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Abstract: The vertical diffuse attenuation coefficient Kd (PAR) is used for calculating the euphotic
zone, the first optical depth that is important for primary productivity models. Currently, Kd (PAR)
can be estimated using an irradiometer or a Secchi disk (SD). The main objective of this work is to
define a model that can be applied to a wide range of optical marine conditions to estimate Kd (PAR)
by SD. We used irradiance profiles and SD depth (ZSD) from 679 stations in various marine regions.
Three parametric models were developed, and their statistical performance was evaluated in view
of previous approaches reported and remote sensing data. The best results were obtained with an
adaptive model representing three cases: clear-water, turbid-water, and a transition zone (R2 = 0.965,
MAE = 0.083, RMSD = 0.239, BIAS = 0.01, and MPI = 0.854). Previous models considering a single
optical depth figure at which the SD disappears did not capture the marine optical complexity.
Our classification of 113 stations with spectral absorption data into Jerlov water types indicated that
no unique correspondence existed between estimated Kd (PAR) and water type, making it ambiguous
to associate compatible inherent optical properties and chlorophyll with ZSD. Although obtaining Kd
(PAR) from ZSD is simple/low-cost, care should be taken in the methodology used to measure ZSD to
ensure consistent results across different optical marine conditions.

Keywords: Secchi disk; vertical diffuse attenuation coefficient Kd; Secchi disk optical depth; adaptive
model; Secchi disk monitoring approach

1. Introduction

Sunlight in the electromagnetic spectrum region between 400 and 700 nm, known as
photosynthetically active radiation (PAR) [1], plays an important role in the physics, biology, and
chemistry of the oceans [2]. PAR is directly linked to biological processes such as photosynthesis,
which constitutes the base of the food chain in marine ecosystems [1,3–5]. In other words, primary
productivity largely depends on the sunlight field in the water column, which decreases exponentially
with depth.
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In the late 19th century, Pietro Angelo Secchi (1866) [6] pioneered studies on the field of light
penetration in water and developed a method for determining water transparency based on a white
disk (made of a non-refractive material) 30201350 cm in diameter, now known as Secchi disk (SD) [7].
The principle for the use of the SD consists of determining the depth at which it is no longer visible to
the naked eye [8]. This depth is defined as the Secchi disk depth (ZSD), being inversely proportional to
the amount of dissolved or particulate matter present in the water column; therefore, the ZSD reading
can be used as an indicator of turbidity [9,10].

During the 20th century, it was possible to quantify the light field in water, noting that light
decreases exponentially with depth. This decrease can be measured using the vertical spectral diffuse
attenuation coefficient (Kd), an apparent optical property (AOP) [11] that reflects the attenuation
caused by water molecules [12] and the amount and type of compounds in water (phytoplankton,
organic and inorganic particles, and colored dissolved organic matter (CDOM)) [13].

Since primary productivity, which controls the evolution of marine ecosystems, largely depends
on the sunlight environment in the water column, knowing Kd is essential to describe its variability.
For instance, Kd can be used for calculating the depth of the euphotic zone (Zeu) (i.e., the depth at
which 99% of the surface light is attenuated) and the first optical depth (qualitatively, the ocean layer
that produces the color signal of the ocean recorded by satellites) [1]. Kd is also important for primary
productivity models, which are based on the potential of the phytoplankton community to react to
different light intensities [14].

Kd can be estimated directly, using irradiance sensors measuring the flow of PAR photons in
the water column (Kd(PAR)) [1], or indirectly, using a SD [7]. The former provides more accurate
data; however, is not routinely used in oceanographic cruises due to its high cost, but only in those
focused on bio-optical measurements or primary productivity, or for the calibration of ocean color
sensors [9,15–18]. On the other hand, SD is routinely used in most oceanographic cruises [18–22].
The approximation most commonly used is that Kd(PAR) is inversely proportional to ZSD [9] (Equation
(1)), which yields empirical constants. Considering the criteria of Kirk [1] and Gallegos et al. [23], these
empirical constants represent the optical depth (ODSD) at which the Secchi disk disappears:

Kd(PAR) =
ODSD
ZSD

(1)

Poole and Atkins (1929) [9] were the first to propose an ODSD value from 14 measurements
recorded in the English Channel, with ZSD values ranging from 2 to 35 m. These authors proposed
estimating Kd(PAR) with an ODSD of 1.70. In 1970, at a time when technological progress made it
possible to manufacture submersible photometers/irradiance-meters, Holmes [15] revisited this topic;
using data from 13 stations in Santa Barbara (California, USA), he derived a value of 1.44. However, the
data used by Holmes [15] came from an area with ZSD values ranging from 2 to 12 m, i.e., conditions
that were more turbid than those reported by Poole and Atkins [9]. The above studies support using
an ODSD of 1.70 for clear water and 1.44 for turbid water (v.gr. Barbosa and Domingues, 2009 [22]).

The above values (i.e., 1.70 and 1.44) were estimated from a limited dataset (14 and 13 stations),
which is why several researchers have subsequently sought to re-evaluate these values. Megard and
Berman (1989) [16] recorded 24 measurements in the southeastern Mediterranean Sea and estimated
an average value of 1.54 for areas with ZSD ranging from 6 to 46 m.

In the marine environment, Kd (PAR) has been estimated from ZSD using ODSD values ranging
from 1.22 to 1.70 [22]. Recently, according to the new Secchi Disk Theory [23] and the approach
proposed in the Fifth IOCCG Report [24], Lee et al. (2018) [18] proposed to unify all ODSD values into
a single figure. These authors used the Hydrolight computer code [25] to simulate the light field in the
water column under different optical conditions (from oligotrophic to eutrophic, oceanic and coastal,
including phytoplankton blooms). These simulations yielded an average ODSD of 1.48.
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Another approach used to estimate Kd (PAR) through SD without involving ODSD involves the
development of empirical models based on a nonlinear relationship between Kd(PAR) and 1/ZSD:

Kd(PAR) =
a

(ZSD)
b

(2)

where a and b are the empirical coefficients of the model, which vary according to the study area.
The majority of the work on models given by Equation (2) has been conducted for inland water
bodies [26–28]. For marine environments, Montes-Hugo and Alvarez-Borrego [17] proposed values of
1.45 and 1.10 for a and b, respectively, for coastal waters in the northeast of Baja California and southern
California, an area with ZSD from 2 to 12 m.

Jerlov [29] classified oceanic water into five types (I, IA, IB, II, and III) and coastal water into five
types (1, 3, 5, 7, and 9), based on hyperspectral Kd (Kd (λ)) for each wavelength), where a larger number
indicates higher turbidity. Each of the 10 Jerlov water types has a typical light absorption coefficient
associated (a(λ) model) [30]. This absorption coefficient takes into account pure sea water absorption,
aw(λ), chlorophyll-based absorption, aphy(λ), and CDOM absorption, aCDOM(λ) [30] (Equation (3)):

a(λ)model = aw(λ) + aphy(λ) + aCDOM(λ) (3)

where λ is wavelength.
Based on the above, estimating Kd (PAR) from ZSD measurements has proven to be a useful,

cost-effective methodology to detect changes in marine ecosystems. However, it is essential that the
Kd (PAR) estimates be robust and objective, since a miscalculation of Kd(PAR) would lead to errors in
estimates of euphotic zone and first optical depths. The main objective of this work is to establish an
empirical relationship that could be applied to a wide range of optical conditions occurring in marine
environments. A second objective is to examine whether the Kd(PAR) derived from ZSD could be
related to a specific optical water type (in Jerlov’s sense), which would broaden the application of the
SD approach and enhance its usefulness as a descriptor of water optical properties. Likewise, and
considering that the current development of spectroradiometer-type remote sensors allows producing
synoptic measurements of Kd at 490 nm (Kd(490)), this study considered data from these remote sensors
as one of the models to evaluate.

2. Materials and Methods

In this study, we compiled 679 pairs of Kd (PAR) and ZSD data recorded under well-illuminated
(sunny) conditions, with an irradiance meter and SD, respectively. These encompass conditions from
clear oceanic to turbid coastal waters (Figure 1a,b). The source of data was as follows: 212 data pairs
from the Tara Ocean Consortium [31] (Figure 1a); 195 from the NASA SeaBass archive (Chesapeake
bay and CALCOFI zone) [32]; 103 from Gallegos et al. [21]; 74 from the Phytoplankton Ecology
Group (POPEYE) database at Universidad Autónoma de Baja California; 71 from Montes-Hugo
and Alvarez-Borrego [17]; 24 from Megard and Berman [16]. Hereafter, Kd(PAR) recorded from
irradiance-meter data will be named Kdin situ.
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Tara Ocean Stations Consortium [31] and Megard and Berman [16]. (b) Stations of the NASA SeaBass 
file [32], POPEYE database, Gallegos et al. [21], and Montes-Hugo and Alvarez-Borrego [17]. 𝐾ௗ௜௡ ௦௜௧௨ for NASA SeaBass [32] and POPEYE data was estimated for each station based on PAR 
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estimated from 𝑍௘௨ using the following Equation [1]: 𝑍௘௨ = 4.6𝐾ௗ௜௡ ௦௜௧௨ (5) 

The 𝐾ௗ ௜௡ ௦௜௧௨ data of Megard and Berman [16], Montes-Hugo and Alvarez-Borrego [17], and 
Gallegos et al. [21] were taken from those reported in the respective publications. 

Based on Steyerberg [33] and the IOCCG report [34], the database was randomly split into two 
groups. Group 1 was used for the development of models; it comprises 478 data pairs (70% of total 
data). Group 2 was used for validation purposes; it comprises 201 data pairs (30% of total data). To 
reduce the random error in the selection of the two datasets and to test the robustness of models, 10 
replicates were obtained by randomly selecting 10 different datasets for modeling, along with the 
respective validation datasets. 

Three parametric models were tested to predict 𝐾ௗ (𝑃𝐴𝑅) based on 𝑍ௌ஽; the model with the best 
fit was selected as per the criteria of Xu et al. [35] for least-squares analysis. The first approximation 
(model a) was based on Equation (1), where 𝐾ௗ (PAR) is calculated using fixed (or single) estimates 
of 𝑂𝐷ௌ஽; the second (model b) was based on the nonlinear empirical relationship between 𝐾ௗ௜௡ ௦௜௧௨ 
and ଵ௓ௌ஽ (Equation (2)); and the third (model c) followed the concepts of Equation (2); in the latter 

Figure 1. Location of stations; the color bar indicates the bathymetry, in meters. (a) Stations of the
Tara Ocean Stations Consortium [31] and Megard and Berman [16]. (b) Stations of the NASA SeaBass
file [32], POPEYE database, Gallegos et al. [21], and Montes-Hugo and Alvarez-Borrego [17].

Kdin situ for NASA SeaBass [32] and POPEYE data was estimated for each station based on PAR
measurements, in accordance with the criteria of Kirk [1], expressed in Equation (4):

ln(PAR(Z)) = ln(PAR(0)) −Kdin situ Z (4)

where Kdin situ is the slope of a linear model and the dependent variable is the natural logarithm of
irradiance as a function of depth (Z). For the Tara Ocean Consortium data [31], Kdin situ was estimated
from Zeu using the following equation [1]:

Zeu =
4.6

Kdin situ
(5)

The Kdin situ data of Megard and Berman [16], Montes-Hugo and Alvarez-Borrego [17], and
Gallegos et al. [21] were taken from those reported in the respective publications.

Based on Steyerberg [33] and the IOCCG report [34], the database was randomly split into two
groups. Group 1 was used for the development of models; it comprises 478 data pairs (70% of total
data). Group 2 was used for validation purposes; it comprises 201 data pairs (30% of total data).
To reduce the random error in the selection of the two datasets and to test the robustness of models,
10 replicates were obtained by randomly selecting 10 different datasets for modeling, along with the
respective validation datasets.

Three parametric models were tested to predict Kd (PAR) based on ZSD; the model with the best
fit was selected as per the criteria of Xu et al. [35] for least-squares analysis. The first approximation
(model a) was based on Equation (1), where Kd (PAR) is calculated using fixed (or single) estimates of
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ODSD; the second (model b) was based on the nonlinear empirical relationship between Kdin situ and
1
Z SD (Equation (2)); and the third (model c) followed the concepts of Equation (2); in the latter model,
ZSD was split into three zones, namely two extreme cases (clear and turbid waters) and a transition
zone, as follows:

log10(Kd) = p1 + p2× log10(ZSD), if log10(ZSD) < p3 (6)

log10(Kd) = p5 + p6× log10(ZSD) if log10(ZSD) ≥ p4 (7)

In the transition zone, where p3 ≤ log10(ZSD) < p4, log10(Kd) is modeled as a linear combination
of the two models:

log10(Kd) = (p1 + p2× log10(ZSD)) ×
p4−log10(ZSD)

p4−p3 + (p5 + p6× log10(ZSD)) ×
log10(ZSD)−p3

p4−p3 (8)

The model parameters p1, p2, p3, p4, p5, and p6 are retrieved through the least-squares fitting.
Moreover, Kd (490) values were derived from measurements with a 1 × 1 km-resolution

spectroradiometer in monthly multi-sensor composites. The sensors used were Ocean Color and
Temperature Scanner from August 1996 to July 1997 (OCTS_v2014.0), Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) from September 1997 to December 2010 (SeaWiFS_v2018.0), Moderate Resolution
Imaging Spectroradiometer-MODIS TERRA from February 2000 to date (MODIST_v2018.0), Medium
Resolution Imaging Spectrometer (MERIS) from April 2002 to March 2012 (MERIS_R3), Moderate
Resolution Imaging Spectroradiometer-MODIS-AQUA from July 2002 to date (MODISA_v2018.0),
and Visible and Infrared Imager/Radiometer Suit (VIIRS) Suomi-NPP from January 2012 to date
(VIIRS_v2018.0). Sensor data to construct these images were downloaded from [36] to 1B level and
processed at levels 2 and 3 using SeaDAS 7.5.1. (National Aeronautics and Space Administration) The
multi-sensor composites were performed following the criteria by [37,38].

To determine the performance from the above models, three statistical descriptors were calculated:
mean absolute error (MAE) (Equation (9)), root-mean-square error (RMSD) (Equation (10)), and analysis
of bias (BIAS) (Equation (11)).

MAE =

∑∣∣∣(Kdin situ −Kdmodel)
∣∣∣

n
(9)

RMSD =

√∑
(Kdin situ −Kdmodel)

2

n
(10)

where n is the total number of data included in this analysis, Kdin situ −Kdmodel is residual observations,
and

∣∣∣(Kdin situ −Kdmodel)
∣∣∣ is the absolute value of residuals.

BIAS = average (Kdin situ −Kdmodel) (11)

where BIAS is the residual mean.
According to MAE and RMSD, lower values represent better results, whereas BIAS values closer

to zero mean better results. To determine which is the best model, a model performance index (MPI)
was estimated (Equation (12)) based on the three statistic descriptors mentioned above:

MPI = 1−


(RMAE

p

)
+

(RRMSD
p

)
+

(
R|BIAS|

p

)
3

 (12)

where RMAE is the MAE rank, RRMSD is the RMSD rank, R|BIAS| is the rank of absolute BIAS values, and
p is the total number of models to be compared. Ranks and their respective matches were calculated
following the criteria of [39–41]. MPI ranges from 0 to 1, where values closer to 1 mean a better model.

To accomplish the objective of examine whether the Kd (PAR) derived from ZSD could be related
to a specific optical water type (in Jerlov’s sense), we compiled in-situ absorption coefficient data
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(a(λ)in situ). These were available for 113 stations only. The data for the POPEYE database and the
CALCOFI zone were processed following the protocol of Mitchell et al. [42], whereas the data for the
Chesapeake Bay area were analyzed following the protocol of Mueller and Austin [43]. Pope and
Fry [12]) values were used for aw(λ). a(λ)in situ spectra were classified into the different Jerlov water
types. The classification was obtained by comparing a(λ)in situ with a(λ)model using a least-squares
fitting method based on Xu et al. [35]. The statistical significance of this fit was determined through
a goodness-of-fit test following Zar [44]. POPEYE absorption data ranged from 400 to 700 nm, and
SeaBaSS data from 400 to 650 mm. Thus, the goodness-of-fit test was carried out with different degrees
of freedom, according to each dataset (POPEYE: α = 0.05, χ2

Crit= 21.02, df = 12; SeaBASS: α = 0.05,
χ2

Crit = 18.30, df = 10).

3. Results and Discussion

Our database includes both oceanic and coastal stations (Figure 1), so the models presented in
this work were developed and evaluated considering a wide range of optical conditions. The three
models proposed in this work represent Kdin situ and ZSD values ranging from 0.030 to 3.217 m−1. and
0.3 to 50 m, respectively.

Model a based on Equation (1) and that gives rise to Equation (13) yielded an ODSD of 1.37
(R2 = 0.957), which is lower than ODSD values reported in the literature. Typically, studies performed in
the 20th century considered that low ODSD values resulted from increased turbidity [13,45]. However,
the authors of [18] mentioned that in addition to the above, a factor to consider is that when Kd (PAR)
is estimated using shallow depths, this tends to be higher than values estimated for deeper layers.
This trend is most evident in oceanic stations with deeper Zeu relative to stations where light penetration
is lower. In other words, lower ODSD values may be obtained when the calculation of Kd (PAR)
considers the light profile from the surface to a depth close to Zeu, or at least to ZSD [18]. In determining
ODSD, Kdin situ was calculated using light profiles close to Zeu or ZSD.

Kdmodel a =
1.37
ZSD

(13)

Model b was based on a nonlinear fit between Kdin situ and ZSD, (Equation (14)), assuming that
this represents the continuous function of the empirical relationship between Kd (PAR) and ZSD.
This model resulted in regression coefficients a = 1.18 and b = 0.92 (R2 = 0.957). These coefficients are
lower relative to those reported by Montes-Hugo and Álvarez-Borrego [17] (a = 1.45 and b = 1.10),
likely because of the narrower sampling interval (1–12 m) used by these authors.

Kdmodel b =
1.18

(ZSD)
0.92 (14)

Model c is adaptive and followed the same approach as model b, i.e., it comprises three equations
that consider three ZSD ranges (Equations (15)–(17)) (R2 = 0.965). These ZSD ranges represent
two contrasting conditions: turbid water with ZSD < 2.20 m (Equation (15)) and clear water with
ZSD ≥ 5.37 m (Equation (17)); plus a transition zone with 2.20 m ≤ ZSD < 5.37 m (Equation (16)).

Kdmodel c =
1.16

(ZSD)
0.62 (15)

Kdmodel c = exp ((0.15− logZSD × 0.62) × 1.68−logZSD
0.89 + (−0.48− logZSD × 0.72) × logZSD−0.79

0.89 ) (16)

Kdmodel c =
0.62

(ZSD)
0.72 (17)

The equation for the transition zone (Equation (16)) is more complex since attempting to discern
stations located between these two extremes (turbid-to-clear vs. clear-to-turbid stations), while keeping



J. Mar. Sci. Eng. 2020, 8, 558 7 of 17

continuity in ZSD over the entire ZSD range. This partitioning into ZSD ranges in the model c allowed
us to reduce variability in the data, i.e., achieve a better fit for each case, therefore providing better
performance overall.

For evaluating models a, b, and c, Kdin situ (Equations (4) and (5)) was compared versus Kdmodel a
(Equation (13)), Kdmodel b (Equation (14)), and Kdmodel c (Equations (15)–(17)) (Figure 2), as well as versus
Kd estimated from the different models for marine waters reported in the literature (Table 1). These
comparisons were evaluated based on MAE (Equation (9)), RMSD (Equation (10)), BIAS (Equation
(11)), and MPI (Equation (12)). The above showed that model c (Figure 2c) yielded the best fit (lowest
MAE, RMSD, BIAS close to zero, and MPI closest to one), MAE of 0.083, RMSD of 0.239, BIAS of 0.01,
and MPI of 0.854.
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Figure 2. Comparative analysis between the attenuation coefficient estimated in situ (Kdin situ) and the
attenuation coefficients modeled. (a) Kdmodel a, (b) Kdmodel b, and (c) Kdmodel c.

Table 1. Evaluation of Kdin situ versus ZSD models.

Reference Equation ZSD Intervals (m) MAE RMSD BIAS MPI

Poole and Atkins [9] Kd = 1.7/ZSD 1.9–35 0.182 0.285 0.217 0.104
Poole and Atkins [9]

Holmes [15]
Kd = 1.7/ZSD
Kd = 1.4/ZSD

1.9–35
2–12 0.125 0.273 0.120 0.416

Megard and Berman [16] Kd = 1.54/ZSD 6–46 0.142 0.285 0.118 0.229
Lee et al. [18] Kd = 1.48/ZSD All intervals 0.134 0.285 0.078 0.354

Montes-Hugo and
Álvarez-Borrego [17] Kd = 1.45/(ZSD)

1.10 1–12 0.141 0.359 −0.013 0.250

Model a Kd = 1.37/ZSD All intervals 0.118 0.285 0.003 0.583
Model b Kd = 1.18/(ZSD)

0.92 All intervals 0.097 0.265 0.002 0.708

Model c Equations (15)–(17)
<2.20

Transition zone
≥5.37

0.083 0.239 0.001 0.854

Table 1 represents an improvement versus previous methods, showing that model c yields the best
performance considering the statistical descriptors and the index mentioned above. In particular, with
respect to the most recent model [18], model c yields a MAE reduction of 0.051, an RMSD reduction of
0.046, and a MPI increase of 0.5.

If models developed for particular or regional marine conditions are considered, such as the model
of Lugo-Fernández et al. [46], which divide their conditions for use into summer and non-summer for
the north Gulf of Mexico an area influenced by the Mississippi river mouth, highly dispersed results
may be obtained as this area is affected by high inland CDOM inputs. Additionally, we consider that
the conditions in this model depend on river flows rather than seasonality. Given that our database
includes stations from both northern and southern hemispheres, the criteria for applying this model
become complex. As an example, we assessed the model of Montes-Hugo and Álvarez-Borrego [17],
which was developed only for coastal waters in northeast Baja California and southern California; we
observed that the application of this model to different marine conditions yields suboptimal results,



J. Mar. Sci. Eng. 2020, 8, 558 8 of 17

thus highlighting the constraints in generalizing empirical models that were originally established
from a limited range of conditions.

The evaluation of models a and b revealed that the use of a single ODSD value [9,15,16,18] for
different optical conditions of water resulted in higher RMSD (Table 1), relative to using two values,
i.e., the 1.70 figure proposed by Poole and Atkins [9] for clear waters and the 1.44 figure estimated
by Holmes [15] for turbid waters. If we consider the broad range of optical conditions that occur in
the marine environment, the above confirms that a single value is certainly not representative of the
range of optical conditions. In addition, it was noted that model b yields lower RMSD values relative
to ODSD.

The three equations adequately represented the range of optical diversity in marine environments
(from clear ocean waters to very turbid coastal waters) in a simplified way, and the model can be used
even under conditions of phytoplankton blooms such as those described in Santamaria-del-Angel et
al. [47] and Aguilar-Maldonado et al. [48].

In order to estimate Kd(490) values from remote sensors for comparison versus Kdin situ and Kd
figures estimated with the models in Table 1, 1 km-resolution multi-sensor images were constructed.
From the original 679 data, only 383 were used for this comparison. Table 2 evidences that model c
is the best model, yielding an MPI of 0.814, whereas the models with the worst fit to Kdin situ were
the model of Pooole and Atkins [9] and the satellite model, with an MPI of 0.074. To note, the model
of [9] was derived from only 14 data that are not representative of the range of optical conditions in
the ocean.

Table 2. Evaluation of Kdin situ versus ZSD and satellite models.

Reference Equation ZSD Intervals (m) MAE RMSD BIAS MPI

Poole and Atkins [9] Kd = 1.7/ZSD 1.9–35 0.041 0.073 −0.028 0.074
Poole and Atkins [9]

Holmes [15]
Kd = 1.7/ZSD
Kd = 1.4/ZSD

1.9–35
2–12 0.034 0.063 −0.006 0.460

Megard and Berman [16] Kd = 1.54/ZSD 6–46 0.032 0.063 −0.011 0.425
Lee et al. [18] Kd = 1.48/ZSD All intervals 0.031 0.062 −0.005 0.740

Montes-Hugo and
Álvarez-Borrego [17] Kd = 1.45/(ZSD)

1.10 1–12 0.034 0.003 0.021 0.425

Model a Kd = 1.37/ZSD All intervals 0.029 0.063 0.007 0.592
Model b Kd = 1.18/(ZSD)

0.92 All intervals 0.032 0.072 0.009 0.388
Model c Equations (15)–(17) <2.20 0.026 0.062 0.005 0.814

Kd satellite model (490) Standard SeaDAS product Transition zone
≥5.37 0.079 0.187 0.015 0.074

For its part, the satellite model represents Kd (490), which is a spectral portion of the Kd(PAR)
measured in situ. Austin and Petzoid [49] proposed the first approach of Kd (490) using the ratio
between leaving-water radiances (Lwr) between 443 and 550 nm (Lwr443/Lwr550), as well as the
Kd (490) for optically pure seawater and some linear approximation coefficients. A number of
approaches have been developed from there, such as those of [32], which essentially have yielded
improved estimates of the coefficients used, being specific to each sensor.

Additionally, several authors have estimated ZSD from satellite images, mostly focusing on inland
water bodies [50–54]. In the marine environment, Kim et al. [55] estimated ZSD from Kd (490) based
on concepts derived from [56–58]. All these point to the need to measure other intrinsic optical
properties, such as backscattering at least at 490 nm. As this work did not have in-situ backscattering
observations available, we might think that these could be estimated through standard models such as
the Generalized Inherent Optical Property (GIOP) model; however, Betancur-Turizo et al. [59] warn
that care should be taken with these models because, by being too simplified, they do not reflect the
variability of the parameter in a reliable way. This cautionary statement has been addressed recently.
The works by Jiang et al. [60] and Liu et al. [61] have aimed to improve these estimates to obtain more
accurate satellite ZSD values for various types of water. It is clear that this is a dynamic and constantly
evolving line of research.
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Although data derived from satellite observations are promising and this subject of research needs
to be further refined in the future, we recommend further monitoring of marine optical properties
while observing the data quality, and complementing in-situ reflectance measurements.

Based on the above and following the criteria established by [62], the use of multi-sensor data
will allow us, in the long term, an improved integration of in-situ measurements and satellite images.
This will result in time series that will be suitable for use in marine monitoring programs, defining
weekly, monthly, seasonal, and annual variability scales, as well as their trends.

Figure 3 compares Kdin situ and Kdmodel calculated using model c and the model of Lee et al. [18].
The results show that both models performed similarly for Kdin situ values lower than 0.1 m−1 (clear
waters). In more optically complex waters (Kd > 2 m−1), the difference between in-situ and modelled
data increases. The model of Lee et al. [18] tends to fit a positive exponential (J-shaped) function
departing from the 1:1 line, while model c is a closer fit to the 1:1 line. This is evident for the full
database (679 observations) and for two independent cruises with different optical conditions (Cal9709:
oceanic/coastal conditions; Ties9802: estuarine conditions).
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The primary objective of this work is to define a model applicable to a wide range of optical
conditions in marine environments. Under this premise, model c in an adaptive model that yields
better predictions relative to models that consider an ODSD value only. In order to use this model in
field cruises, a table was added as supplementary material for Kd (PAR) (Table S1), derived from this
model and based on ZSD. The most accurate estimate of Kd (PAR) with model c allows obtaining better
results in the calculation of primary productivity, which is a major variable that can be used in studies
ranging from understanding the global carbon cycle to fisheries aspects [63]. A proper understanding
of primary organic production will not only allow estimating the total organic matter produced in the
oceans, but also supports the comparison of ocean regions as potential food sources [14].

Figure 4a shows Kd values associated with the three ZSD ranges. The clear water case, i.e., ZSD ≥

5.37 m, corresponds to Kdin situ values of less than 0.2 m−1 (blue circles); the turbid water case, i.e., ZSD <

2.20 m, to Kdin situ values above 0.4 m−1 (brown circles); and the transition zone, to intermediate Kdin situ
values. In general, Kd (PAR) is inversely related to ZSD [1,9], but with a variable dependence according
to the ZSD range, a behavior due to the differential influence of the components that contribute to light
attenuation as ZSD change [21].
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relationship between ZSD and Kd in situ according to Jerlov water type (113 stations with absorption
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The analysis of a(λ)in situ resulted in 92 stations classified into a Jerlov water type; the remaining
21 stations failed to meet the criteria for inclusion into a given water type. Intermediate water types
were therefore added, i.e., 2, 4, 6, and 8 (Figure 5), supporting the allocation of a water type to the 113
a(λ)in situ spectra.
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Figure 6 illustrates the classification procedure into Jerlov water types. Four stations were selected
as examples, which were contrasted according to a goodness-of-fit test based on a least-squares fitting
method [35]. In each panel of Figure 6, a(λ)in situ of the selected stations and a(λ)model of different types
of water (II, 4, 6, and 8) are displayed with the respective χ2

Cal values that represent the integration
of the square distances between a(λ)in situ and a(λ)model. The water type for which χ2

Cal is minimum
was selected (if the value was zero, this would imply a perfect fit, i.e., a(λ)in situ is equal to a(λ)model).
In Figure 6a, station D05 presented aχ2

Cal = 1.46, this being the smallest value relative to all other stations,
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indicating that it must be classified as a type-II water. In Figure 6b, the lowest χ2
Cal corresponded to

station B06, so it was classified as type 4. For water type 6, which is exemplified in Figure 6c, station
247 showed the lowest χ2

Cal. When stations were contrasted with water type 8 (Figure 6d), station 071
had the lowest χ2
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Figure 6. Least-squares fitting method for four selected stations. The black line indicates a(λ)model
values for the different water types; the dotted line, a(λ)in situ for stations. χ2

Crit marks the maximum
allowable tolerance for the fit. (a) Example of the fit for type II, where station D05 gave the best fit;
(b) example of the fit for type 4, where station B06 gave the best fit; (c) example of the fit for type 6,
where station 247 gave the best fit; (d) example of the fit for type 8, where station 071 gave the best fit.

The classification into Jerlov water types yielded the results shown in Table 3, with 48 oceanic
stations (i.e., types I–III) and 65 coastal stations (i.e., types 1–9). No water type 3 was found in the
reduced data set. Figure 4b shows that the clear water case (ZSD ≥ 5.37 m.) comprises all the ocean
groups (I, IA, IB, II, III) and the most transparent coastal groups (1–4), with Kdin situ values of less
than 0.2 m−1. The turbid-water case (ZSD < 2.20 m) included the most turbid coastal waters (5–9),
with Kdin situ values above 0.4 m−1. Additionally, the transition zone shows the interaction between
groups 4, 5, 6, and 7, comprising stations ranging from clear (4) to turbid (5–7) waters, where some
stations (for example, group 6) show turbid waters while other stations in the same group belong to
the transition zone. Figure 4b also shows an overlap of water types for a given ZSD in the group of
oceanic waters. This also occurs for the group of clear coastal waters that includes types 1, 2, and 4,
with an overlap between the few type 2 and type 1 cases. In addition, if data representing type 3 were
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available, these would presumably overlap with type 4. Finally, and consistent with the above, the
group of turbid coastal waters (types 5–9) exhibits an overlap between optical types. These results
show that the relationship between ZSD (or deduced Kd (PAR)) and water type, as determined from a
(λ), is not unique (i.e., a given ZSD or range of ZSD values may be associated to different water types),
thus limiting the ability to derive specific inherent optical properties from ZSD as the only variable,
even in statistic terms. This is hardly surprising, since Kd (PAR) is non-spectral and depends not
only on a (λ) but also on spectral particulate backscattering [23]. Note that the model proposed by
Solonenko and Mobley [30] to associate the inherent optical properties with Jerlov water type does not
consider the contribution of non-phytoplankton particulate material, which comprises phytoplankton
detritus plus other organic and mineral particles. They argue that it is sufficient to model absorption as
a function of chlorophyll and CDOM in both Case-1 and Case-2 waters, and even for the most turbid
waters. In areas highly influenced by non-phytoplankton particulate matter (e.g., mineral sources),
however, the absorption of these components likely influences the association of the inherent optical
properties with water type. Therefore, Jerlov’s classification needs to be adapted to account for such
scenarios in turbid coastal environments, including coastal lagoons, estuaries, and river mouths.

Table 3. Number of observations (N) classified into a Jerlov water type for the 113 stations with a.

Descriptors Oceanic Coastal

Water Type I IA IB II III 1 2 3 4 5 6 7 8 9
N 2 4 4 8 26 21 2 - 6 5 7 14 6 8

Considering the 113 data that were optically classified into the different Jerlov water types (Table 3),
a model might theoretically be derived for each type of water; however, the number of observations
for some optical types is small. It was therefore decided to split the 113 data into two groups, oceanic
and coastal, and work only with those types of water including more than 10 observations, aiming
of derive a specific model for each. For estimating the models, observations for each type of water
(oceanic, coastal, III, 1, and 7) were randomly sorted into two groups (50% for modeling and 50% for
validation purposes). Once the models were obtained, these were applied to the dataset to validate
them, and contrasted against model c, which is the best model from the previous analyses. These
comparisons are shown in Table 4. In this case, MPI (Equation (12)) was not suitable due to the small
number of observations; thus, the best model was the one showing the lowest MAE (Equation (9)) and
RMSD (Equation (10)) values, and the BIAS (Equation (11)) value closest to zero.

Table 4. Evaluation of the Kdin situ versus a specific model by water type and model c. The bold show
the best results.

Water Type Model Equation MAE RMSD BIAS

Oceanic group Model c
Model oceanic

Equations (15)–(17)
Kd = 0.089/(ZSD)

0.518
0.016
0.550

0.018
0.020

0.016
0.055

Coastal group Model c
Model coastal

Equations (15)–(17)
Kd = 1.79/(ZSD)

0.978
0.149
0.346

0.260
0.469

0.037
−0.343

III Model c
Model III

Equations (15)–(17)
Kd = 0.37/(ZSD)

0.673
0.011
0.027

0.009
0.010

0.011
0.027

1 Model c
Model 1

Equations (15)–(17)
Kd = 0.66/(ZSD)

0.784
0.021
0.027

0.027
0.027

0.016
0.025

7 Model c
Model 7

Equations (15)–(17)
Kd = 0.95/(ZSD)

0.667
0.051
0.105

0.053
0.074

−0.032
0.105

Model c is the best fit in all cases because this model contemplates three intervals of ZSD; also,
in each interval, this model makes an approximation based on a nonlinear model (Equation (2)).
Consequently, this is an adaptive model that estimates the best combination regardless of the optical
type of water being analyzed. In this regard, we consider that the development of model c simplifies
of the estimate Kd based on ZSD regardless of the type of water. Model c can be applied to different



J. Mar. Sci. Eng. 2020, 8, 558 13 of 17

marine optical conditions; however, it is advisable to continue obtaining measurements of Jerlov’s
water types to determine the contribution of each individual component present in seawater to the
calculation of Kd.

Continuing with the simultaneous measurement of ZSD and Kd with an irradiance-meter will
facilitate obtaining better coefficients in each equation of the adaptive model. Additional measurements
should be performed, especially in turbid coastal waters, including coastal lagoons, estuaries, and
river mouths.

There is the need to implement marine monitoring systems to detect changes in ecosystems.
Water turbidity may provide information on environmental alterations, and the monitoring thereof
based on estimations of Kd (PAR) from ZSD using empirical models such as model c is sufficiently
accurate and cost-effective. The potential sources of error in these estimates, which were analyzed by
Preisendorfer [10], should however be kept in mind to ensure that the results obtained reflect the true
variability across water parcels.

4. Conclusions

Kd is a valuable tool for monitoring both spatio-temporal changes and long-term trends in the
water column. The estimation of Kd based on ZSD measurements is a low-cost methodology that
can be used systematically in oceanographic campaigns due to its easy application/implementation.
However, to ensure consistent results, care must be taken regarding the methodology to measure
ZSD. The classical approaches for calculating Kd from ZSD, based on a single ODSD value, do not
accurately represent the broad range of optical conditions that occur in the marine environment.
The adaptive model proposed in this work represents the optical diversity under various conditions,
ranging from clear ocean waters to highly turbid coastal waters. It provides continuity across ZSD and,
importantly, improves Kd retrieval under clear, turbid, and transition scenarios. This model calculates
Kd considering three ranges of ZSD values, as described by the following equations:

If ZSD< 2.20 m, then Kdmodel c = 1.16
(ZSD)

0.62

If 2.20 m ≤ ZSD < 5.37 m, then
Kdmodel c = exp ((0.15− logZSD × 0.62) × 1.68−logZSD

0.89 + (−0.48− logZSD × 0.72) × logZSD−0.79
0.89 )

If ZSD≥ 5.37 m, then Kdmodel c = 0.62
(ZSD)

0.72

(18)

The marine optical water classification is a potential approach in studies addressing the relationship
between Kd (PAR) and optical characteristics. However, our classification of 113 stations with absorption
data into Jerlov water types indicated that no unique water type could be related to a given ZSD
or Kd (PAR), thus making it difficult to use ZSD measurements to infer the optical properties and
chlorophyll concentrations of particular water types. This is likely due to the fact that Kd (PAR) is
the overall result of the variability in both the quantity and type of material (dissolved or particulate
matter) present in the water column. In addition, it should be noted that different optical types may
occur at the same time in the water column, so that Kd (PAR) may result from the combination of
different water types. Given this complexity, data derived from satellite observations are promising
and this field of research should be further refined in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-1312/8/8/558/s1.
Table S1. Derived K_d from model c using Z_SD ranging from 0.5 to 50 m.

Author Contributions: Conceptualization, A.C.-R., E.S.-d.-Á., A.G.-S., R.F., M.-T.S.-F., J.L.-C., L.S.-V. and L.E.-P.;
Data curation, A.C.-R. and E.S.-d.-Á.; Formal analysis, A.C.-R., E.S.-d.-Á., R.F. and J.T.; Funding acquisition,
E.S.-d.-Á., A.G.-S., R.F. and L.S.-V.; Investigation, A.C.-R., E.S.-d.-Á., A.G.-S., R.F., M.-T.S.-F., J.T., J.L.-C., L.S.-V.
and L.E.-P.; Methodology, A.C.-R., E.S.-d.-Á., A.G.-S., R.F., M.-T.S.-F., J.T., J.L.-C., L.S.-V. and L.E.-P.; Project
administration, E.S.-d.-Á., A.G.-S., R.F. and L.S.-V.; Resources, E.S.-d.-Á., A.G.-S. and R.F.; Supervision, A.C.-R.,
E.S.-d.-Á., A.G.-S., R.F., M.-T.S.-F., J.T., J.L.-C., L.S.-V. and L.E.-P.; Validation, A.C.-R., E.S.-d.-Á., R.F. and J.T.;
Visualization, A.C.-R., E.S.-d.-Á., R.F. and J.T.; Writing—original draft, A.C.-R., E.S.-d.-Á., A.G.-S., R.F., M.-T.S.-F.

http://www.mdpi.com/2077-1312/8/8/558/s1


J. Mar. Sci. Eng. 2020, 8, 558 14 of 17

and J.L.-C.; Writing—review and editing, A.C.-R., E.S.-d.-Á., R.F., M.-T.S.-F. and J.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the projects "Influencia de remolinos de mesoescala sobre hábitats de
larvas de peces (con énfasis en especies de importancia comercial) en la zona de mínimo de oxígeno del océano
pacífico frente a México: océano abierto y efecto de islas" (“Influence of Mesoscale Eddies on the Habitats of Fish
Larvae (with Emphasis on Species of Commercial Importance) in the Oxygen Minimum Layer of the Pacific Ocean
off Mexico: Open Ocean and Effect of Islands”) (SEP-CONACyT 236864), “Fronteras de la Ciencia: Probando
paradigmas sobre la expansión de la zona del mínimo de oxígeno: reducción del hábitat vertical del zooplancton y
su efecto en el ecosistema pelágico mediante métodos de muestreo autónomos” (“Frontiers of Science: Testing
Paradigms on the Expansion of the Oxygen Minimum Layer: Reduction of the Vertical Habitat of Zooplankton
and its Effect on the Pelagic Ecosystem through Autonomous Sampling Methods” (CONACYT 8662), “Flujo
atmosférico de metales bioactivos y sus solubilidad en el Golfo de California: un escenario hacia el cambio
climático” (“Atmospheric Flow of Bioactive Metals and their Solubility in the Gulf of California: a Scenario toward
Climate Change (UABC-IIO), “Regionalización dinámica de la Bahía de Todos Santos mediante imágenes de color
del océano” (“Dynamic Regionalization of Todos Santos Bay through Ocean Color Images” supported by the 18th
Internal Call at UABC, ANTARES (IAI CRN393), SIMAC-CONACYT; “Dinámica Costera En Inmediaciones De
San Felipe, B.C. (“Coastal Dynamics in the Vicinity of San Felipe, B.C.”); “Condiciones Oceanográficas Del Área De
Refugio Para La Protección De La Vaquita Marina e Inmediaciones” (“Oceanographic Conditions in the Reserve
Area for the Protection of the Vaquita and Adjacent Areas" (Secretariat of the Navy); “Estudio integral para la
determinación del polígono para vertimientos de materiales producto del dragado en bahía Sebastián Vizcaíno,
B.C.” (“Integral Study to Determine the Polygon for Emptying Dredged Materials in Bahia Sebastian Vizcaino,
B.C.”) (Secretariat of the Navy), SIMAC-2000107017 (CICESE); and “Ecological Monitoring of the Upper Gulf of
California” (PANGAS-Packard Foundation); INP-CICIMAR: SIP 1721,20160514-CONACYT 236864). M.-T.S.-F.
was beneficiary of two post-doctoral research grants, one by the Spanish Ministry of Education Culture and Sports
number CAS18/00107, and one by the Valencian Conselleria d’Educació, Investigació, Cultura i Esport number
BEST/2017/217; both in support of her stay at The Universidad Autónoma de Baja California (México) during
advisory time.

Acknowledgments: The authors wish to thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for the
grant awarded to the first author in her studies. Thanks also to the SIMBIOS NASA Program, Universidad
Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Centro de Investigación Científica y
de Educación Superior de Ensenada, Secretaría de Marina Armada de México, Dirección General Adjunta de
Oceanografía, Hidrografía y Meteorología, Instituto Politécnico Nacional. Maria Elena Sánchez-Salazar edited the
English manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors played no role in the design
of the study; the collection, analysis, or interpretation of data; the drafting of the manuscript; or the decision to
publish the results.

References

1. Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge,
UK, 2011; p. 649.

2. Frouin, R.; Ramon, D.; Boss, E.; Jolivet, D.; Compiègne, M.; Tan, J.; Bouma, H.; Jackso, T.; Franz, B.; Platt, T.;
et al. Satellite Radiation Products for Ocean Biology and Biogeochemistry: Needs, State-of-the-Art, Gaps,
Development Priorities, and Opportunities. Front. Mar. Sci. 2018, 5, 3. [CrossRef]

3. Platt, T.; Denman, K.L.; Jassby, A.D. Modeling the Productivity of Phytoplankton, in the Sea: Ideas and Observations
on Progress in the Study of the Seas; Goldberg, E.D., Ed.; John Wiley: New York, NY, USA, 1977; pp. 807–856.

4. Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis; Blackwell Science: Malden, MA, USA, 1997; p. 375.
5. Antoine, D.; Babin, M.; Berthon, J.; Bricaud, A.; Gentili, B.; Loisel, H.; Maritorena, S.; Stramski, D. Shedding

Light on the Sea: André Morel’s Legacy to Optical Oceanography. Annu. Rev. Mar. Sci. 2014, 6, 1–21.
[CrossRef] [PubMed]

6. Secchi, A. Schreiben des Herrn Prof. Secchi, Directors der Sternwarte des Collegio Romano, an den
Herausgeber. Astron. Nachr. 1866, 68, 63. [CrossRef]

7. Wernard, M.R. On the history of the Secchi Disk. J. Eur. Opt. Soc.-Rapid 2010, 5, 100135. [CrossRef]
8. Davies-Colley, R.J.; Vant, W.N.; Smith, D.G. Colour and Clarity of Natural Waters. Science and Management of

Optical Water Quality; Ellis-Horwood: New York, NY, USA, 1993; p. 310.
9. Poole, H.H.; Atkins, W.R.G. Photo-Electric Measurements of Submarine Illumination throughout the Year. J.

Mar. Biol Assoc. UK 1929, 16, 297–324. [CrossRef]
10. Preisendorfer, R.W. Secchi disk science: Visual optics of natural waters. Limnol. Oceanogr. 1986, 31, 909–926.

[CrossRef]

http://dx.doi.org/10.3389/fmars.2018.00003
http://dx.doi.org/10.1146/annurev-marine-010213-135135
http://www.ncbi.nlm.nih.gov/pubmed/24015899
http://dx.doi.org/10.1002/asna.18670680405
http://dx.doi.org/10.2971/jeos.2010.10013s
http://dx.doi.org/10.1017/S0025315400029829
http://dx.doi.org/10.4319/lo.1986.31.5.0909


J. Mar. Sci. Eng. 2020, 8, 558 15 of 17

11. Lund-Hansen, L.C. Diffuse Attenuation Coefficients Kd(PAR) at the Estuarine North Sea–Baltic Sea Transition:
Time-Series, Partitioning, Absorption, and Scattering. Estua Coast. Shelf Sci. 2004, 61, 251–259. [CrossRef]

12. Pope, R.M.; Fry, E.S. Absorption Spectrum (380–700 nm) of Pure Water. II. Integrating Cavity Measurements.
Appl. Opt. 1997, 36, 8710–8723. [CrossRef]

13. Prieur, L.; Sathyendranath, S. An Optical Classification of Coastal and Oceanic Waters Based on the Specific
Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate
Materials. Limnol. Oceanogr. 1981, 26, 671–689. [CrossRef]

14. Santamaría-del-Ángel, E.; Millán-Núñez, R.; González-Silvera, A.; Cajal-Medrano, R. Producción Primaria
Fitoplanctónicas. En Manuales del cuerpo Académico de Ecología del Fitoplancton de la Facultad de Ciencias Marinas
de la Universidad Autónoma de Baja California; Series White Papers POPEYE 41 p; Universidad Autónoma de
Baja California, Facultad de Ciencias Marinas: Ensenada, Mexico, 2005. [CrossRef]

15. Holmes, R.W. The Secchi disk in turbid coastal waters. Limnol. Oceanogr. 1970, 15, 688–694. [CrossRef]
16. Megard, R.O.; Berman, T. Effects of algae on the Secchi transparency of the southeastern Mediterranean Sea.

Limnol. Oceanogr. 1989, 34, 1640–1655. [CrossRef]
17. Montes-Hugo, M.A.; Álvarez-Borrego, S. Empirical relations to estimate PAR attenuation in San Quintín Bay,

using Secchi depth and sighting range. Cienc Mar. 2005, 31, 685–695. [CrossRef]
18. Lee, Z.; Shang, S.; Du, K.; Wei, J. Resolving the Long-Standing Puzzles about the Observed Secchi Depth

Relationships. Limnol. Oceanogr. 2018, 63, 2321–2336. [CrossRef]
19. Harvey, E.T.; Walve, J.; Andersson, A.; Karlson, B.; Kratzer, S. The effect of optical properties on Secchi depth

and implications for eutrophication management. Front. Mar. Sci. 2019, 5, 496. [CrossRef]
20. Steinmetz, H.; Staudinger, M.; Balch, W.M. Analyzing the Effects of Coccolithophore Concentration on the

Relationship between Vertical Absorption Coefficient and Secchi Disk Depth. Student Showcase. 2019.
Available online: https://scholarworks.umass.edu/sustainableumass_studentshowcase/26 (accessed on 10
June 2020).

21. Gallegos, C.L.; Werdell, P.J.; McClain, C.R. Longterm changes in light scattering in Chesapeake Bay inferred
from Secchi depth, light attenuation, and remote sensing measurements. J. Geophys. Res. 2011, 116, C00H08.
[CrossRef]

22. Barbosa, A.; Domingues, R. Effects of Nutrient and Light Enrichment on Phytoplankton Growth. In Practical
Experiments Guide for Ecohydrology; Chícharo, L., Wagner, I., Chicharo, M., Lapinska, M., Zalewski, M., Eds.;
UNESCO: Venice, Italy, 2009; pp. 27–30.

23. Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory
and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [CrossRef]

24. IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. In
Reports of the International Ocean Colour Coordinating Group No. 5; Lee, Z.P., Ed.; IOCCG: Dartmouth, NS,
Canada, 2006; p. 126.

25. Mobley, C.D.; Sundman, L.K. HydroLight 5.2 User’s Guide; Sequoia Scientific: Seattle, WA, USA, 2013.
26. Padial, A.A.; Thomaz, S.M. Prediction of the light attenuation coefficient through the Secchi disk depth:

Empirical modeling in two large Neotropical ecosystems. Limnology 2008, 9, 143–151. [CrossRef]
27. Ficek, D.; Zapadka, T. Variability of bio-optical parameters in Lake Jasień Północny and Lake Jasień
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