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Abstract: Diapycnal diffusivity is an important parameter to characterize oceanic turbulent mixing and
vertical transport. However, due to the challenging accessibility of field observations, the observation
of diapycnal diffusivity in the South China Sea (SCS) is rare. In this study, a three-dimensional field
of diapycnal diffusivity in the SCS with high spatial resolution is performed by interpolating the rare
field observations, which aims to provide a reference for the value of diapycnal diffusivity in ocean
models. Given the anisotropy of diapycnal diffusivity and its rapid change in the magnitude in the
vertical direction, several typical interpolation methods are compared in this study. Results of two
cross-validation methods demonstrate that the three-dimensional (3D) thin-plate spline interpolation
method yields the most reasonable and accurate results among a total of five typical methods used in
this study.
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1. Introduction

Turbulent mixing is a microscale process that makes the properties of water bodies more uniform,
which is extremely important for regulating climate and marine productivity [1,2]. Moreover, turbulent
mixing could be an important mechanism for controlling the vertical transport of nutrients, dissolved
gases and particulate in water [3]. The South China Sea (SCS) is the largest marginal sea of the
Northwest Pacific and the mixing in the SCS plays a key role in maintaining the strength of abyssal
water transport and the Pacific circulation [3,4].

Turbulent mixing in the SCS has been a hot topic for scholars for a long time. Oceanic turbulent
mixing is commonly characterized by turbulent kinetic energy dissipation rate and diapycnal diffusivity,
and there is a strong correlation between these two indicators [5]. Tian et al. [3] found that the diapycnal
diffusivity in the deep ocean basin of the SCS was two orders larger than that in the western Pacific,
based on a fine scale parameterization and hydrographic observations obtained from the northern SCS
and the western Pacific. Using the Thorpe scale method, Alford et al. [6] and Buijsman et al. [7] revealed
that the diapycnal diffusivity of the Luzon Strait increases in the deep water. Lozovatsky et al. [8]
studied the spatial structure and temporal variability of turbulent kinetic energy dissipation rate in
limited areas of the northern SCS based on the microstructure measurements. Measurements and
numerical simulations [9,10] indicated that energetic internal tides and internal waves generated near
the Luzon Strait propagate into the SCS and enhance turbulent mixing. Yang et al. [4] presented
the first three-dimensional (3D) patchy distribution of turbulent mixing in the SCS based on the
Gregg–Henyey–Polzin (GHP) parameterization and hydrological observations from 2005 to 2012.
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Shang et al. [11] analyzed spatial distribution of turbulent mixing in the upper ocean of the SCS with
microstructure data obtained from 26 April to 23 May 2010.

These studies have greatly improved our understanding of turbulent mixing in the SCS. However,
due to the limitations of field observations, diapycnal diffusivity in the SCS calculated by the GHP
parameterization method has only patchy spatial distribution. And the low spatial resolution is
detrimental to the further research of turbulent mixing in the SCS. Unfortunately, turbulent mixing is a
complicated process and far from fully understood. It is now often used to add a constant background
diffusivity to the coefficients of vertical mixing to represent mixing processes [12], which may be a
potential source of error in the numerical simulation results (diapycnal diffusivity in the SCS varies
many orders of magnitude and is extremely inhomogeneous).

Due to lack of understanding of the turbulent mixing variability in the whole SCS, the products from
numerical simulation based on a simple parameterization of eddy diffusivity should be treated with
caution [4]. The spatial interpolation of scattered data has been focused on for many years in various
fields. The advantage of the spatial interpolation method is that the 3D field of diapycnal diffusivity
can be obtained with low computational cost and high spatial resolution. Against this background, it’s
a method worth trying to estimate diapycnal diffusivity by interpolating the measurements. As the
measured diapycnal diffusivity is sparsely distributed in the SCS, a relatively accurate interpolation
method would be useful. Furthermore, the interpolated results may provide a reference for calculating
vertical fluxes across the basin.

There are several methods widely used in scattered data interpolation and fitting, such as
the thin-plate spline method [13], inverse distance weighted method [14], Chebyshev polynomial
method [15], and trigonometric polynomial method [16]. Given the anisotropy of diapycnal diffusivity
and its rapid change in the magnitude in the vertical direction, the 3D thin-plate spline (3D TPS)
method, 3D inverse distance weight (3D IDW) method, 3D Chebyshev polynomial fitting (CPF) method,
3D piecewise linear (3D PL) method, and 2D thin-plate spline (2D TPS) method are used to estimate the
diapycnal diffusivity in the SCS. With the benefits of the 10-fold random cross-validation method [17]
and the plane cross-validation method, the optimum interpolation method can be determined. The
framework in this study that uses cross-validation method to select the optimum interpolation method
is universal, not just applicable to the SCS. The main aim of this study is to obtain the 3D complete
spatial distribution of diapycnal diffusivity in the SCS, which would provide potential applications for
improving the accuracy of numerical simulation.

This paper is organized as follows. A brief description of the data is presented in Section 2.
The interpolation methods are given in Section 3. Result analysis and conclusions are presented in
Sections 4 and 5, respectively.

2. Data

Yang et al. [4] estimated the diapycnal diffusivity in the SCS based on in situ observations from
2005 to 2012 and the GHP parameterization. Detailed information of the measuring data can be referred
to Yang et al. [4].

The 3D structure of diapycnal diffusivity in the SCS given by Yang et al. [4] is shown in Figure 1.
The horizontal distribution of diapycnal diffusivity ranges from 110◦ E to 121◦ E and 11◦ N to 21◦ N
with a resolution of 0.5◦ × 0.5◦, and the vertical distribution ranges from 200 m to 5000 m with a
resolution of 200 m. Based on these data (a total of 2353 data), a 3D spatial interpolation analysis is
performed in this paper to reconstruct the 3D spatial distribution of diapycnal diffusivity in the SCS.
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3. Methodology

Several 3D spatial interpolation methods are used to estimate the diapycnal diffusivity at unknown
points and the 2D TPS interpolation method is used as a comparison. The following contents are the
methods that are commonly used for interpolating scattered point data.

3.1. The 3D TPS Interpolation

Radial basis functions have the advantage of being unconstrained by dimensions, and they are
statistically unbiased estimates of minimum variance [18]. In this study, the radial basis function
method is applied due to its good accuracy in the interpolation of scattered points [18,19]. The TPS
function is a commonly used radial basis function, which guarantees the minimum bending energy of
the deformation field [13]. The TPS interpolation has good numerical stability and convergence, and it
is more suitable for global deformation [20]. Therefore, the TPS function is chosen as the basis function
in this study. Assuming that the diffusivity is an isotropic distribution, there are n data points with
measured diapycnal diffusivity K(xi, yi, zi), I = 1, 2, . . . , n. Then, the estimated diapycnal diffusivity at
other points K(xi, yi, zi) is calculated by 3D TPS interpolation as follow:

K(x j, y j, z j) =
n∑

i=1

ciU(ri j) + λ1 + λ2xi + λ3yi + λ4zi, (1)

U(ri j) = r2
i j ln(ri j), (2)



J. Mar. Sci. Eng. 2020, 8, 832 4 of 15

where ri j represents Euclidean distance between (xi, yi, zi) and (x j, y j, z j), the parameters ci,λ1,λ2,λ3,λ4

can be solved by [
c
λ

]
=

[
A P
PT 0

]−1

·

[
K
0

]
, (3)

where

c =



c1

c2

·

·

·

cn


, λ =


λ1

λ2

λ3

λ4

, P =



1 x1 y1 z1

1 x2 y2 z2

· · · ·

· · · ·

· · · ·

1 xn yn zn


, K =



K1

K2

·

·

·

Kn


, (4)

A =



0 U(r12) U(r13) · · · U(r1n)

U(r21) 0 U(r23) · · · U(r2n)

· · ·

· · ·

· · ·

U(rn1)U(rn2) · · · 0


. (5)

However, the actual diapycnal diffusivity in the SCS is anisotropic, and its variability in the
vertical direction is greater than that in the horizontal direction. In this study, the anisotropic of data,
which has a crucial influence on the interpolation results, is taken into account in interpolation process.

As shown in Table 1, the mean absolute change rate (e.g., in vertical direction, calculate the
absolute rate of change for the diapycnal diffusivity values of any two adjacent points in vertical
direction, and then average all absolute change rate) of the diapycnal diffusivity values in the vertical
direction is two orders of magnitude higher than that in the horizontal direction. In addition, turbulent
mixing in the SCS is mainly triggered by internal waves breaking, and the horizontal feature scale
of the typical movement is also two orders of magnitude larger than the vertical feature scale [2,9].
In other words, in the interpolation, diapycnal diffusivity in the horizontal direction should have a
greater weight than that in the vertical direction [21]. Therefore, the weight in the vertical direction is
set to 1/100 of that in the horizontal direction to achieve the anisotropy characteristics of diapycnal
diffusivity, and Equation (1) is rewritten as:

K(x j, y j, z j
′) =

n∑
i=1

ci jU(ri j) + λ1 + λ2xi + λ3yi + λ4zi
′,

z′j = 100z j, z′i = 100zi.
(6)

Table 1. The mean absolute rate of change of the diffusivity values in meridional, zonal and
vertical directions.

Directions The Mean Absolute Rate of Change (m2s−1km−1)

Zonal direction 6.5× 10−5

Meridional direction 6.7× 10−5

Vertical direction 9.1× 10−3

In the subsequent 3D interpolation methods used in this study, the weight in the vertical direction
is always set to 1/100 of that in the horizontal direction.

3.2. The 3D IDW Interpolation

The 3D IDW interpolation method is based on the hypothesis that each measurement point has a
local influence, which is inversely proportional to the distance between the point to be interpolated
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and the measurement point. All distances in this study are calculated in Cartesian coordinate system.
The diapycnal diffusivity K(x j, y j, z′j) estimated by the 3D IDW interpolation method is performed as
follows:

K(x j, y j, z′j) =

n∑
i=1

Ki(xi,yi,zi
′)

di j
α

n∑
i=1

1
di j
α

, (7)

where di j =
√
(x j − xi)

2 + (y j − yi)
2 + (z j′ − zi′)

2, α = 2. The distances in this article are all calculated
under the Cartesian coordinate system, and the spherical coordinate system is not used.

3.3. The 3D CPF

In this paper, the diapycnal diffusivity estimated by the 3D CPF method is performed as follows:

∼

KCPF =
Kmax∑
k=0

Smax∑
s=0

Lmax∑
l=0

βk,s,l · Tk(
−
x) · Ps(

−
y) ·Ml(

−
z)

−
x = 2x−xmax−xmin

xmax−xmin
,
−
y =

2y−ymax−ymin
ymax−ymin

,
−
z =

2z−z′max−z′min
z′max−z′min

Tk(x) = cos(k · arccos(
−
x)),

Ps(y) = cos(s.arccos(
−
y)),

Ml(z) = cos(l · arccos(
−
z)),

(8)

where Kmax, Smax, and Lmax represent the highest order of polynomials in zonal, meridional and
vertical direction, respectively, which are limited to 10 in this study. βk,s,l are coefficients that can be
solved by the least squares method.

3.4. The 2D TPS Interpolation

The 3D diapycnal diffusivity data can be decomposed into multiple 2D data at different water
depths and then 2D interpolation schemes can be adopted. To make a comparison with the 3D TPS
method, the 2D TPS method is used to interpolate the diapycnal diffusivity at each depth. The 2D
TPS method is introduced as follows: assuming that there are n data points with measured diapycnal
diffusivity K(xi, yi) at a certain depth, diapycnal diffusivity at other points K(x j, y j) can be estimated in
Section 3.1, and the only difference is that the z dimension is deleted.

3.5. Cross-Validation

In this study, the 10-fold random cross-validation [17] is employed to assess the interpolation
results. The measured diapycnal diffusivity dataset is randomly divided into ten subsets, nine of which
are selected as set A and one as set B. The data in set A are used to interpolate, while the accuracy
of estimation is evaluated with the data in set B. The random cross-validation is repeated 50 times.
By calculating the averaged error of interpolated results in the 50 experiments, the effectiveness and
accuracy of the aforementioned interpolation methods can be assessed.

In order to verify the effectiveness of interpolation in where an entire section is removed, as a
supplement to the 10-fold random cross validation scheme, another cross-validation scheme (plan
cross-validation) is also implemented in this study. In this scheme, the measured diapycnal diffusivity
on a whole certain horizontal plan is retained to evaluate the accuracy of each interpolation method,
meanwhile the remaining data is used to interpolate. In order to ensure that the estimate is interpolated
and there are enough measure points in the evaluated, water depth planes ranging from 400 m to 3800
m are selected for evaluation and the plane cross-validation is repeated 18 times.
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3.6. Statistical Analysis

Two statistical parameters, namely the mean absolute error (MAE) and the mean relative error
(MRE), are used to quantify the interpolation performance. The MAE and MRE are calculated as
follows:

MAE =
m∑

i=1

∣∣∣∣∣∣∣
∼

Ki −Ki
m

∣∣∣∣∣∣∣, (9)

MRE =
1
m

m∑
i=1

∣∣∣∣∣∣∣
∼

Ki −Ki
Ki

∣∣∣∣∣∣∣, (10)

where Ki and
∼

Ki are measured and estimated diapycnal diffusivity, respectively, and m is the number
of validation data in set B.

4. Result Analysis and Discussion

Given the rapid change of diapycnal diffusivity in the magnitude in the vertical direction (the
measured diapycnal diffusivity varying between 10−5 m2/s and 10−1 m2/s), the interpolation of log10 (K)
may produce better results than the interpolation of K. In addition, the prediction error could be used
to determine whether the data should be transformed [22]. The 3D TPS method is taken as an example
to compare the interpolation results of K and log10 (K). Equations (1) and (3) are rewritten as (11) and
(12) when the interpolation is carried out on log10 (K).

log 10(K(x j, y j, z j)) =
n∑

i=1

ci jU(ri j) + λ1 + λ2xi + λ3yi + λ4zi, (11)

[
c
λ

]
=

[
A P
PT 0

]−1

·

[
log 10(K)

0

]
. (12)

The 10-fold random cross-validation results of the 3D TPS method are shown in Figure 2 which
clearly shows that the interpolation errors for the logarithm of K are much smaller than those for
K, suggesting the reliability of interpolating the logarithm of K. Noting that the interpolated log10
(K) values are converted back to K values before calculating the interpolation errors. Therefore, the
logarithmic pretreatment of diapycnal diffusivity is taken in the following experiments.
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All the combinations of Kmax = 0, 1, . . . , 10, Smax = 0, 1, . . . , 10, and Lmax = 0, 1, . . . , 10 are tested

when we fit the diapycnal diffusivity by using the 3D CPF method. The MAE (MAE = (
N∑

i=1
MAE(i)/N,

N is the total number of random cross-validation experiments) and the MRE (MRE = (
N∑

i=1
MRE(i))/N,

N is the total number of random cross-validation experiments) for each combination are calculated
during the 10-fold random cross-validation process [16]. In order to facilitate the comparison with
the 3D TPS method, MAE and MRE with the minimum are regarded as fitting errors and shown in
Figure 3. The degrees corresponding to the minimum values of MAE and MRE in the 10-fold random
cross-validation process are given in Table 2.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 16 
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Table 2. The degrees corresponding to MAE and MRE with the minimum of the 3D CPF method during
the 10-fold cross-validation process.

Errors Kmax Smax Lmax

MAE 4 9 3
MRE 5 9 3

As shown in Figure 3, the errors of the 3D CPF method (MAE = 0.0030 m2/s, MRE = 85.06%)
are unreliable and unstable during the random cross-validation process, which suggests that the 3D
CPF method may not be a good approach in this study. In order to expand the measured diapycnal
diffusivity into a spatial complete field, other 3D interpolation methods were applied. Among them,
the 3D piecewise linear (3D PL) interpolation method was implemented by MATLAB griddata function
(linear interpolation as an interpolation method) and used as a comparison. The 10-fold random
cross-validation results of these 3D interpolation methods are shown in Figure 4. It is clearly shown
that the 3D TPS method performs best in the 10-fold random cross-validation with MAE = 0.0013 m2/s
and MRE = 32.65%, followed by the 3D PL method with MAE = 0.0016 m2/s and MRE = 45.67%.
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The MAEs and MREs of the 2D TPS method at different depths are illustrated in Figure 5. The
MAE and MRE of all points to be estimated are 0.0043 m2/s and 172.51%, respectively, which are much
larger than the errors of the 3D TPS method. In addition, it is obvious that the 2D interpolation method
cannot accurately describe the true distribution of geographic phenomena in the 3D space, and the
interpolation effect is easily affected by the number of measured points on the plane. Therefore, the 2D
TPS method is not suitable for 3D reconstruction of the diapycnal diffusivity field.
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Although the background diffusivity is 10−5 m2/s or even 10−4 m2/s, considering that the average
value of the measured diapycnal diffusivity is 0.0052 m2/s and the MRE of the 3D TPS method is
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32.65%, the MAE of the 3D TPS method is reasonable. The first random cross-validation experiment is
taken as an example: Figure 6 shows that the diapycnal diffusivity obtained by the 3D TPS method
has a good agreement with the measured diapycnal diffusivity in set B and the relative errors of most
points to be inspected fluctuate in [−50%, 50%].
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The statistical results of the overestimation and underestimation of the 3D interpolation methods
are shown in Table 3. According to the statistical results in Table 3, the interpolated results are more
likely to be significantly overestimated (the average proportion of relative error greater than 50%)
for this diapycnal diffusivity field. Among the 3D TPS, PL, and IDW methods, the 3D TPS method
yields the smallest proportions for both overestimation and underestimation, although the low error
proportion of the 3D TPS method is only a slight improvement on that of the 3D PL method.

Table 3. The average proportion of relative errors of the 3D interpolation methods for 50 groups
of experiments.

3D Interpolation Methods The Average Proportion of
Relative Error Greater than 50%

The Average Proportion of
Relative Error Less than −50%

3D TPS 13.20% 4.29%
3D PL 19.87% 6.34%

3D IDW 36.36% 26.95%

Results of plane cross-validation experiments are shown in Figure 7. All cross-validation processes
suggest that the 3D TPS method produces better results (the MAE and MRE of all points to be estimated
are 0.0011 m2/s and 27.70%, respectively) than the 3D PL and IDW methods. The MAE and MRE of
all points with 3D PL method are 0.0015 m2/s and 39.08% respectively. Considering that the 3D PL
method requires the least amount of calculation among the 3D interpolation methods, the error level of
the 3D PL method is encouraging.

It is interesting to find that the errors of the 3D IDW are much larger than those of the 3D PL and
TPS methods. It can be seen from Figure 8 that the diapycnal diffusivity is obviously overestimated in
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the weak mixing area, while it is underestimated in the high mixing area. This phenomenon can be
seen more clearly from random cross-validation (Figure 9). The main reason is that turbulent mixing
generally increases with depth in the SCS, which leads to the fact that the measured points in the deep
sea have a greater impact on the interpolation points than points closer to the interpolation points
(inconsistent with the assumption of the 3D IDW method). Moreover, the interpolated values with
the 3D IDW method within the data set are bounded by min(Ki) < K j < max(Ki), where Ki and K j are
measured and estimated diapycnal diffusivity, respectively. In other words, the 3D IDW method is
essentially composed of smoothing procedures [14], which cause the diapycnal diffusivity to be easily
underestimated in the high mixing area and overestimated in the weak mixing area.
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(b) Map of the diapycnal diffusivity reconstructed by the 3D IDW method at a depth of 600 m.
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Figure 9. Measured diapycnal diffusivity (m2/s; logarithmic scale) in set B versus diapycnal diffusivity
obtained by the 3D IDW interpolation method (the first random cross-validation experiment is taken as
an example). The red line is 1:1 line.

The 3D TPS and PL methods are selected to reconstruct spatial fields of diapycnal diffusivity in the
plane cross-validation. Figure 10 shows the depth-averaged diffusivity reconstructed by interpolation
in the upper (400–600 m), intermediate (600–1600 m), and deep layers (>1600 m). Since the 3D TPS
method ensures that the first derivative of the space field is continuous [23], the maps obtained by the
3D TPS method are smoother than those obtained by the 3D PL method, and the gradient changes are
smaller. In addition, both cross-validation methods show that the errors of the 3D TPS method are
smaller than those of the 3D PL method. Moreover, since the derivative of the diapycnal diffusivity
appears in the equations of motions, the application effect of the 3D TPS method may be better than
that of the 3D PL method. In a word, results calculated by the 3D TPS are a slight improvement over
those calculated by the 3D PL method.

Combining all the above analysis, the best interpolation method of diapycnal diffusivity in the
SCS is the 3D TPS method, and both cross-validation methods provide evidence for the rationality of
this method. The interpolated results of the 3D TPS method with horizontal resolution of 0.25◦ × 0.25◦

and vertical resolution of 100 m are show in Figure 11. The interpolated field of diapycnal diffusivity
can be obtained with high spatial resolution, but it does not include the information about the
diapycnal diffusivity changing with time. Therefore, the cross-validation results can only prove that
the interpolation accuracy is satisfactory. The real assessment will be whether the interpolation results
of the 3D TPS method improve the model’s representation of reality.
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Figure 10. (a–c) Maps of depth-averaged measured diapycnal diffusivity (m2/s; logarithmic scale).
(d–f) Maps of depth-averaged diapycnal diffusivity reconstructed by the 3D TPS method. (g–i) Maps of
depth-averaged diapycnal diffusivity reconstructed by the 3D PL method. The order from top to bottom
are the upper layer (400–600 m), intermediate layer (600–1600 m), and deep layer (>1600 m) respectively.
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5. Conclusions

In order to expand the 3D scatter data of diapycnal diffusivity into a spatial complete field,
the 3D TPS method which accounts for anisotropy (vertical scales smaller than the horizontal ones)
in the data is carried out to estimate the diapycnal diffusivity in the SCS. Given the rapid change
of diapycnal diffusivity in the magnitude, better results are obtained by logarithmic pretreatment
of diapycnal diffusivity. The selection of spatial interpolation method for estimating the diapycnal
diffusivity is also discussed in this paper. Results of 10-fold random cross-validation experiments
illustrate that the 3D TPS method has the smallest errors (MAE = 0.0013 m2/s, MRE = 32.65%),
followed by the 3D PL method (MAE = 0.0016 m2/s, MRE = 45.67%). Results of plane cross-validation
experiments also indicate that the 3D TPS method can reconstruct the diapycnal diffusivity field
relatively accurately. Moreover, the interpolated results may provide a reference for calculating vertical
fluxes across the basin, and we will study what the error induced in total flux is by having transects in
the subsequent work.

Both cross-validation methods show that the diapycnal diffusivity obtained by the 3D interpolation
has a good agreement with the measured diapycnal diffusivity. The diapycnal diffusivity field
reconstructed by the 3D TPS method is differentiable, with lower errors than those with the 3D
PL method. However, note that for the diapycnal diffusivity field, the 3D TPS method is a slight
improvement over the 3D PL method. The 3D CPF method is considered to be inappropriate in
estimating the diapycnal diffusivity due to its excessive and unstable errors. Meanwhile, the diapycnal
diffusivity map reconstructed by the 3D IDW method is extremely inconsistent with the measured
data, and this shortcoming is related to the nature of the IDW function itself.

The 3D TPS method applied in this study, which accounts for anisotropy in the data, may
provide potential applications for improving the mixing configuration in the numerical model used
for simulating a realistic ocean state in the SCS. Moreover, the 3D interpolation methods used in this
study might be also applicable to data analysis in any basin (adjust the ratio of horizontal weight and
vertical weight appropriately), but their interpolation accuracy needs to be evaluated. A forthcoming
validation is planned using the interpolation results of the 3D TPS method to test an ocean model of
the SCS against standard model configurations for the diapycnal diffusivity.
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