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Abstract: While much attention has been given to the role of animal intestinal microbes, few studies
have focused on microbial communities and associated functions in cultured aquatic animals. In this
study, high–throughput sequencing was used to analyze intestinal microbial communities and func-
tions in fish, shrimp, crab and razor clams. Alpha diversity analyses showed significant differences
in intestinal microbial diversity amongst these aquatic animals, and that shrimp intestines harbored
the highest diversity and species numbers. T–test analyses (p < 0.05) showed significant differences
in dominant microbial operational taxonomic units (OTUs) between all aquatic animals. Predom-
inant intestinal bacteria included; Gammaproteobacteria, Fusobacteria, Mollicutes, Spirochaetia,
Cyanobacteria, Bacteroidia and Bacilli. Similarly, anaerobic bacteria were highly diverse in animal
intestines and included; Vibrio, Photobacterium, Cetobacterium, Propionigenium, Candidatus Hepato-
plasma, Paraclostridium, and Lactobacillus. Principal co–ordinate analysis indicated that the distribution
characteristics of intestinal microbes varied with animal species; in particular, we observed a high
variability among shrimp intestinal samples. This variability indicated these genera had suitability
for the different intestinal environment. Function prediction analysis indicated significant differences
amongst different animals in the major functional groups, and that microbial functional profiles were
strongly shaped by the intestinal environment. Thus, this study provides an important reference for
future studies investigating crosstalk between aquatic animal hosts and their intestinal microbiota.

Keywords: microbial community; intestines; cultured aquatic animals; microbial functions

1. Introduction

Microbes play important roles in the material cycle and energy flow of aquaculture
ecosystems [1]. Similarly, complex microbial communities play important roles in the
digestive tracts of aquatic animal hosts [2–4]. Several studies have shown that intestinal
microbial composition in such animals, contribute to vitamin synthesis, growth and devel-
opment, material metabolism, and is related to intestinal development, immune responses
and host resistance to disease [5,6].

The intestinal tract is the most important digestive and absorptive organ in animals.
Large numbers of microbes live in this compartment and are interdependent and restricted
with the host. It has been reported that intestinal microbes play important roles in nutri-
tional metabolic processes [3,4]. They absorb energy from nutrients, such as starch and
fiber, which they adapt for their own growth. Similarly, microbial metabolic activities also
lead to the production of important nutrients, such as short chain fatty acids, vitamins
and amino acids. Studies have shown that intestinal microbial communities with different
structures and compositions, directly affect host nutritional metabolism and sensitivity to
pathogenic bacterial infections [7,8]. Thus, a balanced microbial community in intestinal
tracts is believed to contribute to the maintenance of host intestinal function. With ongoing
developments in high–throughput sequencing, researchers are now more aware of aquatic
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microbial composition. The gut of aquaculture animals primarily contains aerobic bacteria,
facultative and transitional anaerobes [9]. Similarly, different culture environments and
foodstuffs can change the structures of these intestinal communities [10–13].

While several reports have investigated relationships between culture environments
and intestinal microbial communities in aquatic animals, the composition and potential
function of intestinal microbes of such animals in the same aquaculture area, remains
unclear. In this study, we used high–throughput sequencing to investigate intestinal
microbiome in several economically vital species, i.e., fish, shrimp, crab and razor clams.
We analyzed differences in intestinal community structures and their potential functions in
these animals. This study would help to establish the relationship between different host
and their associated intestinal microbe, improve the understanding of the health status
and nutritional level of the host, and provide reference for disease prevention in cultured
aquatic animals.

2. Materials and Methods
2.1. Sample Collection

Four main economic animals were collected from a seawater aquaculture area, Putian
City, China, in September 2018. All the polyculture ponds have the same seawater source,
and the seawater enters the culture system through an inlet. Aquatic animal information
is shown (Table S1). A total of 14 samples (fishes, shrimps, crabs and razor clams) were
collected, of which eight parallel individuals of each sample were randomly collected from
different cultured ponds. Then, under laboratory conditions, the intestines were dissected
from each animal using conventional aseptic techniques, then pooled intestinal samples
of the same animal. After this, intestinal tract contents were placed in sterile tubes, and
stored in liquid nitrogen until DNA extraction.

2.2. Illumina MiSeq Sequencing of Intestinal Bacterial Communities

Total DNA from intestinal samples was extracted according to manufacturer’s instruc-
tions from the Soil DNA Extraction Kit (Omega, GA, USA). For amplification, we used
16S rRNA V4 primers 515F (5′–GTG CCA GCM GCC GCGGTA A–3′) and 806R (5′–GGA
CTA CHV GGG TWTCTA AT–3′). PCR parameters were: total reaction volume = 25 µL,
5×FastPfu buffer = 4 µL, 2.5 mmol/L dNTPs = 2 µL, 5 U/µL FastPfu polymerase = 0.5 µL,
1.0 µL each primer (5.0 µmol/L) and 10 ng DNA template. PCR conditions were: 30 cycles;
95 ◦C for 3 min; 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 45 s and 72 ◦C for 10 min. The library
was constructed using the TruSeq DNA PCR–Free Sample Preparation Kit (Illumina, Inc., San
Diego, CA, USA), and quantified by Qubit and quantitative PCR. After purification, the library
was loaded onto the Illumina NovaSeq 6000 Sequencer (Illumina, Inc., San Diego, CA, USA)
for sequencing.

2.3. Data Analysis

For pair–ended reads generated by Illumina MiSeq sequencing, the data were first
classified according to barcodes, and then spliced using FLASH (V1.2.7), according to
overlap relationships. Quality filtering was performed on joined sequences. Sequences
< 200 base pairs (bp) in length, or with a mean quality score ≥ 20 were discarded. Then,
sequences were compared with RDP reference database, using VSEARCH (1.9.6) to detect
chimeric sequences. Once identified, they were removed.

Confirmed sequences were grouped into operational taxonomic units (OTUs) using
UPARSE (v7.0.1001), and pre–clustered at 97% sequence identity. The highest OTU frequen-
cies were selected as representative OTU sequences. These were annotated using Mothur
against the SILVA132 database for taxonomic annotation (threshold value of 0.8–1). This
approach generated taxonomic information at each taxonomic level. Sequences were also
rarefied prior to the calculation of alpha and beta diversity statistics. QIIME software (Ver-
sion 1.9.1) was used to calculate observed species, Chao1 and Shannon indices. Principal
co–ordinate analysis (PCoA) was used to explore differences in communities amongst sam-
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ples or groups, based on Bray–Curtis distances. T–tests were used to assess for significant
differences (p < 0.05) in microbial communities, between samples. Microbial community
functions were predicted and analyzed by FAPROTAX (Version 1.1) software [14].

3. Results
3.1. High–Throughput Sequencing Analysis

Using Illumina sequencing, 954,755 sequences were identified from 14 intestinal sam-
ples, and 4814 OTUs were observed at the 97% similarity level (Table S1). We observed the
highest number of bacterial species in shrimp intestines (1686.60 ± 201.16), followed by crab
intestines (1043.67 ± 181.00), whereas fish and razor clam intestines recorded the lowest bacte-
rial numbers (Figure 1a). The Shannon index (Figure 1b) for shrimp intestinal bacteria was the
highest (7.55 ± 0.58), followed by fish intestines (4.05 ± 1.22) and crab intestines (4.02 ± 1.11),
whereas razor clam intestinal bacteria recorded the lowest index (2.91 ± 0.92). The richness
index for shrimp intestinal bacteria was the highest (1831.38 ± 249.18), followed by the crab
intestinal tract (1182.33 ± 195.13). In contrast, the richness index of intestinal bacteria in fish
(988.67 ± 374.40) and razor clam (938.95 ± 507.32) were the lowest (Figure 1c).
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The dominant taxa in different intestinal samples at the genus level (abundance > 2%) are
shown (Figure 2). The dominant genera in fish intestines were Vibrio (46.46%), Photobacterium
(23.97%), Cetobacterium (9.00%) and Propionigenium (2.55%). The dominant genera in crab
intestines were Photobacterium (12.53%), Candidatus Hepatoplasma (9.76%), Paraclostridium
(8.60%), Vibrio (5.03%), Propionigenium (4.86%) and Candidatus Bacilloplasma (3.10%). Vibrio
(8.45%) dominated in razor clam intestines. Finally, Lactobacillus (11.08%), Mangrovibacter
(4.99%) and Fusibacter (2.18%) were the dominant genera in shrimp intestines.
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genus (b) levels.

3.2. Differences in Bacterial Communities from Intestinal Samples Identified by PCoA Analysis

PCoA was used to highlight differences in bacterial communities in intestinal samples
(Figure 3). The smaller the distance between the samples on the PCoA figure, the more
similar the bacterial community of the intestinal samples. Intestinal samples of the same
animal (fishes, crabs and razor clams) were gathered together. There was a large distance
on the PCoA figure among fishes, crabs and razor clams’ intestinal samples. Whereas, the
distance on the PCoA figure between different shrimp samples is large. In general, samples
from the same animals gathered together, reflecting bacterial changes with different animals’
intestine. In addition, crab samples are close to the fish samples in PCoA, but far from the
shrimps and razor clam samples.

3.3. Microbial Functional Prediction Analyses

Microbial functions were predicted using FAPROTAX and were based on bacterial
relative abundance. Overall, 75 functional groups were identified in intestinal bacterial
communities (Figure 4a). Dominant functional groups in fish included chemoheterotrophy
(26.01%), fermentation (25.26%), aerobic chemoheterotrophy (20.77%), nitrate reduction
(13.19%), animal parasites or symbionts (4.71%) and human pathogens (4.45%). Dominant
functional groups in crab included chemoheterotrophy (20.65%), fermentation (18.68%),
aerobic chemoheterotrophy (11.86%) and nitrate reduction (3.46%). Dominant functional
groups in razor clam included phototrophy (20.23%), photoautotrophy (20.23%), oxy-
genic photoautotrophy (20.23%) and cyanobacteria (20.23%). Dominant functional groups
in shrimp included chemoheterotrophy (18.42%), fermentation (13.23%), aerobic chemo-
heterotrophy (7.24%), animal parasites or symbionts (3.27%) and nitrate reduction (2.48%).
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based on the relative abundance of bacterial taxa.

After functional predictions in each group, a cluster analysis revealed that bacterial
community functional profiles in fish and crab were highly similar to each other. Microbial
functional profiles in razor clam and shrimp intestines exhibited large distances with fish
and crabs (Figure 4b). T–tests (p < 0.05) indicated that chemoheterotrophy, fermentation,
aerobic chemoheterotrophy, nitrate reduction, phototrophy, photoautotrophy, oxygenic
photoautotrophy and animal parasites were the significant functional differences between
intestinal samples (Figure 5).
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4. Discussion

Identifying intestinal microbiome composition provides insights on how these mi-
crobial structures are formed, and how they potentially impact their hosts. In this study,
we investigated intestinal microbiome compositional and functional differences in shrimp,
crab, razor clam and fish taken from an aquaculture area. We also analyzed the potential
impact of microbial functions on hosts.

4.1. Intestinal Microbiome Composition in Aquatic Animals May Reflect Specific Host
Physiological Selection

Our data showed that microbial intestinal composition was significantly different
between the four study animals. In particular for shrimp, bacterial diversity and richness
were significantly higher than for fish, crab and razor clam. Previous studies have demon-
strated the main source of intestinal microbial composition in cultured aquatic animals is
the surrounding environment [11,12,15]. However, intestinal microbiome composition is
not simply a reflection of microbes in local habitats, but also reflects host selection pres-
sures at the intestine level [16,17]. We believe these reasons, and possibly feeding pattern,
accounted for dominant microbe differences across our sample selection.

PCoA analyses revealed that microbes in different shrimp intestines were highly vari-
able when compared to fish, crab and razor clam. OTU abundance in these intestines was
also significantly higher when compared to other animals. In terms of physiology, shrimp
intestines are relatively proximal to the body surface, thus intestinal microbes may be more
affected by changes in external environments. This could be a reason for the significant
differences in intestinal bacteria populations in shrimp samples. In addition, when the
environment is relatively constant, obviously changes of dominant microbial taxa were
observed among different animals, suggesting that host physiology significantly impacts
on intestinal microbiota. Thus, intestinal microbiome may be affected by multiple fac-
tors [11,18]. Contributing to these factors is the host genetic background, which determines
host nutritional levels, potentially affecting intestinal microbiome diversity [10,19].
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4.2. Distinct Dominant Bacterial Taxa in Different Aquatic Intestines

In this study, Gammaproteobacteria, Fusobacteria, Clostridia, Mollicutes and Cyanobac-
teria were dominant taxa across all animal intestines. These commonalities indicated these
microbes are important contributors to host intestinal function, i.e., digestion, absorption
and immune responses [20–22]. Cyanobacteria were dominant in razor clam intestines,
with a relative abundance of 77.71%. Previous studies have indicated that the Cyanobacte-
ria, Prochlorococcus may be a food source for benthic shellfish, such as razor clam [11,12].
These bacteria are found in most aquatic habitats, providing food for aquatic animals.

We also observed that intestinal bacteria (genus level) were primarily anaerobic
and facultative anaerobes. In this study, Cetobacterium was the most dominant bacterial
genus in fish intestines. Cetobacterium is anaerobic in nature [23], and belongs to the core
microbiome of several fish intestines [24,25]. It has been reported that Cetobacterium, and
the protease–producing bacteria, Halomonas [26] are enriched in carnivores, suggesting
bacteria with such degrading enzyme activities are affected by nutritional levels. The
anaerobic bacteria, Propionigenium has been shown to produce propionate and acetate, via
fermentation [27]. Propionate is involved in regulatory functions in intestinal physiology
and immune systems [28]. Several members of the Vibrio genus are considered primary
disease pathogens, causing death in aquaculture animals, and seriously endangering
aquaculture systems [29,30]. In this study, Vibrio abundance was observed at 46.44% in fish
intestines. However, Vibrio may also be beneficial to hosts. Vibrio also secretes amylases,
proteases, lecithinases and chitinases to help digest nutrients in the host, such as fats,
proteins and carbohydrates [31,32].

Lactobacillus was observed in the intestines of all aquatic animals, especially in shrimp,
where the highest abundance (11%) was recorded. The genus is common to gastrointestinal
tracts of most aquatic animals, where via glycolysis, they convert large hexose substrates
into pyruvate, and then to lactic acid [33]. In terms of fish health, Lactobacillus have been
widely reported as beneficial probiotics [34]. High levels of Lactobacillus lactis produce
antimicrobial peptides and proteins in aquaculture ponds, and may exert antibacterial
activities against some Gram–positive and negative bacteria [35]. Therefore, L. lactis
appears to regulate the intestinal tract e.g., by inhibiting specific microbes by production
compounds and competition for nutrients and energy [36–38]. Tenericutes, from the genus
Candidatus Hepatoplasma, exhibited a high abundance in crab intestines, in line with
previous studies [11,12]. Another study also observed that Candidatus Hepatoplasma was
beneficial to its isopod host intestinal tract under low–nutrient conditions [39]. In this
study, the high abundance of Candidatus Hepatoplasma in the crab’s intestine may indicate
that the intestinal absorption of nutrients is abnormal.

4.3. Intestinal Microbiota Functional Profiles and Potential Effects on Aquatic Animal

FAPROTAX analyses indicated significant differences amongst aquatic animal groups,
in terms of functional output. Chemoheterotrophy, fermentation and nitrate reduction were
the primary functions of intestinal microbes in fish, crab and shrimp. Gammaproteobac-
teria, Alphaproteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the main
executors of chemoheterotrophy and aerobic chemoheterotrophy. In a healthy animal state,
bacteria provide nutrients and energy to hosts via fermentation of indigestible food ingre-
dients, thus maintaining a balanced metabolism and immune system [21]. Previous studies
have reported that gut Firmicutes, Actinobacteria, Proteobacteria and Bacteroides have im-
portant roles in carbohydrate fermentation, polysaccharide catabolism, and amino acid and
protein utilization [21,22]. FAPROTAX analysis indicated that microbes in similar environ-
ments exert similar ecological functions, but the microbial communities performing these
functions may be different [40]. However, for razor clam intestinal microbiome, photoau-
totrophy functions were highly abundant, and were mainly contributed by Cyanobacteria.
This phenomenon indicated that Cyanobacteria were important food sources for razor
clams [12]. Thus, our data suggested that microbial functional profiles were strongly
shaped by intestinal conditions. This study also exemplified the importance of ascertain-
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ing functional characteristics of microbial communities, in addition to identifying which
microbes exist in the intestinal tract.

5. Conclusions

This study explored intestinal bacterial composition and functional profiles in different
aquatic animals and provided a key reference for future studies investigating crosstalk
between these hosts and their microbiota. Future work, incorporating ecological and
physiological intestinal microbiota studies, must delineate how microbe are coordinated in
the intestines, and how these microbes crosstalk with their aquatic hosts.
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