(s) = C(s)P(s) = Kp

(
1 +

Ki

sλ

)( 1
Ts + 1

)
(27)
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According to the expressions in (25) to (27), the tuning rules in (20) to (22) could be rearranged in
(28) to (30).

Arg[G( jωc)] = −arctan

 Kiω
−λ
c sin λπ

2

1 + Kiω
−λ
c cos λπ2

− arctan(ωcT) = −π+ γc (28)

∣∣∣G( jωc)
∣∣∣ = ∣∣∣C( jωc)

∣∣∣∣∣∣P( jωc)
∣∣∣ = Kp

√(
1 + Kiω

−λ
c cos

(
λπ
2

))2
+

(
Kiω

−λ
c sin

(
λπ
2

))2√
1 + (ωcT)

2
= 1 (29)

d(Arg[G( jω)])
dω

∣∣∣∣∣∣
ω=ωc

=
Kiλω

λ−1
c sin

(
λπ
2

)
ω2λ

c + 2Kiω
λ
c cos

(
λπ
2

)
+ K2

i

−
T

1 + (Tωc)
2 = 0 (30)

For this method, the phase margin γc and the gain crossover frequency ωc are required. For the
sake of comparing the performance between two controllers, FOPI controller would choose the same
phase margin and gain crossover frequency as IOPI controller.

Based on the open-loop transfer functions with IOPI controller for the current and speed loops
in (12) and (16), the relative frequency characteristics could be achieved in (31) and (32) subsequently.

Ge,op( jω) =

kpe
σLr

( jω) +ω2

( jω)
(
jω+ Rr

σLr

) , (31)

Gm,op( jω) =

kpm
Jm

( jω) +ω2

( jω)
(
jω+

fv
Jm

) , (32)

According to the phase-frequency characteristic at the gain crossover frequency ωc, the
amplitude-margins of the current and speed loops must be 0 dB: |Ge,op(jωce)| = 1 & |Gm,op(jωcm)| = 1.
Consequently, the frequencies (ωce and ωcm) and the relative phases [ϕ(ωce) and ϕ(ωcm)] can be
obtained by (33) to (36) respectively. Then, the phase margins (γce and γcm) are developed in (37) and
(38) consequently.
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ωcm =

√√√√√√√√
−

(
f 2
v

J2
m
−

k2
pm

J2
m

)
+

√(
f 2
v

J2
m
−

k2
pm

J2
m

)2

+ 4ω4
nm

2
(34)

ϕ(ωce) = arctan
kpeωce

σLrω2
ne
−
π
2
− arctan

σLrωce

Rr
(35)

ϕ(ωcm) = arctan
kpmωcm

Jmω2
nm
−
π
2
− arctan

Jmωcm

fv
(36)

γce = π+ ϕ(ωce) =
π
2
+ arctan

kpeωce

σLrω2
ne
− arctan

σLrωce

Rr
(37)

γcm = π+ ϕ(ωcm) =
π
2
+ arctan

kpmωcm

Jmω2
nm
− arctan

Jmωcm

fv
(38)

If the damping ratio ξ for these two loops equates to 0.707, the settling times of the current and
speed loops are 0.001 s and 3 s respectively, consequently, the relative gain crossover frequencies are
ωce = 6536 rad/s and ωcm = 2.18 rad/s, the phase margins for the two loops are γcm = γce ≈ 1.147 rad.
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In order to get the fractional-order coefficient, equations (28) and (30) must be combined as a set of
simultaneous equations. Then, the coefficients λ and Ki can be calculated. Finally, the coefficient Kp

can be achieved by (29). According to this solving process, the FOPI controllers of the two loops (Gfopim
and Gfopie) can be designed in (39) and (40). Subsequently, the open-loop transfer functions could be
future developed with the Oustaloup approximation algorithm. The corresponding Bode diagrams of
the current and speed open-loops are shown in Figure 5. From these figures, the phases of the two
systems near each gain crossover frequency ωc are almost the same (equal to −π+γc). It means that
these two FOPI controllers are well designed and they all have strong gain robustness characteristics.

G f opie(s) = 10.4952
(
1 +

86.1313
s0.3372

)
(39)

G f opim(s) = 0.0535
(
1 +

14.94
s0.299

)
(40)

Figure 5. Bode diagrams of the open−loops with two controllers: (a) current loop; (b) speed loop.

5. Simulation and Comparison

To verify the proposed control method, the simulation is accomplished by MATLAB/SIMULINK
in this part. The performance of the two controllers is analyzed and compared subsequently.

In this section, the settling time tse of the current loop IOPI controller is fixed as 1 ms. Then,
the parameters of FOPI controller are designed according to the relative phase margin γce and crossover
frequency ωce of IOPI controller.

5.1. Comparison of the Two Controllers

This part will analyze the performance with the different settling times tsm of the speed loop.
According to the tuning method detailed above, the relative parameters of FOPI controller could be
obtained with the gain crossover frequency and phase margin of every settling time. Consequently, the
performance with IOPI and FOPI controllers for the different speed settling times tsm is presented in
Figure 6. All the black lines indicate the response of FOPI controller; meanwhile, the red lines imply
that of IOPI controller. The different styles of lines (solid line, dashed line, dotted line, and dash-dot
line) represent the different settling times.
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Figure 6. Performance of DFIG for FOPI (black) and IOPI (red) controllers with different settling time
tsm: (a) DFIG speed; (b) electromagnetic torque; (c) rotor current amplitude; (d) active power.

From Figure 6a, with the different tsm, FOPI and IOPI controllers can follow the reference in the
given time. However, for each condition, FOPI controller always appears much quicker response
compared with IOPI controller. Moreover, the overshoots of FOPI controller are much smaller than
that of IOPI controller for each tsm. In addition, the overshoot of FOPI controller will decrease with the
increasing settling time from this figure.

Figure 6b,c shows the electromagnetic torques and rotor current amplitudes of two controllers with
different tsm. As the tidal current speeds are the same for these two systems, the final electromagnetic
torques and rotor current amplitudes must be the same respectively. However, due to the different
speed responses, the torque and current amplitude of IOPI controller will have bigger oscillations and
reach their desired values in a longer time. What should be mentioned is that there is a shock in the
current at the starting stage for both two controllers, while there is a shock in the torque only for IOPI
controller. Indeed, this torque shock can be weakened by the increasing settling time. Nevertheless,
the FOPI controller always presents smoother starting performance compared with the IOPI controller.
As TST may have big rotor inertia and the inertia may increase due to the adhesion of marine fouling
organisms, this characteristic can greatly avoid some mechanical faults that may occur during system
start-up [80–82].

Due to the better performance of the speed and current FOPI controllers, the corresponding active
power is presented in Figure 6d. From this figure, FOPI controller is always much faster than IOPI
controller to reach the maximum active power.
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5.2. Robustness Analysis

In this section, the robustness of the speed loop is analyzed. For the speed loop, the mechanical
equation contains two parameters: rotor inertia Jm and viscosity coefficient fv and can be considered as
one low-pass filter after Laplace transformation. In order to simplify the analysis, the rotor inertia and
viscosity coefficient would have the same variation.

In this part, the settling time tsm is fixed at 3 s. Then, the performance comparisons are presented
in the following figures. The annotations in these figures imply the different rotor inertia and viscosity
coefficient compared with the initial values.

Firstly, bode diagrams of the two systems with different rotor inertia and viscosity coefficient
are given in Figure 7. Apparently, if the system parameters vary, the phase-and-amplitude-margin
characteristics must change. Although the system gain crossover frequencies will all change with
these new modified system models and the same controllers, the FOPI controller can almost keep
the same phase margin as the original case. It implies that it can maintain the system stability
under these conditions. While for IOPI controller, the stability will be changed with these different
system parameters.

Figure 7. Bode diagrams of the speed open-loop with inaccurate mechanical model: (a) IOPI controller;
(b) FOPI controller.

The speed responses of the two controllers are shown in Figure 8a. Absolutely, the speed
performance of the two systems varies with the different rotor inertia Jm and viscosity coefficient fv.
In general, the speed rising times of the two controllers will all rise with the increasing Jm and fv.
The difference is that the rising times of FOPI controller are always relative smaller than that of IOPI
controller. Significantly, the speed overshoots of the FOPI controller will remain almost the same. This
phenomenon just verifies the robustness to the variations of the system gain which has already been
mentioned in the tuning process. For the IOPI controller, its overshoot will grow with the increasing
rotor inertia and viscosity coefficient.

Figure 8b,c indicates the electromagnetic torque and rotor current amplitude. From these two
figures, there is always a shock for IOPI controller at the beginning. Meanwhile, its oscillations will
be bigger with the bigger rotor inertia Jm and viscosity coefficient fv. While for the active power in
Figure 8d, these two controllers have similar performance during the start-up. However, the IOPI
controller will bring a slight fluctuation. Its value will increase with the raising Jm and fv, and can reach
nearly 10% when Jm and fv are twice the original values.

Consequently, from these figures, the FOPI controller can ensure the robustness to parameter
variations and system uncertainties. All the simulation results also demonstrate that the FOPI controller
always appears much better performance compared with the IOPI controller under these conditions.



J. Mar. Sci. Eng. 2020, 8, 309 14 of 23

Figure 8. Performance of DFIG for FOPI (black) and IOPI (red) controllers with the inaccurate mechanical
model: (a) DFIG speed; (b) electromagnetic torque; (c) rotor current amplitude; (d) active power.

5.3. Performance Analysis with the Tidal Current Variation

The marine tidal current speed could be regarded as constant in a short time. However, because
of the turbulence and swell effects, the speed is always changing. In this part, the performance analysis
and comparison of two controllers will be presented considering varying tidal current speeds.

Firstly, the tidal current speed is considered to have step changes. In the simulation, the marine
tidal current speed is 1.8 m/s at the beginning, rises to 2 m/s at 20 s, and then decreases to 1.5 m/s at
40 s. As the two systems are analyzed based on the same condition and parameters, the final values
of the rotor current amplitude, torque, and active power must be the same. The relative mechanical
speeds with the two controllers are shown in Figure 9a. According to this figure, the overshoot of the
FOPI controller is always much smaller than that of the IOPI controller. From Figure 9b–d, when the
marine tidal current speed changes suddenly, the torque, current amplitude, and active power will be
different in the transient process due to the different responses of the controllers. Moreover, the relative
oscillations and the current overshoot will be a little smaller if FOPI controller is employed.
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Figure 9. Performance of DFIG for FOPI and IOPI controllers with variable marine tidal current speed:
(a) DFIG speed; (b) electromagnetic torque; (c) rotor current amplitude; (d) active power.

Secondly, the swell effect is applied to simulate the continual variable speed. Indeed, the swell
effect is the most important perturbation to vary the flow speed [19]. According to the literature,
the simple first-order Stokes model is selected and shown in (41). In order to get this swell effect,
some parameters must be obtained beforehand. In this section, the JONSWAP spectrum is adopted
because of its sharp peak characteristic which is given in (42). Then, the amplitude of each frequency
component ai can be calculated in (43). The other important parameter, each swell length Li, can be
achieved by the sea wave dispersion relation in (44) [7,8,19]. If the average marine current is 2 m/s,
the total speed including the swell effect is shown in Figure 10 as an example. As can be seen from
this figure, if the swell effect is considered, the marine tidal current speed will vary within a certain
range continuously.

Vswell(t) =
∑

i

2πai
Ti

cosh
(
2π z+depth

Li

)
sinh

(
2π depth

Li

) cos 2π
(

t
Ti
−

x
Li

+ ϕi

)
(41)

S( f ) =
kJ g2

(2π)4 f 5
exp

−5
4

(
fm
f

)4γα (42)



J. Mar. Sci. Eng. 2020, 8, 309 16 of 23

ai =
√

2S( fi)∆ f (43)

Li =
gT2

i
2π

tanh
(
2π

depth
Li

)
(44)

where:

γ = 3.3

kJ =
0.076
x0.22 = 0.076

(
gLF

V2
wind

)−0.22

α = exp
[
−

( f− fm)
2

2σ2 f 2
m

]
with σ =

{
0.07 f ≤ fm
0.09 f > fm

fm = 3.5
(

gLF
V2

wind

)−0.33

Figure 10. Marine tidal current speed regarding swell effect.

In this part, the system will be simulated only 20 s for simplification. The mechanical settling time
is also equal to 3 s as before. The system performance is presented in Figure 11. If the marine current
speed varies continuously, both FOPI and IOPI controllers cannot track the speed reference perfectly
due to the limitation of PI controller and always have a static error. However, FOPI controller has better
starting characteristics compared to IOPI controller in the speed (see in Figure 11). For the torque,
current amplitude and active power, two controllers have similar response characteristics except for
the start-up process. IOPI controller will have a little bigger fluctuation during the transient process.

Overall, all the analysis in this section only demonstrates the good starting performance of FOPI
controller with the variable tidal speed. Nevertheless, it cannot prove its good characteristics during
the steady-state process. Furthermore, the IOPI controller seems to have a bigger step pulse when the
reference changes suddenly. Considering the possible strong current speed variations/disturbances,
it is very important to ensure the TST to have smoother reactions. From this point of view, FOPI
controller’s low overshoot characteristic can be advantageous in TST applications.

It should also be noted that all the research in this section is based on the precise model of the
system and a shorter settling time. According to the analysis in the previous two sections, the FOPI
controller has already demonstrated its prominent advantage in the aspects of different settling time
and robustness. Therefore, it is reasonable to believe that if the system model is inaccurate and the
marine tidal current has a big variation, the FOPI controller must have better performance compared
to the IOPI controller.
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Figure 11. Performance of DFIG for FOPI and IOPI controllers with swell effect: (a) DFIG speed;
(b) electromagnetic torque; (c) rotor current amplitude; (d) active power.

6. Conclusions

This paper compares the conventional IOPI and proposed FOPI controllers in a DFIG-based TST.
The obtained simulation results are very interesting. They show that the FOPI controller can obtain
desired results and present better performance than IOPI controller in the FOC control strategy. (1) The
FOPI controller will get smaller overshoot and static error, less adjustment time, and better robustness
with variable marine current speed and uncertain system parameters. (2) The FOPI controller can
significantly improve the start-up performance and make the system into steady-state without a
big impact.

From the system simulation, the FOPI controller demonstrates high effectiveness in terms of speed
tracking and current regulation. It implies that the FOPI controller could be a very good candidate in
TST applications for the normal operation condition even the system model is inaccurate due to the
complex working environment. In the future, a system in faulty condition using a FOPI controller will
be studied because of its prominent advantage in the overshoot and robustness.
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Nomenclature

TST Tidal Stream Turbine
WECS Wind Energy Conversion System
IOPI Integer-Order PI
FOPI Fractional-Order PI
TSR Tip Speed Ratio/λ

PMSG Permanent Magnet Synchronous Generator
DFIG Doubly-Fed Induction Generator
DSPM Doubly Salient Permanent Magnet machine
SMC Sliding Mode Control
HOSMC High-Order Slide Mode Control
MPC Model Predictive Control
NPC Nonlinear Predictive Control
ADRC Active Disturbance Rejection Control
ITAE Integral of Time multiplied by Absolute Error
PSO Particle Swarm Optimization
ITSE Integral of the Time multiplied Square Error
BFO Bacterial Foraging Optimization
ASR Automatic Speed Regulator
RSC Rotor-Side Converter
ACR Automatic Current Regulator
CRONE Commande Robuste d’Ordre Non Entier
TID Tilt-Integral Derivative
FOPID Fractional-Order PID
ρ Seawater density (1024 kg/m3)
Cp Power coefficient, also called Betz’s coefficient
λ Tip Speed Ratio (TSR)
Ωturbine, Ωm Mechanical speed of the turbine/DFIG (rad/s)
a, b Axial and tangential flow induction factors
dFN, dFT Axial and tangential components of the blade element hydrodynamic forces (N)
φ Angle of the resultant velocity “W” relative to the rotor plane (rad)
R, R Radius of the turbine (m), the resistance (Ω)
Nb Number of the blades
s, r Stator/rotor index
d, q Synchronous reference frame index
V, i, ϕ, ω Voltage (V), current (A), flux (Wb) and electrical speed (rad/s)
sl Slip
ωsl Rotor current speed (rad/s)
Ls, Lr, Lm Self inductances of the stator and rotor, and mutual inductances (H, H, H)
Γem Electromagnetic torque (Nm)
np Number of the pole pair
Jm Inertia (kg*m2)
fv Viscosity coefficient
Ps, Qs Stator active and reactive powers (W, VAR)
Ngear Ratio of the gearbox
Vs Voltage amplitude (V)
ξ Damping ratio
e, m electrical/mechanical index
ts Settling time of the closed-loop (s)
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kp, ki Proportional and integral coefficients
ωc, γc Gain crossover frequency and the phase margin for the open-loop (rad/s, rad)
Kp, Ki, Kd Proportional, integral and differential constants
λ and µ Integral and differential orders
K Amplification coefficient which can be integrated into the proportional coefficient Kp

T Time constant

γ
Peak enhancement factor which indicates the ratio of the maximal spectral energy to the
maximum of the corresponding Pierson-Moskowitz spectrum

LF Fetch length (m)
Vwind Wind speed (m/s)
g Acceleration of gravity (m/s2)
f, fm Wave frequency and the frequency at the maximum of the spectrum (Hz, Hz)
kJ Usual Phillips constant
Ti Swell period of each component (s)
ϕi Initial phase of each term which is given randomly (rad)
depth Sea depth (m)
x, z Horizontal and vertical point for the calculation (m)
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