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Abstract: Based on traditional expressions and spherical trigonometry, at present, great circle naviga-
tion is undertaken using various navigational software packages. Recent research has mainly focused
on vector algebra. These problems are calculated numerically and are thus suited to computer-aided
great circle navigation. However, essential knowledge requires the navigator to be able to calculate
navigation parameters without the use of aids. This requirement is met using spherical trigonometry
functions and the Napier wheel. In addition, to facilitate calculation, certain axioms have been
developed to determine a vessel’s true course. These axioms can lead to misleading results due
to the limitations of the trigonometric functions, mathematical errors, and the type of great circle
navigation. The aim of this paper is to determine a reliable trigonometric function for calculating a
vessel’s course in regular and composite great circle navigation, which can be used with the proposed
axioms. This was achieved using analysis of the trigonometric functions, and assessment of their
impact on the vessel’s calculated course and established axioms.

Keywords: great circle; navigation; axiom

1. Introduction

Great circle (GC) navigation is used for the calculation of large distances in marine and
aero navigation [1,2]. Composite navigation is used when the great circle vertex exceeds the
high-latitude areas. In certain cases, it is acceptable to approximate the Earth as a sphere.
This approach is applicable to electronic navigation because the differences between great
circle, great ellipse (GE), or geodetic sailing (GS) are minor [3]. In [4], the authors presented
the differences between GC and GE, confirming measurable discrepancies in calculated
distances while using the GC for the initial calculation of courses. The findings presented
in our work refer to the spherical geometry and respective formulations; therefore, geodetic
and elliptical approaches were not considered.

In [5], the author notes that “the only safe way to use computer software for the
solution of navigation problems is with a full background, navigational knowledge and
understanding of the basic equation”, and the authors in [6] ask “Can anyone suggest
a neater and more elegant solution—without using the spherical trig?”. Perhaps there
is a means to use spherical trigonometry with validated expressions and established
axioms? The authors of [7] note that “Although the follow-up studies claim that some
new formulae which they proposed are the direct approach, they still have to calculate
the initial great circle course angle first”. These statements highlight the importance of a
reliable means to accurately calculate a vessel’s course, without mistakes that may arise
from the trigonometry. Each of the statements quoted above relates to the occurrence of the
same error, rather than noting the difference between the calculated angle and the vessel’s
true course.

In this paper, attention is drawn to a vessel’s course at the beginning and end of the
great circle navigation. In certain cases, the calculated angles do not represent the true
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course, and transformation of the angles is needed. To address this problem, a transforma-
tion axiom is proposed. Angles α and β (Figure 1) are auxiliary angles used to calculate
the true vessel’s course at the beginning (Cbeg) and end (Cend) of the route, respectively.

Figure 1. Elements of great circle navigation.

This can be performed using navigational quadrants or by following the axiom rules:
(1) When sailing eastbound, courses can be calculated using:

Cbeg = α, and Cend = 180− β, (1)

(2) When sailing westbound, courses can be calculated using:

Cbeg = 360− α, and Cend = 180 + β. (2)

The same axiom can be used in composite GC navigation. The sole purpose of the
proposed axiom is to enable the navigator to easily and quickly transform the auxiliary
angles into the vessel’s true course. In this paper, well-known expressions used in course
calculation are summarized and analyzed, followed by a recommendation of expressions
that can be safely used. This enables unification of expressions and elimination of mistakes
during the calculations.

2. Course Calculation Methods and Expressions

Angles α and β represent the auxiliary angles which are used in great circle and
composite navigation course calculation. To calculate these angles, the Napier wheel [8] is
used on a rectangular spherical triangle (Figure 1: PN, P1 or P2, V) with the following rules:
at the top of the wheel is the side of the triangle which is opposite to a right angle (90−ϕ);
fitting angles (α or β and ∆λ/2) are at both sides of the wheel; and at the bottom are latter
angles opposing the sides in complement (90−DO and ϕV) (Figure 2).

Figure 2. Napier wheel for great circle navigation triangle.
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To calculate values, the cosine of each element is equal to the product of the sine of the
two farther elements, or the cotangent of the two closer elements, respectively. Therefore,
auxiliary angles can be calculated as follows:

tg α (β) =
1

sin ϕ ·tg ∆λ
2

. (3)

In addition to using the Napier wheel, these elements can be calculated using the
spherical sine and cosine theorem, or the four-part formula. When the sine theorem is used,
the angles can be calculated using the following expression:

sin α (β) =
sin ∆λ · cos ϕ

sin Do
. (4)

when using the cosine theorem, the angles α and β are calculated using the following equations:

cos α =
sin ϕ2 − sinϕ1· cos Do

cos ϕ1 · sin Do
, (5)

cos β =
sin ϕ1 − sinϕ2· cos Do

cos ϕ2 · sin Do
. (6)

When the same angles are calculated using the four-part formula, the following
equations can be used:

tgα =
sin ∆λ

cos ϕ1 ·tg ϕ2 − sin ϕ1· cos ∆λ
, (7)

tgβ =
sin ∆λ

cos ϕ2 ·tg ϕ1 − sin ϕ2· cos ∆λ
. (8)

In Figure 3, composite great circle navigation with the defined limiting parallel is presented.

Figure 3. Elements of composite great circle navigation.

Here, the auxiliary angles are also calculated using the Napier wheel, in addition to
the previously described theorems. In such cases, the rectangular triangle with vertexes
PN, P1(P2) and G1(G2), or P2, V is used. The Napier wheel is constructed with the value of
(90−ϕ1) or (90−ϕ2) at the top, values of α or β and ∆λG1 or ∆λG2 at the sides, and finally,
(90−DO1) or (90−DO2) and ϕG at the bottom (Figure 4).



J. Mar. Sci. Eng. 2021, 9, 603 4 of 8

Figure 4. Napier wheel composite great circle navigation triangle.

Using the described rules, auxiliary angles can be derived as follows:

sin α =
cos ϕG
cos ϕ1

, (9)

sin β =
cos ϕG
cos ϕ2

, (10)

or:
cos α = tg ϕ1·tg Do1, (11)

cos β = tg ϕ2·tg Do2. (12)

Using the sine theorem, auxiliary angles can be calculated as:

sin α =
sin ∆λG1 · cos ϕG1

sin Do1
, (13)

sin β =
sin ∆λG2 · cos ϕG2

sin Do2
. (14)

Using the cosine theorem, the angles can be calculated using the following equations:

cos α =
sin ϕG1 − sin ϕ1 · cos Do1

cos ϕ1· sin Do1
, (15)

cos β =
sin ϕG2 − sin ϕ2 · cos Do2

cos ϕ2· sin Do2
. (16)

These equations can be used in the calculation of auxiliary angles α and β; however,
certain equations are not compliant with these axioms to determine the vessel’s true course.
This problem is discussed in the following sections.

3. Calculation of Auxiliary Angles α and β

Depending on the used equations, auxiliary angles may differ due to the limitations
of the trigonometric functions. This can lead to misinterpretation, resulting in erroneous
calculation of a vessel’s course. This is particularly the case when similar axioms are used,
e.g., without additional navigational tools or software. The analysis and determination of
accurate equations were conducted as follows.

In the testing phase, several geographical pairs of positions were used, with reference
to their relative locations, hemisphere, and the required distance to justifiably apply the
trigonometric functions. Four pairs were selected, two of which were situated in the
northern hemisphere and two in the southern hemisphere (Table 1). Routes crossing the
equator were not analyzed.



J. Mar. Sci. Eng. 2021, 9, 603 5 of 8

Table 1. Test position names and coordinates.

Route Point Point Name Latitude Longitude

1
P1 Gibraltar 35◦57′ 34” N 005◦55′56” W
P2 New York 40◦27′32” N 073◦50′03” W

2
P3 Kaapstad 33◦53′32” S 018◦21′50” E
P4 Rio de Janeiro 23◦08′18” S 043◦02′45” W

3
P5 San Francisco 37◦51′35” N 123◦01′27” W
P6 Yokohama 35◦02′50” N 140◦30′11” E

4
P7 Concepcion 36◦49′57” S 073◦15′34” W
P8 Auckland 35◦48′26” S 175◦24′03” E

To review the differences between theorems, auxiliary angles α and β for all routes
were calculated (eastbound and westbound), including the elements of composite navi-
gation, and using equations from the previous sections. The numbers of corresponding
theorems are placed in parentheses. The results of calculated angles are presented in
Table 2.

Table 2. Results of the calculated angles α and β between selected pairs of positions using different expressions.

Great Circle Navigation Combined Navigation

Route Angle Napier
(3)

Sine
Theorem

(4)

Cosine
Theorem

(5, 6)

Lim.
Parallel

Napier 1
(9, 10)

Napier 2
(11, 12)

Sine
Theorem
(13, 14)

Cosine
Theorem
(15, 16)

1 (west) α −68.43 −63.13 63.13

41◦ N

68.81 68.81 −68.81 68.81
β −66.40 −71.62 71.62 82.70 82.70 −82.70 82.70

1 (east) α 66.40 71.62 71.62 82.70 82.70 −82.70 82.70
β 68.43 63.13 63.13 68.81 68.81 −68.81 68.81

2 (west) α 71.68 −84.29 95.71

34◦ S

87.12 92.88 −87.12 92.88
β 76.86 −63.92 116.08 64.36 115.64 −64.36 115.64

2 (east) α −76.86 63.92 116.08 64.36 115.64 −64.36 115.64
β −71.68 84.29 95.71 87.12 92.88 −87.12 92.88

3 (west) α −55.50 −57.91 57.91

45◦ N

63.59 63.59 −63.59 63.59
β −57.26 −54.79 54.79 59.74 59.74 −59.74 59.74

3 (east) α 57.26 54.79 54.79 59.74 59.74 −59.74 59.74
β 55.50 57.91 57.91 63.59 63.59 −63.59 63.59

4 (west) α 48.72 −49.50 130.50

50◦ S

53.43 126.57 −53.43 126.57
β 49.41 −48.63 131.37 42.43 127.57 −52.43 127.57

4 (east) α −49.41 48.63 131.37 53.43 126.57 −53.43 126.57
β −48.72 49.50 130.50 42.43 127.57 −52.43 127.57

The selected routes, i.e., pairs of locations, can be considered to be representative
because suitable distances from various sources, e.g., [9], resulted in the same outcomes.
The coordinate pairs refer to the WGS84 geodetic datum. Although slight differences
are caused by the lengths of axes and inverse flattening coefficients (Table 3), the type of
geodetic datum does not affect the calculation of the elaborated parameters, i.e., great circle
angles and distances.

Table 3. Difference between chart datum reference ellipsoids [10].

Name Year Semi-Major Axis (a)
(m)

Semi-Minor Axis (b)
(m)

Inverse Flattening
(1/f)

Bessel 1841 6,377,397.155 6,356,078.963 1:299.1528
Krassovsky 1940 6,378,245.00 6,356,863.00 1:298.3

Geodetic reference system 1980 6,378,137.00 6,356,752.31 1:298.257
WGS-84 1984 6,378,137.00 6,356,752.31 1:298.257223563
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Furthermore, the geodetic parameters should be considered when observed positions
do not refer to the same reference system, which was not the case in the proposed study.

From Table 2, it can be seen that angles differ due to the theorem used and the
respective hemisphere, because the south and west longitudes have negative signs. These
differences between angles that otherwise appear the same were also explained using the
spherical trigonometry approach. The equations which are not influenced by coordinate
signs are recommended for usage with the proposed axiom.

4. Comparison and Analysis of Theorems

When calculating auxiliary angles, differences appear with the southern hemisphere
pairs. This occurs due to the incorrect mathematical formulation, in addition to the sine
theorem itself.

Usually, in the calculation of great circle navigation auxiliary angles it is recommended
to use the cosine theorem with Equation (5) and Equation (6); however, some studies
use sine theorem expressions. In handbooks [11,12], Equation (3) is recommended. In
handbook [13], the cosine theorem is used, but always with positive latitudes, even in
the southern hemisphere case. As can be seen in Table 2, auxiliary angles α and β differ,
indicating that different angles are calculated and different rules for course calculation
have to be followed.

Furthermore, for composite navigation, Equations (9) and (10) are recommended [14–17].
Equation (9) and Equation (10) use the sine-derived Napier wheel theorem, whereas

Equation (13) and Equation (14) are derived using the sine theorem (Table 2), resulting
in differences between the calculated results. These differences are caused by improper
mathematical inscription. For great circle navigation, in the southern hemisphere the
auxiliary angle α lies between sides DO1 and (90−ϕ1), whereas angle β is situated between
sides DO2 and (90−ϕ2) (Figure 5). In the case of composite navigation, the angle α lies
between sides DO1 and (90−ϕ1), and angle β lies between sides DO2 and (90−ϕ2). In both
cases, the resulting angle is not α or β. For calculation purposes, the geographical latitude
in the southern hemisphere has a negative sign. One of the sides of both angles is (90−ϕ);
if this side is correctly written mathematically, the outcome is (90− (−ϕ)), which results in
(90−ϕ). This side is the opposite of that required in triangle PS, P1, and P2, and the final
results are angles α’ and β’ (Figure 6).

Figure 5. Composite navigation elements in the northern and southern hemisphere.
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Figure 6. Mistake in the interpretation of angle α/β due to the latitude sign.

The other problem occurs due to the sine theorem itself. As explained previously,
angles α’ and β’ are greater than 90◦ in the southern hemisphere. The sine theorem results
in an arcus of angles between −90◦ and +90◦.

Greater and lower angles result in a misleading arcus, and consequently, the wrong
angle. The sine values of 135◦ and 45◦ are the same (Figure 7, green line); thus, when
used for course calculation, the arcus sine shows a value of 45◦ rather than 135◦. The
cosine theorem results in an arcus of angles between 0◦ and 180◦. Therefore, the arcus
cosine will always show values between 0◦ and 180◦ (Figure 7, yellow line). This is
confirmed in Table 2. The cosine theorem yields stable results in both the northern and
southern hemispheres.

Figure 7. Mistake due to sine theorem limitation.

5. Conclusions

Most of the described equations are derived using the northern hemisphere naviga-
tion routes. The results calculated for the southern hemisphere are adjusted due to the
navigational quadrant. This is particularly pronounced in composite navigation, in which
navigators experience difficulties with the equations, and in the calculation of the vessel’s
true course. Substantial errors may arise by selecting the wrong quadrant in cases in which
the great circle vertex is placed outside the pairs of positions. In the present paper, the
possibility of erroneous calculations was identified, their presence was noted, and their
causes explained. The main goal of the presented calculations and analysis was to select
equations that provide navigators with a straightforward calculation using the proposed
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axiom, considering the spherical trigonometry approach and assuming the uniform geode-
tic datum for all geographic coordinates. When calculating the vessel’s course, using the
proposed axiom, the most suitable equations for great circle navigation are Equation (5)
and Equation (6), and Equation (11), Equation (12), Equation (15), and Equation (16) refer
to composite navigation. The proposed axiom is simple to use and provides correct results,
including at the vessel’s starting and ending point.
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11. Kos, S.; Zorović, D.; Vranić, D. Terestrička i Elektronička Navigacija; Faculty of Maritime Studies, University of Rijeka: Rijeka,

Croatia, 2010; pp. 37–39.
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