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Abstract: The accurate numerical prediction of welding deformation is important to improve the
structural safety of ships and offshore structures in heavy industries. The precise reflection of
the real working condition in the numerical prediction is an essential factor to improve its result.
In the present study, the effect of the gravity force on numerical prediction of the optimal welding
sequence of a general ship grillage structure was validated with the introduction of a new boundary
condition in which the structure is placed over rails. Additionally, the direction of the gravity force of
welded structures could be changed at the final assembly process according to the production plan.
The effect of the gravitational orientation on the final welding displacements was also investigated
herein. The elastic finite element method using the inherent strain, interface element, and multipoint
constraint function was introduced to analyze the welding deformation. This study validated the
influence of the gravity force on the numerical prediction of welding displacements in a general ship
grillage structure.
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1. Introduction

Welding is the most convenient method to build various steel structures such as ships and offshore
structures. However, welding deformation is inevitable due to its extremely high heat operation.
The rapid change in temperature from heating to cooling along a welding line causes local shrinkages.
Thus, improvement in the accuracy of welding distortion prediction is one of the most essential
factors to design a welding process efficiently. In recent decades, many studies have been conducted
to improve the numerical method for accurately predicting welding distortion. However, previous
studies have not considered the effect of the gravity force on the process of welding in the numerical
simulation. In a structural analysis by the finite element method (FEM), the effect of the gravity force is
not a negligible factor. In particular, the gravity force of a large structure is massive. Thus, the reflection
of the gravity force in the numerical prediction of welding distortion is essential.

In heavy industries, each compartment of a structure is separately welded prior to the final
assembly process. During the final assembly process, the direction of the gravity force could be changed
according to the designed position of the separately welded compartment of a structure as showing in
Figure 1. Even if the welded compartments are corrected and straightened to eliminate deformations
at the first step, due to the change in the direction of the gravity force, misalignment, and displacement
can be reproduced at the final assembly process. Therefore, a numerical simulation considering the
change in direction of the gravity force is essential for efficiently designing the welding process.
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Figure 1. Change in the gravitational orientation of welded structures.

To overcome the limitations of welding experiments, the computational approach based on FEM
has been widely employed. Generally, the welding mechanism of residual stress and deformation has
nonlinear characteristics. The thermal elastic plastic (TEP) method has been widely used to estimate the
result of welding operations on a structure accurately. However, this method requires a considerable
amount of time to calculate even a simple welding problem.

Thus, most of the recent studies have applied the inherent strain theory using the elastic FEM
to predict the amount of welding displacement in a large and complex structure without involving
excessive hours of calculations. Ueda [1] experimentally verified a numerical approach applying the
inherent strain for calculating the welding residual stress. The effectiveness of the elastic FEM based
on inherent strain to predict the welding deformation and residual stress in multi-pass narrow gap
welding was validated [2]. To account for both the welding’s local shrinkages and misalignment
in the weld joint, the interface element method was introduced to the elastic FEM using inherent
strain [3]. The numerical method using the elastic FEM with inherent strain for predicting the welding
deformation of a large structure was investigated by comparing computational and experimental
databases [4]. Deng [5] carried out experiments to validate the elastic FEM based on the application of
inherent strain for precisely predicting the welding distortion of a low carbon steel butt-welded joint
with 1 mm in thickness. Ueda [6] investigated the characteristics of the inherent strain distribution in
a butt weld and found that the patterns vary little with changes in the welding condition. Shadkam [7]
validated the effect of sequence and shape of stiffeners on the reduction of stiffened panel’s welding
distortion by the elastic FEM using the inherent strain theory. Liang [8] studied the influences of heat
input, welding sequence and external restraint on the twisting distortion of a curved stiffened panel
by mean of the computational approach based on the inherent strain theory and interface element
method. Woo [9] validated the systemic method to recommend the optimal welding sequence for the
mitigation of welding displacements by the elastic FEM using inherent strain theory. Woo [10] proposed
an applicable systemic method for efficiently positioning clamps and strongbacks for minimizing
welding deformation with introducing optimal welding sequence.

Based on the above discussed studies, the prediction of welding distortion of a large and complex
structure by the elastic FEM with inherent strain has been clearly verified by the comparison of
experimental results. Moreover, the effect of the optimal welding sequence on the mitigation of welding
displacements of welded structures was validated by the database of the numerical predictions using
the inherent strain theory and experiments. In the present study, to improve the numerical prediction
of welding displacement in ships and offshore structures considering real work environments in heavy
industries, the effect of the gravity force under real production conditions is numerically validated.



J. Mar. Sci. Eng. 2020, 8, 454 3 of 17

2. Elastic FEM Using Inherent Strain

2.1. Basic Concept of Inherent Strain and Inherent Displacment

While processing the cycle of heating and cooling along welding lines, the component of total strain
εtotal along welding lines is given as Equation (1). After the welding heat finally disappears, the total
strain εtotal is changed to the inelastic strain and it is known as the inherent strain εinherent as expressed
in Equation (2). The plastic strain εplastic is representative of the inherent strain εinherent because the
creep strain εcreep and the phase transformation εphase are negligibly small [11]. The inherent strain
εinherent causes three different inherent displacements along welding lines, i.e., transverse shrinkage S,
longitudinal contraction force Ft, and angular deformation θ, as shown in Figure 2 [9]. In welding,
the source of welding residual stress (inherent strain) is considered to be produced only in a limited
portion near the welding line [11]. Hence, in the application of the inherent strain method to the FEM,
the inherent strain is assumed as constantly existing in limited elements that are near the welding lines,
as depicted in Figure 2.

εtotal = εelastic + εthermal + εplastic + εcreep + εphase (1)

εinherent = εtotal
− εelastic = εthermal + εplastic + εcreep + εphase (2)
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2.2. Caculation of Inherent Deforatmion and Inherent Strain

Based on the experiment data of CO2 arc butt-welding of a plain plate (200 mm × 200 mm × 10 mm)
using high-strength steel (HT50), Equations (3)–(9) were derived [12] to calculate the inherent
displacement. In these equations, the amount of inherent deformation is determined by the amount of
heat input Q∗ of CO2 arc butt-welding. In [13], it was validated that the relationship between heat input
Q∗ and net heat input Qnet in the welding process is decided by the thickness h of the welded steel
plate, and it can be expressed as Q∗ = Qnet/h2. In [14], it was concluded that the longitudinal shrinkage
is generally evaluated by the contraction force FT, and; the relationship between the contraction
force FT and the net heat input Qnet is derived as Equation (9). Tables 1 and 2 present, respectively,
the conditions of welding and the mechanical properties of HT50 steel.

Table 1. Welding conditions.

Current [A] Voltage [V] Travel Speed [mm/s] Heat Efficiency Net Heat [J/mm2]

230 23 5 0.77 500
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Table 2. Mechanical properties of HT50 steel.

Density [kg/m3] Young’s Modulus [MPa] Specific Heat [J/kg/◦C] Yield Stress [MPa] Poisson’s Ratio

7720 2.0 × 105 659.4 440 0.3

1. Transverse Shrinkage
S = Ct(L)S0 (3)

S0 =


1.16× 10−3Qnet/h (Q∗ ≤ 6.27)

h
{
1.44× 10−4

[
(Q∗)2

− Q∗] + 2.5× 10−3
}
(6.27 < Q∗ ≤ 20)

2.85× 10−3Qnet/h (20 < Q∗)
(4)

Ct(L) =
[
4tan−1 (L/200) + (L/100) × log

(
1 + 40000/L2

)]
/3.74 (5)

2. Angular Deformation
θ = Ca(L)θ0 (6)

θ0 =

 1.44× 10−3Q∗ (Q∗ ≤ 6.27)
1.06× 10−1Q∗/

{
(Q∗ − 6.16) 2 + 73.6} (6.27 < Q∗)

(7)

Ca(L) =
[
8tan−1 (L/120) + (1 + v)(L/60) × log

(
1 + 14400/L2

)]
/8.84 (8)

3. Longitudinal Shrinkage (Contraction Force)

FT = 0.2Qnet (9)

where

θ0 is the angular deformation at a welding length of 200 mm;
Ct(L) is the welding length compensation coefficient for lateral shrinkage;
Ca(L) is the welding length compensation coefficient for angular deformation;
Ft is the vertical contraction force;
L is the welding length [mm];
v is Poisson’s ratio;
Qnet is the net heat input [J/mm];
h is the plate thickness [mm];
Q∗ is Qnet/h2 [J/mm3];

To derive equations for the definition of the correlation between inherent deformation and strain,
the width of the element that is applied by the value of inherent strain is necessary. If the maximum
temperature is T = σY/Eα (α: linear expansion coefficient) and the heat source is approximated to the
instantaneous line heat source, the width b is defined as Equation (10), [14].

b =
√

0.117(α/cρ)(E/σY)Qnet (10)

where
α is the linear expansion coefficient [1/k];
c is the specific heat [J/kg/k];
ρ is the density [kg/mm3];
σY is the yield stress [MPa];
When the element width is b, the inherent strain of longitudinal shrinkage, transverse shrinkage

and angular distortion can be defined as Equations (11)–(13), [12]. Angular deformation is defined
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as the bending stress in elements where the inherent strain is applied. The progress of the angular
deformation changes the inherent strain. k = θ/b is the curvature of the deformation.

ε∗l = 0.5(FT/(Ehb)) (11)

ε∗t = 0.5(S/b) (12)

ε∗a = −hk (13)

where
ε∗l is the inherent strain of longitudinal shrinkage;
ε∗t is the inherent strain of transverse shrinkage;
ε∗a is the Inherent strain of angular distortion;

2.3. Interface Element Method

During processing of the iteration logic in the elastic FEM to simulate the sequential welding,
the definition of the gap between not welded parts is essential. To reflect this relationship in the elastic
FEM, the interface element method is introduced herein. While processing the numerical simulation
for the welding sequence, each step involved verification of the state of stress in all the assigned
interface elements, to distinguish whether it was a tension or compression case. In the state of tension
case, the material property of the interface element changed as air, with the different parts moving
freely, without mechanically impacting each other. This indicates the gap between two parts. In the
state of compress case, the material property of interface element changed as mild steel to allow the
different parts to push each other. This iteration could be considered to be the nonlinear simulation.
Thus, the interface element is defined as a nonlinear spring, as represented in Figure 3 [10].
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2.4. Multipoint Constraint Function

The multipoint constraint function (MPC) is an advanced method for the combined FEM analysis
to connect different nodes and degrees of freedom. In Figure 4, Nodes 1 and 2 are originally positioned
at two different elements. By using the MPC, these two nodes are connected to each other, and can be
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defined as attached elements. The MPC can change the state of one node to work as a master or slave.
In this study, tack welding (to temporarily attach plates) is employed in the initial analysis model.
As shown in Figure 4, Nodes a and b are initially connected using the MPC as tack welding. In addition,
Nodes (c, d), (e, f), and (g, h) install the MPC to be activated at the assigned welding order [10].
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In the present study, a tack welding is just expressed by connecting two nodes using MPC.
To validate the physical effect of the tack welding presented by MPC on the constraint of the
displacements in the numerical simulation, simple cases are simulated as Figure 5. In Model-1 (Left
in Figure 1), two plane plates (500 mm × 250 mm) are partly attached with basic MPC and pulled
each other sides by the uniformly distributed load in x direction. In this condition, the distance of the
two points of the not attached edge is measured. In the case of element size of 50 mm, the distance is
0.0736 mm. To validate the specific range of the effect of MPC on the displacement, with changing the
size of the element to 10 mm and adding additional MPC in Model-2 (Right in Figure 5), the distance of
the two points is measured. The additional two MPC (Ê + Ë) in Model-2 produces the similar distance
to Model-1. Hence, in the numerical simulation with the model basically using element size of 50 mm,
an MPC is assumed to be the tack welding of 20 mm under the assumption that a tack welding joins
members with the same rigidity as the base metal. Thus, introducing MPC to express a tack welding is
reasonable in this study.
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3. Analysis Model

To compare the effect of the gravity force on the numerical prediction of the optimal welding
sequence of a welded structure, the general ship grillage structure, which was used in the previous
study [9] is introduced in the present study. Figure 6 illustrates the dimension of the analysis model.
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Figure 6. General ship grillage structure.

HT50 steel is used in the structure, as presented Table 2. CO2 arc butt-welding is used herein as
Table 1. All the cross-section upper and bottom points were originally installed MPC to assume tack
welding and outline the complete structure before being in a full welding operation. A total of 29
welding lines are used, categorized in three groups, as follows: longitudinal (1–5), transverse (6–9),
and vertical (10–29). The 29 welding lines with their numbers are schematically drawn in Figure 6.

4. Boundary Condition of the Rails Considering the Gravity Force

Previous studies on the prediction of welding distortion using a numerical simulation did not
consider the effect of the gravity force in the welding process. The magnitude of the gravity force
and its influence on the structure depend on the dimension of the structure and the background
condition of the welding work. Thus, the introduction of a boundary condition reflecting the real
working condition is important to improve the numerical simulation analyzing the welding distortion.
Previous studies generally introduced a simple boundary condition to control only the rigid body
motion of the structures employed in the numerical simulations. Representatively, Figure 7 shows
the simple boundary condition to constrain the motion of a general ship grillage structure. Based on
the boundary condition, the gravity is applied to the structure prior to the beginning of the welding
process. In Figure 7, the bottom plate of the general ship grillage structure is obviously deformed in
the gravity direction, except at the position of the four corners, where fixed boundary conditions are
given. The z-axis maximum displacement of the bottom plate is approximately 0.72 mm. In terms
of the hazardous initial deflection in heavy industries, the shape of the deformation caused by the
gravity and the magnitude of the z-axis maximum displacement are not negligible and are ideal for the
considering real working environment.
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Figure 7. Effect of gravity force on the bottom plate under the simple boundary condition.

A bottom plate is positioned on the floor or rails when stiffeners are welded to the bottom plate,
as shown in Figure 8 [15]. In particular, with the recent introduction of the automated robot welding
method, rails are widely used to support a bottom plate for improving the productivity of the work
process in heavy industries. In the present study, to reflect the real working condition when the bottom
plate is positioned on rails, the rails are positioned behind the longitudinal stiffeners of the general ship
grillage structure, as depicted in Figure 9. The interface element is introduced to define the mechanical
relationship between the bottom plate and rails, which are considered to be touching each other when
processing the numerical simulation for the welding sequence. The interface element works as the
boundary condition so that all the nodes of the bottom plate along the rails can move in any direction
without restriction, except for the -z direction. In Figure 9, based on the newly introduced boundary
condition, the z-axis maximum displacement of the bottom plate owing to the effect of gravity is
approximately 4.13E-7 mm. It is a negligibly small size compared to the previous z-axis maximum
displacement (0.72 mm) and could be considered to be the ideal condition prior to beginning the
welding process.
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5. Effect of the Gravity Force under the Rail Boundary Condition on Welding Sequence

Woo [9] proposed a method to systemically order the welding sequence for a general ship grillage
structure under the basic boundary condition as shown in Figure 8. In the present study, the proposed
method to order the welding sequence systemically was carried out under the rail boundary condition
considering the gravity force.

5.1. Effect of Each Welding Line on the Bottom Plate

According to [9], the gap between the stiffeners and the bottom plate is measured when all the
welding lines are respectively welded alone to analyze the effect of each welding line on the structure,
as presented in Figure 10. In Figure 10, the newly proposed boundary condition successfully reduces
the overall gap between the stiffeners and the bottom plate by 23% and 37% at welding lines 3 and 6,
which present large gaps with the simple boundary condition. The rail boundary condition highly
constraints deformation of the structure because a compression force is consistently applied to the
stiffeners and the bottom plate and the rails prevent the bottom plate from deforming downward.
However, in Figure 10, compared to the result of the simple boundary condition, the role ratio of
each welding line among all welding lines to the overall gap under the rail boundary condition has
a similar tendency.
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5.2. Welding Sequence

According to the method of [9] for systemically ordering the welding sequence, this study
conducted 24 different welding sequences based on the data of the overall gap of each welding line,
as presented in Tables 3 and 4. Category A classifies the welding lines into horizontal and vertical by
their directions, as listed in Table 3. The horizontal welding lines consist of transverse and longitudinal
welding lines. Category B divides the welding lines of the horizontal lines as longitudinal and
transverse welding lines for a deep analysis, as presented in Table 4. In Tables 3 and 4, ‘H’ denotes
the preference of the first order of the welding line, which leads to a high value of the gap, and ‘L’ is
the opposite.
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Table 3. Welding sequences of Category A.

Sequence Welding Sequence Preference Welding Sequence

Category A

A-1

Horizontal

H

Vertical

H 6→9→7→8→3→2→4→5→1→20→19→24→23→15→16→14
→17→22→25→18→21→27→28→11→12→26→29→10→13

A-2 H L 6→9→7→8→3→2→4→5→1→10→13→26→29→11→12→27
→28→18→21→22→25→14→17→15→16→23→24→19→20

A-3 L H 1→5→4→2→3→7→8→6→9→20→19→24→23→15→16→14
→17→22→25→18→21→27→28→11→12→26→29→10→13

A-4 L L 1→5→4→2→3→7→8→6→9→10→13→26→29→11→12→27
→28→18→21→22→25→14→17→15→16→23→24→19→20

A-5

Vertical

H

Horizontal

H 20→19→24→23→15→16→14→17→22→25→18→21→27→28
→11→12→26→29→10→13→6→9→7→8→3→2→4→5→1

A-6 H L 20→19→24→23→15→16→14→17→22→25→18→21→27→28
→11→12→26→29→10→13→1→5→4→2→3→7→8→6→9

A-7 L H 10→13→26→29→11→12→27→28→18→21→22→25→14→17
→15→16→23→24→19→20→6→9→7→8→3→2→4→5→1

A-8 L L 10→13→26→29→11→12→27→28→18→21→22→25→14→17
→15→16→23→24→19→20→1→5→4→2→3→7→8→6→9

Table 4. Welding sequences of Category B.

Sequence Welding Sequence Preferences Welding Sequence

Category B

B-1

Vertical

H

Longitudinal

H

Transverse

H
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→3→2→4→5→1→6→9→7→8

B-2 H H L
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→3→2→4→5→1→7→8→6→9

B-3 H L H
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→1→5→4→2→3→6→9→7→8

B-4 H L L
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→1→5→4→2→3→7→8→6→9

B-5 L H H
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→3→2→4→5→1→6→9→7→8

B-6 L H L
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→3→2→4→5→1→7→8→6→9

B-7 L L H
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→1→5→4→2→3→6→9→7→8

B-8 L L L
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→1→5→4→2→3→7→8→6→9

B-9

Vertical

H

Transverse

H

Longitudinal

H
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→6→9→7→8→3→2→4→5→1

B-10 H H L
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→6→9→7→8→1→5→4→2→3

B-11 H L H
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→7→8→6→9→3→2→4→5→1

B-12 H L L
13→10→26→29→12→11→27→28→18
→21→25→14→22→17→16→23→15→24
→19→20→7→8→6→9→1→5→4→2→3

B-13 L H H
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→6→9→7→8→3→2→4→5→1

B-14 L H L
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→6→9→7→8→1→5→4→2→3

B-15 L L H
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→7→8→6→9→3→2→4→5→1

B-16 L L L
19→20→24→15→23→16→17→22→14
→25→18→21→28→27→11→12→29→26
→10→13→7→8→6→9→3→2→4→5→1
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5.3. Result and Discussion of Effect of Gravity Force Under the Rail Boundary Condition on Welding Sequence

The representative reference value to discuss the effect of gravity on the numerical prediction
of welding displacement of the general ship grillage structure is the z-axis distance average. It is the
average of the z-axis distance of all the bottom plate nodes from the z-axis displacement average as
Equation (14) to their original values as Equation (15). To compare the z-axis distribution curves of
welding displacement of the bottom plate, the values of two lines such as Line T (transverse) and Line
L (longitudinal) are measured, as shown in Figure 11.

Zaverage =

∑n
k=1 zk

n
(14)

Adistance =

∑n
k=1(zk −Adisplacement)

n
(15)

where
Zaverage is the z-axis displacement average (mm);
A_distance is the z-axis distance average (mm);
zk is the z-axis displacement of a node of a bottom plate;
n is the total number of nodes of a bottom plate;
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Figure 12 shows the A_distance of different welding sequences of Category A under two different
boundary conditions. A_distance in the simple boundary condition indicates the results of the previous
paper [9]. The trend lines of A_distance with different welding sequences under the two different
boundary conditions show the same tendency in Figure 12. These results validate the preference
of welding vertical welding lines prior to starting the horizontal welding lines (longitudinal and
transverse). This is because Sequences A-5, A-6, A-7 and A-8 in Category A under the rail boundary
condition with the gravity force have smaller A_distance than Sequences A-1, A-2, A-3, and A-4 and
the results of the simple boundary condition. First, the welded vertical lines in Sequence A-8 prior
to welding horizontal lines which require the heat effect directly on the bottom plate, substantially
improved the total strength of the structure. In Figure 12, comparing these values, the newly proposed
boundary condition leads to approximately 37.9–54.1% reduction in A_distance. Although the bottom
plate and rails touch each other under the gravity force during processing of the welding sequence in
the newly proposed boundary, these considerably constraint the structure and lead to the difference.
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The gravity force of the structure significantly mitigates the welding displacement without additional
clamps for the restriction of its movement.

Figure 13 shows the A_distance of different welding sequences of Category B under two different
boundary conditions. The trend lines of A_distance with different welding sequences under the two
different boundary conditions show a similar tendency in Figure 13. As in Figure 12, the rail boundary
condition results in 58.7–67.4% reduction in A_distance of the welding sequences of Category B.
Category B-10 has the lowest A_distance, 0.38 mm and 0.19 mm respectively under the two different
boundary condition. The priority for a weld sequence between the longitudinal and the transverse
welding lines, the welding group of the transverse welding lines that produce a relatively higher gap
prior to the longitudinal welding lines are beneficial in mitigating distortion. Additionally, in view
of the trend lines of A_distance of Category B, the relative efficiency for the reduction of welding
displacements of each welding sequence under both boundary conditions is not changed. The welding
Sequences B-3, B-7, B-10, and B-14 in Category B show a relatively low A_distance. The common point
of these four cases is the priority of the highest gap of transverse lines in their respective welding
sequences. In terms of the preference for a welding sequence between the longitudinal and transverse
welding lines after finishing vertical welding lines, these results also validate that assigning priority
to the transverse welding lines which produce a relatively large overall gap prior to the longitudinal
welding lines, is beneficial for mitigating the welding distortion, which is the same result as that in [9].

Figures 14 and 15 show the effect of the different boundary conditions on the z-axis displacement
distribution of sequence B-10 in Category B along lines T and L. In Figure 14, it is observed that
the bucking in the z-axis displacement distribution along line T increase when the simple boundary
condition is applied. In the rail boundary condition with the gravity force, the previous tendency of the
buckling feature is highly mitigated. Although there are no additional external constraints such as a jig
and clamp to the rail boundary condition with the gravity force, the z-axis displacement distribution
shows a different tendency compared to the simple boundary condition.
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Figure 13. Adistance of Category B under two different boundary condition.
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Figure 14. Z-axis displacement distribution along line T of Sequence B-10 under two different
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boundary conditions.

Owing to the angular distortion of welding, the general grillage structure is buckled to the upper
direction. However, in 14, which shows the welding displacement along line L with gravity force,
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the buckling feature is highly mitigated. In Figure 15, the effect of the rail boundary condition with the
gravity force on the mitigation of the z-axis displacement distribution at the central zone is clearly
shown. However, the mitigation of each end section of the z-axis displacement is not relatively
distinctive compared to the mitigation of the central zone.

6. Effect of the Change in Gravity Direction on the Numerical Prediction of
Welding Displacements

In heavy industries, several compartments are built separately before finally assembling them
together according to the design plan. Generally, stiffeners are welded over the bottom plate to make
the arc welding filler material flow well absorbed between the gaps of structures. Prior to assembling
each compartment, the revision work for welding displacements under the final direction of the gravity
is carried out, as shown in Figure 16 [16]. Thus, in the numerical prediction of welding displacements
in the welding process, consideration of the change in direction of the gravity force with respect to
the structure is technically essential. The present study examines the production process in heavy
industries for building top and side plates. As depicted in Figure 1, turning of the general ship grillage
structure by 180◦ and 90◦ after finishing welding of the stiffeners over the bottom plate for the final
revision is numerically simulated. This allows validating the effect of the change in the gravity force
on welding displacements. In the step of revision under the direction of the final plan, the general ship
grillage structure is supposed to have simple supports at the four corners of the structure, as the simple
boundary condition depicted in Figure 7, for allowing welders to revise the welding displacements
under the structure.
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Figure 16. Welding work process of a hatch cover.

Results and Discussion of Effect of Change in Gravity Direction on the Numerical Prediction of
Welding Displacements

Adistance as in Equation (15) is representative for discussing the effect of the change in direction
of the gravity force on welding displacements. In Figure 17, Adistance after reversing the structure by
turning it 180◦, is 0.212 mm, which leads to a 25.4% increase from 0.19 mm. In terms of the precise
prediction of welding displacements, the value of 25.4% is not a negligible impact factor. In other
words, based on the result of the numerical prediction of welding displacement without considering
the change in direction of the gravity force, the prediction of the additional production cost for the
revision work would have a significant error. In Figure 17, Adistance after turning the structure 90◦ is
0.194 mm which leads to 2.1% increase from 0.19 mm (Adistance). Compared to the case of reversing the
structure, the effect of the change in gravitational orientation in the case of turning it 90◦ is negligibly
small because the dimension of the area affected by the gravity force is greatly reduced from the whole
plan of the bottom plate to the plan of the longitudinal stiffeners.
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Figure 17. Adistance with the change in gravitational orientation.

Figure 18 clearly shows the effect of reversing the general ship grillage structure on the distribution
of welding displacements. In particular, the buckling feature around the central zone obviously
increases. Although the stiffness of the general ship grillage structure highly increases after finishing
all the welding lines, the change in the direction of the gravity force has a considerable effect on
welding displacements. However, it is difficult to recognize the effect of turning the side plate 90◦ on
the distribution of welding displacements.
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7. Conclusions

In this study, the FEM approach is employed with the inherent strain, interface element, and MPC
to investigate the effect of the gravity force on the numerical prediction of welding displacements.
This study proposes a new approach to reflect the real work environment in the numerical simulation,
i.e., the rail boundary condition using the interface element method. This research demonstrates the
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necessity of considering the gravity force in the numerical prediction of welding displacements for
precisely predicting welding displacements in heavy industries. The conclusions of this research and
suggestions are as follows:

(1) Although the bottom plate and rails touch each other under the gravity force while processing
the welding sequence under the rail boundary condition, these considerably constraint the
structure, and therefore, significantly mitigate the welding displacement without additional
clamps for the restriction of its movement. In other words, the numerical prediction of welding
displacements without precisely reflecting the real work environment would lead to enormous
errors in heavy industries.

(2) In the rail boundary condition under the effect of the gravity force, the optimal welding sequence
is to weld first vertically for improving the stiffness of the structure and then horizontally. It is
preferable to begin the horizontal welding lines, which generate a direct heat effect on the bottom
plate, as late as possible. Moreover, welding the transverse lines before the longitudinal lines
is preferred for minimizing welding displacements. The conclusion is the same as that in the
previous study of D. Woo et al. (2019), which was validated according to the result of the simple
boundary condition.

(3) The change in direction of the gravity force according to the design plan has significant effects
on the change in the distribution of welding displacements. Without consideration of these
effects, the prediction of the additional production cost for the revision work could involve
a substantial error. Thus, in the numerical prediction of welding displacements in the welding
process, consideration of the change in direction of the gravity force with respect the structure is
technically essential.
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