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Abstract: The reasonable decision of ship detention plays a vital role in flag state control (FSC).
Machine learning algorithms can be applied as aid tools for identifying ship detention. In this study,
we propose a novel interpretable ship detention decision-making model based on machine learning,
termed SMOTE-XGBoost-Ship detention model (SMO-XGB-SD), using the extreme gradient boosting
(XGBoost) algorithm and the synthetic minority oversampling technique (SMOTE) algorithm to
identify whether a ship should be detained. Our verification results show that the SMO-XGB-SD
algorithm outperforms random forest (RF), support vector machine (SVM), and logistic regression
(LR) algorithm. In addition, the new algorithm also provides a reasonable interpretation of model
performance and highlights the most important features for identifying ship detention using the
Shapley additive explanations (SHAP) algorithm. The SMO-XGB-SD model provides an effective
basis for aiding decisions on ship detention by inland flag state control officers (FSCOs) and the
ship safety management of ship operating companies, as well as training services for new FSCOs in
maritime organizations.

Keywords: flag port control; ship detention decision; smart maritime; SMOTE algorithm; XGBoost

1. Introduction

Shipping is vital to a country’s economic development, especially in respect of inland
waterway transportation, which is one of the main transportation methods of goods
in China. However, water traffic accidents occur frequently. A shipping accident can
cause a huge loss of property, loss of life, and environmental pollution. For example,
the sinking of the Eastern Star cruise ship in the middle reaches of the Yangtze River,
on 1 June 2015, caused the death of 422 passengers and crew and resulted in significant
property loss [1]. Therefore, reducing transport risk and avoiding shipping accidents have
become increasingly important.

Flag state control (FSC) inspections provide a strong line of defense against substan-
dard ships with serious defects, and are irreplaceable for protecting water traffic safety,
especially inland watercraft navigation, and for preventing ships from causing environ-
mental pollution [2,3]. FSC inspections are conducted by the maritime regulatory authority
on ships flying the national flag in accordance with relevant laws, technical regulations,
required certificates, and the ship’s manning status [3]. When an FSC inspection deter-
mines that a ship has major defects affecting navigational safety, the ship’s safety inspector
implements mandatory measures to “detain” the ship in accordance with relevant laws,
regulations, and professional knowledge. There have been a few studies on the relationship
between ship defects and ship detention decisions [4–7] in previous studies. Although
these methods are feasible for ship detention decision-making, they all have shortcomings.
Due to the complexity and diversity of ship detention factors, and the problem of sample
imbalance in FSC inspection dataset, it is necessary to combine multiple methods and use
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integrated intelligent algorithms to improve decision-making accuracy. Therefore, in this
study, we combine the synthetic minority oversampling technique (SMOTE) algorithm
with the latest machine learning achievement, i.e., the extreme gradient boosting (XGBoost)
algorithm, to make intelligent decisions on ship detention. The model eliminates the
problem of sample imbalance, and ensures that the sample clearly reflects the importance
of various features. Its advantages include high prediction accuracy, good fitting effect on
classified data, and strong generalization ability. In addition, the interpretability analysis
of this “black box” model makes the model easy to understand. Experimental results verify
the reliability and practicability of the SMOTE-XGBoost-Ship detention (SMO-XGB-SD)
model for making decisions on ship detention in the inland FSC inspection. Furthermore,
the development of an intelligent aid for making decisions on ship detention is significant
for the promotion of “smart maritime” in inland rivers.

The remainder of this paper comprises five sections. In Section 2, we review the
relevant literature on FSC inspection and ship detention decision analysis. The overall
framework of the SMO-XGB-SD model is presented in Section 3. In Section 4, we describe
the original dataset and provide the steps of the proposed model in detail. In Section 5,
we discuss the results of the analysis using the proposed model. Finally, in Section 6, we
provide conclusions and further research directions.

2. Literature Review

This work involves two major topics, FSC ship detention analysis and XGBoost
algorithm applications. The related research is reviewed below.

2.1. Flag Ship Control (FSC) Ship Detention Analysis

Since ship detention has an important impact on water traffic safety, many studies on
ship detention have been conducted over the decades. To the best of our knowledge, based
on our literature review, there are few studies on FSC ship detention, but many studies on
port state control (PSC) ship detention. In addition, ship detention has been studied from
two perspectives: detention factors and ship detention decision making.

In respect of detention factors, Zhang (2014) [8] selected FSC ship detention factors
such as life-saving equipment, fire-fighting facilities, and navigation safety, combined
with a formal safety assessment (FSA) method to evaluate the safety risk of ships by FSC
inspections. Hao et al. (2016) [9] used the Apriori algorithm to conduct data mining on
FSC inspection data from the Changjiang Maritime Safety Administration and showed that
there were associations between ship deficiencies and FSC detention. Chen et al. (2019) [10]
used a grey relational degree (GRA) analysis model with improved entropy weight to
determine the key PSC ship detention factors and analyzed the degree of influence of the
various factors on the ship detention decision. Tsou, M. et al. (2018) [11] used big data
to analyze the relationships among ship detention deficiencies and external factors, and
objectively identified regular correlations. Yang et al. (2018) [6] proposed a data-driven
Bayesian network method to analyze the correlation between ship detention factors in
PSC inspection and the key factors affecting ship detention, including the number of
deficiencies, types of deficiencies, and age of the ship. Carious, P. et al. (2009) [12] analyzed
4080 PSC inspection reports by the Swedish Maritime Authority, from 1996 to 2001, using
an econometric model, and found that age, nationality, and type of ship at the time of
inspection were the main determinants in the ship detention decision. Bao et al. (2010) [13]
analyzed the influence of culture on ship detention and the influence of detention rate on
flag state, age of ship, inspection institution, type of ship, and recognized international
organizations. Carious, P. et al. (2009) [14] analyzed the data of 515 PSC inspections from
the Indian Ocean MOU region, investigated the determinants of the number of deficiencies
and the possibility of detention, and finally concluded that the main factors causing ship
detention were the age of the vessel and the inspection location.

In respect of ship detention decision making, Sun (2011) [5] constructed a vessel
detention index system according to the principle of maximum proportion and determined
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the weight of each index using the triangular fuzzy principle. Finally, a unity model
of ship detention decision making was built by combining it with the fuzzy decision
model. Considering the complexity and uncertainty of ship safety inspections, Zhang
et al. (2020) [7] built a PSC inspection detention risk analysis model based on Bayesian
network theory to determine the high-risk factors leading to ship detention and to provide
an effective basis for a detention decision by a port state control officer (PSCO). Yang
et al. (2018) [6] analyzed key factors affecting ship detention based on a Bayesian network,
including the number of defects, types of defects, the age of the ship, etc., and developed
a risk prediction tool for predicting the probability of ship detention under different
circumstances, which effectively helped port authorities to rationalize their inspection
regulations and check resource allocations. Kim, G. et al. (2008) [4] reported that the high
detention rate of Korean ships led to their increased inspection rate in PSC countries. They
established a model to identify vulnerable PSC ships through logistic regression analysis,
and used the safety inspection data from 946 ships for verification. Fu, J. et al. (2020) [15]
put forward a novel framework to optimize an analytic hierarchy process (AHP) model
for identifying the main types of vessel defects, and introduced a simple Bayesian model
for identifying the weighting of critical defects to predict the probability of ship detention.
Finally, the PSC inspection dataset was used to model the performance test, and the results
proved that the method could be applied to real ship safety inspection work to assist
PSCOs making detention decisions, and therefore reduce the time and cost needed for
PSC inspections.

2.2. Extreme Gradient Boosting (XGBoost) Algorithm Applications

Ship detention is essentially the classification of detention. As compared with tra-
ditional machine learning models, such as decision tree and support vector machine
(SVM) [16,17], the ensemble learning model is one of the most popular concepts in ma-
chine learning, and integrates multiple weak classifiers into one strong classifier [18,19].
XGBoost, one of the most advanced integrated learning algorithms, was proposed by Chen
in 2016 [20]. Since the XGBoost algorithm has the advantages of high speed, high accuracy,
and good robustness, it has been applied to many fields, such as transportation safety,
biomedicine, and energy manufacturing.

In the field of transportation safety, Parsa et al. (2020) [21] used the XGBoost algorithm
to detect road accidents through a real-time set of data that included traffic, networks,
demographics, land use, and weather characteristics. Ma et al. (2019) [22] proposed a
methodology framework based on the XGBoost algorithm and a grid analysis from the
perspective of city managers to study the spatial relationships between eight factors, i.e.,
alcohol involved, number of parties, crash type, lighting conditions, collision involvement,
motorcycle collision, day of the week and time of the day, and mortality, in Los Angeles
County, and accordingly provided specific recommendations on how to reduce mortality
and improve road safety.

In the application of biomedicine, Bi et al. (2020) [23] developed a new interpretive
machine learning approach using the XGBoost algorithm and six different types of sequen-
tial encoding schemes to distinguish m7G sites, with cross-validation showing that their
approach was more accurate than other models. Mahmud et al. (2019) [24] validated the
reliability and superiority of the XGBoost classifier for the determination of drug–target
interactions (DTI). In the application of energy manufacturing, Wang et al. (2020) [25]
proposed a brand recognition model based on SMOTE and XGBoost integrated learning
in near-infrared spectroscopy (NIRS), and obtained an identification accuracy of 94.96%,
which could provide a new alternative method for diesel brand recognition. However, as
far as we know, based on our literature review, the XGBoost classifier has not been applied
in the field of FSC ship detention decision making.

In summary, most existing studies have been aimed at the analysis of ship detention
factors and decision-making models with traditional non-machine learning algorithms.
With the rapid development of artificial intelligence, countries need a “smart maritime”
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strategy, and therefore combining traditional ship detention theory with modern machine
learning technology is a breakthrough in the field of FSC inspection.

3. Overall Framework

The overall framework of the SMO-XGB-SD model is illustrated in Figure 1. As shown
in the figure, the model involves five procedures. First, we collected mass datasets of
inland ship safety inspections. Second, for these unbalanced datasets, we used SMOTE
algorithms for data preprocessing, and transformed the datasets into numeric vectors
using one-hot encoding methods. Third, we built a ship detention model for inland waters
using the XGBoost classification algorithm, and then continuously optimized parameters to
construct the optimal SMO-XGB-SD model. Fourth, we evaluated the model’s performance,
and conducted comparative experiments with other algorithms. Finally, we used the
Shapley additive explanations (SHAP) algorithm for the interpretability analysis of our
SMO-XGB-SD model.
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Figure 1. Overall framework of the ship detention decision-making model based on machine learning, i.e., the SMO-XGB-
SD model.

4. Materials and Methods
4.1. Original FSC Inspection Datasets

In this study, the original datasets for training and evaluating the SMO-XGB-SD
model were collected from the Changjiang Maritime Safety Administration of the People’s
Republic of China (CJMSA). The original datasets consisted of 75,442 FSC ship safety
inspection samples and 10 features, comprising MMSI, ship’s name, port of registry, date
of inspection, port of inspection, inspection authority, number of deficiencies, the ship
detention result, deficiency code, and defect description. The original datasets contained
some sensitive ship information, which was desensitized, as shown in Table 1. The features
with many missing items were first deleted from the original FSC inspection datasets. In
order to further solve the problem of low precision caused by the unbalanced data, the
deficiency codes were converted into major category codes (see Figure 2), and the datasets
were divided into positive and negative samples, according to the ship detention results, to
form the final dataset.
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Table 1. Original flag state control (FSC) inspection datasets.

NO. MMSI Ship’s Name Port of Registry Date of
Inspection

Port of
Inspection

Inspection
Authority

Number of
Deficiencies

Ship Detention
Result

Deficiency
Code Defect Description

1 412400000 SHIP A1 Anqing 23 June 2017 Anqing
Anqing Port

Marine
Department

8 No 9999
Other: Port of registry
and name of vessel not

clear

2 412400001 SHIP A2 Fuling 16 June 2017 Fengdu
Chongqing

Fengdu Marine
Department

23 Yes 1499 Other: No identification
for engine-room valves

3 412400002 SHIP A3 Fengjie 15 June 2017 Wanzhou

Chongqing
Wanzhou

Marine
Department

9 Yes 0741
Fire hose, fittings and

hydrants, hoses, squirts,
one hose broken

75439 412475438 SHIP Z1 Jiujiang 1 July 2017 Yueyang
Yueyang

Linxiang Marine
Department

8 No 0899 Other: No plugging
equipment

75440 412475439 SHIP Z2 Jiujiang 1 July 2017 Yueyang
Yueyang

Linxiang Marine
Department

8 No 0830

Pipes and wires: Engine
room piping coloring

does not meet the
requirements

75441 412475440 SHIP Z3 Jiujiang 1 July 2017 Yueyang
Yueyang

Linxiang Marine
Department

8 No 9910 National flag: defaced
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4.2. Synthetic Minority Oversampling Technique (SMOTE)

For this study, we selected the SMOTE method, which was proposed by Chawla [26]
in 2002. It is based on the principle of oversampling the minority class and undersampling
the majority class to deal with the sample imbalance problem. The class with a large
number of samples is called the majority class, and the class with a small number of
samples is called the minority class. When the number of samples in the minority class
is too small, the accuracy of the traditional classifier is biased towards the majority class.
Even if the accuracy rate is high, the classification of the minority class samples cannot be
guaranteed. However, the data preprocessing technique applied to the problem of sample
imbalance is different from the simple copy sample mechanism of random oversampling.
The SMOTE method synthesizes new samples between two minority samples through
linear interpolation, thereby effectively alleviating the overfitting problem caused by
random oversampling, making the sample class distribution balanced, and improving the
generalization ability of the classifier on the test set.

The basic principles of the SMOTE method [27] are as follows: firstly, select each sam-
ple xi from the minority samples as the root sample of the new synthetic sample; secondly,
according to the upsampling magnification n, randomly select one of the k neighboring
samples of the same category of sample xi as the auxiliary sample for synthesizing the
new sample, repeated n times; then, linear interpolation is performed between the sample
xi and each auxiliary sample through Equation (1), and finally n synthesized samples
are generated.

xnew,attr = xi,attr + rand(0, 1)× (xij,attr − xi,attr) (1)

where xnew,attr for attr = 1, 2, · · · , d is the attr-th attribute value of the i-th sample in the
minority sample; rand(0, 1) is a random number between 0 and 1; xij for j = 1, 2, · · · , k is
the j-th nearest neighbor sample of xi; xnew represents a new sample synthesized between
xij and j.

4.3. One-Hot Encoding

One-hot encoding [28,29] is also called one-bit effective encoding. The method uses
N-bit status registers to encode N states. Each state has an independent register bit and,
at any time, only one bit is valid. One-hot encoding is the representation of categorical
variables as binary vectors with the advantage that it can transform a sample dataset
into a form that is easy to use for machine learning, especially for the machine learning
classification algorithm used in this study, which significantly improves the calculation
speed and performance of the model.
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The dates of FSC inspections were divided according to the seasons into spring,
summer, autumn, and winter. According to the one-hot coding rule, each season was
represented by a four-dimensional binary vector, for example, spring was coded as (1, 0, 0,
0), summer was coded as (0, 1, 0, 0), autumn was coded as (0, 0, 1, 0), and winter was coded
as (0, 0, 0, 1). In addition, the FSC inspection datasets contained 22 types of major category
deficiency codes, and these codes appeared multiple times in a single inspection record.
For example, during the inspection on 1 July 2017, codes 0200, 0700, and 1700 appeared
once, code 2000 appeared three times, and the others did not appear. These major category
deficiency codes were coded as (0, 1, 1, . . . , 1, 3), whereas the omitted codes were all 0.

4.4. XGBoost Classification Machine Learning Algorithm

The extreme gradient boosting (XGBoost) algorithm, designed by Chen Tianqi [20], is a
distributed and efficient boosting integrated classification algorithm based on decision trees.
Its basic principle is to combine several low-precision weak classifiers into a high-precision
classification. The XGBoost algorithm has the advantages of parallelism, high speed,
and good robustness [30]. It is able to fit classification data and can automatically learn
the splitting direction for missing values in the data, as well as introduce regularization
and second-order Taylor expansion to improve the prediction accuracy of the algorithm.
Compared with similar integrated algorithms, it has greater advantages in terms of fitting
accuracy and calculation speed [31–33].

A diagram of the basic process of the XGBoost algorithm is shown in Figure 3. For
a given training dataset D = {(xi, yi)}(|D| = n, xi ∈ Rm, yi ∈ R), n is the number of
samples and m is the number of features. According to the CART tree algorithm as the
base classifier [34,35], the model function can be defined by Equation (2) as follows:

ŷi
(k) =

K

∑
k

fk(xi) (2)

where K represents the number of decision trees, fk represents the model’s k-th decision
tree, and xi is the feature vector corresponding to sample i.
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For machine learning algorithms, the core of the loss function is to measure the gener-
alization ability of the model, that is, whether the prediction of the model on unknown data
is accurate or not. XGBoost introduces model complexity to measure the computational
efficiency of the algorithm; therefore, the objective function of the XGBoost algorithm is
the traditional loss function plus the model complexity function, which can be written as
Equation (3):

Obj =
m

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (3)

where Obj is the objective function, and l(yi, ŷi) is the training error of sample xi, and Ω( fk)
is the regular term of the k-th classification tree.
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After several rounds of iterations during the training process, the objective function of
the XGBoost algorithm is expressed by Equation (4) as follows:

Obj(t) =
m

∑
i=1

l[yi
(t), ŷi

(t−1) + ft(xi)] +
t−1

∑
k=1

Ω( fk) + Ω( ft) (4)

where ft(xi) represents the generated t-th classification tree and
t−1
∑

k=1
Ω( fk) represents the

sum of complexity of the first t− 1 classification trees.
Second-order Taylor approximation expansion is performed for the above formula

as follows:

Obj(t) ≈
m

∑
i=1

[l(yi
(t), ŷi

(t−1) + ft(xi)gi +
1
2

ft
2(xi)hi)] + Ω( ft) + C (5)

where gi and hi are the first derivative and the second derivative, respectively, with respect
to ŷi

(t−1) of the loss function l(yi
(t), ŷi

(t−1)).
The classification tree complexity is calculated by Equation (6) and, to further simplify

the expression, two equations are defined as in Equation (7):

Ω( ft) = γT +
1
2

λ
T

∑
j=1

w2
j (6)

Gj = ∑
i∈Ij

gi, Hj = ∑
i∈Ij

hi (7)

Taking Equations (6) and (7) into Equation (5), we get the final objective function:

Obj(t) ≈
T

∑
j=1

[
wjGj +

1
2

w2
j (Hj + λ)

]
+ γT (8)

where wj is the weight of the j-th CART leaf node, T is the number of CART leaf nodes,
and λ,γ are penalty coefficients.

Taking the partial derivative of objective function Obj(t) with respect to wj and setting
the partial derivative as equal to 0 to get the optimal weight wi

∗:

wi
∗ = −

Gj

Hj + λ
(9)

Taking Equation (9) into Equation (8), we obtain the optimal structure of the t-th
classification tree that minimizes the objective function:

Obj(t) = −1
2

T

∑
j=1

Gj

Hj + λ
+ γT (10)

The XGBoost algorithm uses the random subspace method when selecting the optimal
split point. For each split of the node, the eigenvalues are randomly selected according to
the proportion of different feature variables, and then each randomly selected eigenvalue
is traversed, and the gain is selected. Choosing the split point that maximizes the gain
function effectively improves the generalization ability of the model and avoids overfitting.

When selecting the split point of subtree, the gain function is defined as follows:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (11)
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where GL and HL are the gradient values of the subtree on the left of the split point and GR
and HR are the gradient values of the subtree on the right side of the split point.

The optimal structure and optimal split point of the new tree are determined by the
above calculation, and the prediction accuracy of the model is improved by integrating the
new tree.

4.5. Evaluation Metrics

An imbalanced data classification model cannot be evaluated using only accuracy;
therefore, in this study, to evaluate the classification performance of SMO-XGB-SD we used
the following evaluation metrics from multiple perspectives [36].

(1) Accuracy (Acc), precision rate (P), recall rate, and F1 score, using Equations (12)–(15),
respectively:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 score = 2× precision× recall
precision + recall

(15)

where TP originally represents a positive example and is predicted to be a positive example;
TN originally represents a negative example and is predicted to be a negative example; FP
originally represents a negative example and is predicted to be a positive example; and FN
originally represents a positive example and is predicted to be a negative example.

(2) Binary confusion matrix. Confusion matrix is the most basic, intuitive, and simplest
method to measure the accuracy of a classification model. It separately counts the number
of correct and incorrect classifications of the model, and then displays the results in a
matrix, as shown in Figure 4.
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(3) Receiver Operating Characteristic (ROC) curve and Precision Recall (PR) curve [37].
ROC curve shows the change curves of the true positive rate (TPR) and false positive
rate (FPR) under different classification thresholds. PR curve shows the change curves of
precision and recall under different classification thresholds. The TPR and FPR are defined
as follows:

TPR =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

where TPR is true positive rate, which is, the proportion of correctly identified positive
samples in the total positive samples; FPR is false positive rate, which is the actual value are
negative examples and the percentage of negative examples predicted to be positive examples.
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In addition, in order to make a better comparison between ROC curves, Auc, which is
the area under the ROC curve, is usually used to measure the performance of a classification
algorithm. The greater the value of the Auc, the better the classification performance.

4.6. Shapley Additive Explanations (SHAP) Method

SHAP is a model interpretation method independent of the model, which can quantify
the contribution of each feature to the predictions made by the model [38]. This technique
considers the impact of a single feature and the impacts of feature groups, as well as
possible synergistic effects among features. The SHAP value is based on the Shapley value,
which is a concept in game theory. The SHAP value of feature i(φi) can be computed as
Equation (18):

φi = ∑
S⊆N\{i}

|S|!(|M| − |S| − 1)!
|M|! [ fx(S ∪ {i})− fx(S)] (18)

where N represents the set of all features in the training set and its dimension M; S
represents a permutation subset of N; fx(S) represents the sample average calculated
using only the feature set S, without considering the feature i; fx(S ∪ {i}) represents
the sample average calculated using the feature set S, and considering the feature S;
(|S|!(|M| − |S| − 1)!)/(|M|!) is the weight of the difference between the sample values
under the feature subset S.

5. Results and Discussion
5.1. Data Preprocessing and Oversampling Analysis

Data preprocessing is a very important task before establishing a model. As shown
in Table 1, there are many redundant features, such as MMSI, ship name, and defect
descriptions. These features have a weak correlation and a large number of missing items.
Hence, the first step is to remove redundant features. A description of the five selected
features is provided in Table 2.

Table 2. Descriptions of the selected five features.

Feature Value Description Feature Value Description

Location (port)
of registry

AH Anhui Province

Inspection
authority

(continued)

WHan Wuhan Maritime
Safety Administration

CQ Chongqing
Province SX Sanxia Maritime Safety

Administration

HEE Henan Province LZ Luzhou Maritime
Safety Administration

HB Hubei Province Number of
deficiencies 0–50 The value range of the

number of deficiencies

SH Shanghai

Deficiency code

0100 Ship certificate and
related documents

SC Sichuan Province 0200 Crew certificate and
watchkeeping

JX Jiangxi Province 0600 Lifesaving equipment

JS Jiangsu Province 0700 Fire equipment

SD Shandong
Province 0800 Accident prevention

ZJ Zhejiang Province 0900 Structure, stability, and
related equipment

YN Yunnan Province 1000 Warning signs
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Table 2. Cont.

Feature Value Description Feature Value Description

LN Liaoning Province 1100 Goods

GZ Guizhou Province 1200 Load line

Date of
inspection

1 Spring 1300 Mooring equipment

2 Summer 1400 Main power and
auxiliary equipment

3 Fall 1500 Navigation safety

4 Winter 1600 Radio

Inspection
authority

CQ
Chongqing

Maritime Safety
Administration

1700
Dangerous goods

safety and pollution
prevention

YB
Yibin Maritime

Safety
Administration

1800
Oil tankers, chemical
tankers, and liquefied

gas tankers

WH
Wuhu Maritime

Safety
Administration

1900 Pollution prevention

HS
Huangshi

Maritime Safety
Administration

2000 Operational inspection

JZ
Jingzhou Maritime

Safety
Administration

2500 ISM/NSM

YC
Yichang Maritime

Safety
Administration

2600 Bulk carrier additional
safety measures

JJ
Jiujiang Maritime

Safety
Administration

2700 Ro-ro ship additional
safety measures

YY
Yueyang Maritime

Safety
Administration

2800
High-speed passenger
ship additional safety

measures

AQ
Anqing Maritime

Safety
Administration

9900 Others

Subsequently, deficiency codes are converted into major category codes according to
the time and location of a ship inspection, where the frequency was counted, as shown in
Figure 2. Finally, the categorical variables are represented as a binary vector using one-hot
encoding, and the dataset is converted to the matrix of 12401× 54.

Next, the new dataset is divided into a training set and a test set at a ratio of 7:3, and
SMOTE oversampling technology is used to artificially synthesize minority “detained”
samples to solve the problem of imbalanced samples. The distribution of classes before
and after SMOTE processing is shown in Figure 5. Figure 5a shows that the two types of
sample of the original data are extremely unbalanced. In Figure 5b, we can observe that
the two types of sample in the training set have reached equilibrium. Using a balanced
dataset is conducive to training the classifier and can achieve higher accuracy.

5.2. Comparison with Other Classification Algorithms

In order to find the classification algorithm with the best performance, in this study,
we selected the three most used classification algorithms, i.e., random forest (RF), support
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vector machine (SVM), and logistic regression (LR) algorithm for experimental comparisons
with our proposed SMO-XGB-SD model. In particular, to improve the performance of the
algorithm, a grid search was used to adjust important model parameters. Table 3 shows
the final parameter settings of the five machine learning algorithms.
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Table 3. Parameter settings of SMOTE-XGBoost-Ship detention model (SMO-XGB-SD), XGBoost, random forest (RF),
support vector machine (SVM), and logistic regression (LR) algorithms.

XGBoost SMO-XGB-SD RF SVM LR

booster = ‘gbtree’
n_estimators = 110,

max_depth = 3,
learning_rate = 0.3

booster = ‘gbtree’
n_estimators = 110,

max_depth = 3,
learning_rate = 0.3

n_estimators = 10,
max_depth = 4

C = 2, kernel = ‘rbf’,
probability = True

C = 10, penalty = ‘l2′,
solver = ‘liblinear’

Next, we used the final adjusted parameters to train the SMO-XGB-SD algorithm,
and then used the test set for verification. The verification results are shown in Figure 6
and Table 4. According to Acc, P, Recall, and the F1 score, our proposed SMO-XGB-SD
algorithm shows the best performance.
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Table 4. Comparison results of SMO-XGB-SD, XGBoost, RF, SVM, and LR.

Models XGBoost SMO-XGB-SD RF SVM LR

Acc 0.978 0.993 0.976 0.976 0.971
P 0.780 0.980 0.910 0.910 0.520

Recall 0.350 0.830 0.170 0.270 0.110
F1 score 0.480 0.880 0.280 0.410 0.180

Furthermore, in order to visually demonstrate the prediction of the classifier, we show
the binary classification confusion matrix of the five models in Figure 7. Figure 7a–e show that
the color of the main diagonal gradually becomes lighter, which confirms that the number of
correctly predicted “detained” ships has decreased to a certain extent. Figure 7a shows that
only 22 ships were wrongly predicted as “non-detained”; the number of prediction errors for
detention is significantly lower than the prediction of other models, which is a promising result
for aiding FSC detention decision making. An inaccurate prediction would cause substandard
ships to be missed, which could cause water traffic risks.
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In order to further explore the performance of the model, an ROC curve was drawn
to show the model classification effect. The closer the ROC curve overall trend is to the
upper left corner, the better the model performance and the higher the probability of
correctly predicting the detention class. As shown in Figure 8, the overall accuracy (Auc)
of our proposed SMO-XGB-SD model is 98.7%, which is significantly higher than the other
classification models. The XGBoost algorithm without SMOTE oversampling technology is
5.5% higher than LR, which reflects the superiority of the XGBoost algorithm. In addition,
under the extreme imbalance of the sample dataset, the PR curve may be more practical
than the ROC curve. The PR curve is different from the ROC curve, i.e., the closer to the
upper right corner it is, the better the performance of the model. The model performance
displayed by the PR curve is consistent with the ROC curve, as shown in Figure 9.
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5.3. Interpretation with SHAP Method

According to Equation (18), the SHAP value was calculated, and the top 20 features of
all samples were plotted, as shown in Figure 10. In Figure 10a, the abscissa is the SHAP
value, and the ordinate represents the different features. Each row represents a feature,
and a point represents an FSC inspection sample. The color of the sample point indicates
the size of the feature value. The redder the color, the larger the feature value; the bluer
the color, the smaller the feature value. The x-coordinate value of the sample point is the
influence of the feature on the model prediction of “detained”. For example, the feature
“0200” refers to the deficiency code of “crew certificate and watchkeeping”. The redder
the color of the sample point, the larger the feature value, indicating that the SHAP value
is positive. The model develops towards predicting “detained” and presents a positive
effect. Conversely, the bluer the color of the sample point, the smaller the feature value,
indicating that the SHAP value is negative, and showing a negative effect. In an actual ship
safety inspection, an inspected ship without a large number of crew certificates can easily
lead to the ship being “detained”.
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The feature ranking based on the SHAP value, shown in Figure 10b, indicates the
important features that affect the model. It is consistent with the overall situation presented
in Figure 10a.

6. Conclusions

In this study, we have proposed a novel FSC ship detention decision-making model,
SMO-XGB-SD, which is used to aid flag state control officers (FSCOs) in accurately deter-
mining whether an inspected ship is “detained”. Although the FSC original dataset has
significant unbalanced problems, it can still accurately predict ship detention decisions.
This study verified the feasibility of combining machine learning algorithms and SMOTE
oversampling technology in the field of ship safety inspection. The results of a comparison
of SMO-XGB-SD with other classification algorithms verifies that SMO-XGB-SD performs
better in major metrics, including Acc, P, Recall, F1 score, and Auc. According to the
model interpretation method SHAP, the feature contribution of SMO-XGB-SD was visually
displayed and explained. In summary, the SMO-XGB-SD model proposed in this study is
novel, simple, efficient, and conducive to making accurate decisions on ship detention, and
therefore reduces the water traffic risk caused by substandard ships and guarantees the
safety of water traffic. Moreover, it can be used to provide auxiliary training services for
new employees of maritime organizations.

The scope of the FSC inspection datasets, in this study, is limited to the inland waters
of the Yangtze River in China, which may not be applicable to ship detention decision
making in other countries. Therefore, the adoption of big data mining and higher precision
algorithms could be the focus of future work. In addition, in order to better provide
guidance to stakeholders and provide auxiliary training services to maritime inspectors,
the development of a ship detention decision-making aid system for mobile devices should
be considered.
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