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Abstract: In the design of offshore platforms, the height of the bottom deck directly affects the
safety and engineering cost of the entire platform. It is a very important scale parameter in platform
planning. The American Petroleum Institute (API) specification shows that the key to determining
the height of the bottom deck lies in the wave height and calculation of the return level of the water
increase. Based on the perspective of stochastic processes, this paper constructs a new distribution
function model for joint parameter estimation of the marine environment. The new model uses a
family of random variables to show the statistical characteristics of design wave height and water
increase in both time and space, with extreme value expanded EED-I type distribution used as
marginal distribution. The new model performs statistical analysis on the measured hydrological
data of the Naozhou Station during the flood period from 1990 to 2016. The Gumbel–Copula structure
function is used as the connection function, and the compound distribution model of the wave height
and the water increase is used to obtain the joint return level of the wave height and the water
increase and through which the bottom deck height of the area is calculated. The results show
that the stochastic compound distribution improves the issue of the high design value caused by
simple superposition of univariate return levels. The EED-I type distribution still has good stability
under the condition of less measured data. Thus, under the premise of ensuring the safety of the
offshore platform, less measured data can still be used to calculate the height of the bottom deck
more accurately.

Keywords: deck elevation; stochastic process; extreme value expansion; joint probability; joint
return period

1. Introduction
1.1. Research Background

With the vigorous development of offshore oil and gas resources, the number of
offshore platforms required has also increased [1]. Different from the onshore structure,
the environmental conditions of the offshore platform are very harsh and complex, and
they are often affected by the combined effects of typhoons, waves, water increases, and
tides. Offshore platforms must withstand extreme sea conditions that may occur in the
sea area during the functioning period [2,3]. If the calculation of the marine environment
parameters is too low in value, the design value of the bottom deck of the offshore platform
is too low. Under the influence of extreme sea conditions, the waves could hit the upper
deck structure and cause the wave force to increase, and the overloading of the offshore
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platform could therefore be destroyed and result in huge economical loss, and even serious
casualties [4]. The height of the bottom deck of an offshore platform is related to the
safety of the platform and the engineering cost, and the key to calculating the height of the
bottom deck lies in the determination of the return period level of marine environmental
factors such as wave height and water increase. At present, the estimation model of marine
environmental design parameters has been extended from a single environmental factor to
a joint distribution model of two or more environmental factors. However, these studies
regard wave and water increase as random variables. In fact, waves, water and other
factors change over time. Therefore, it is necessary to use the distribution function model
of wave height and water level increase to estimate the marine environmental parameters.
It is very important for safe and economic ocean and coastal engineering that the influence
of time factors on the changes of marine elements is fully considered so as to use a more
reasonable distribution function model to complete the reasoning of joint design standards
of marine environment multi elements, and then put forward a set of more comprehensive
and more guiding ocean platform design standards. These could greatly minimize the
economic losses and casualties that people suffer when extreme marine environmental
load combinations occur and contribute to avoiding unnecessary engineering investment
waste due to high unnecessary fortification criterion.

1.2. Literature Review

Regarding the calculation of the elevation of the bottom deck, in actual engineering,
calculations are usually based on the relevant formulas including the maximum astro-
nomical tide, the height of the once-in-a-hundred-year wave, and the water increase in
accordance with the API specification [5,6]. According to the API specification, the key to
calculating the elevation of the bottom deck lies in the calculation of the return level of
marine environmental factors such as wave height and water increase [7]. If the marine en-
vironmental parameters of the target sea area can be calculated scientifically and reasonably,
it will provide the design of the bottom deck height of the offshore platform with effective
basis to ensure the overall safety of these platforms. Liu Guilin et al. used the Pearson-III
distribution to obtain the 50-year and 100-year design wave heights in a certain area based
on the measured annual maximum wave height values from 1956 to 1983 [8]. Wang Liping
used Gumbel, Weibull, and Pearson-III distributions to analyze the measured wave height
data of Binhai Nuclear Power Station from 1963 to 1989, and obtained the multi-year wave
height values of the area under three methods [9,10]. The above-mentioned studies are
all single-factor marine environmental studies, and the methods used are all empirical or
semi-empirical, which often require a large amount of measured data [11]. However, the
fact is that the number of observation stations in China is small, with the observation se-
quence being too short, and thus the return level calculated by the traditional single-factor
is not accurate [12], which leads to the lower height design of the bottom deck for the ocean
platform, amounting in safety concerns.

In fact, the failure or destruction of most ocean platforms not only depends on the
environmental factors of the sea area, but is also related to the statistical characteristics
of the intensity of hazard factors in the sea area over time; it is also the result of the
simultaneous action of several environmental factors together [13]. Therefore, according
to relevant standards, it is necessary to calculate the combined return level of the wave
height and water increase that have the greatest impact on the height of the bottom deck
for the offshore platform. According to the DEP standard [14], Wang Chunxia and others
superimposed the wave height, surge, and maximum astronomical tide during the 100-year
return period to calculate the bottom deck height of a well platform of a Qatar project, taking
into account a variety of marine environmental factors [15], which has certain degree of
progression. However, it is still simply the superposition of single-factor calculation results,
ignoring the correlation between various factors, which results in excessively conservative
design standards and increased engineering costs [16,17]. Liu TF et al. first applied
the compound distribution to engineering problems by proposing a compound extreme
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value distribution theory considering the frequency of typhoons and the distribution of
marine environmental conditions [18]; they then deduced the Poisson–Gumbel compound
extreme value distribution to estimate the joint return period of wave height and wind
speed suitable for typhoon-affected sea areas. After the above theoretical model was
put forward, it has received general attention in the engineering community, and the
importance of joint probability has been recognized by more and more. The American
Petroleum Institute (API), Det Norske Veritas (DNV), etc. have all recommended in
their specifications using the method based on joint probability to determine the design
criteria of the oil platform. Liu Guilin et al., by considering the influence of wind speed,
established a two-dimensional joint distribution function of wave height and wind speed.
In comparison with the traditional single-factor superposition method, they found that
by using the joint return level in the design criterion, it can control the construction cost
of ocean engineering while ensuring the safety of offshore platforms [19,20]. Song Yan
considered the combined load effect of wave height and water increase and calculated the
combination of wave height and water increase in a certain sea area in the East China Sea
through the Poisson–Logistic binary compound extreme value distribution model. The
deck height of the ocean platform under the combination of extreme sea conditions in this
sea area has improved in solving the problem of excessively high design standards caused
by the simple superposition of the return periods of various ocean elements in the past [21].

In summary, the composite distribution model can accurately calculate the marine
environmental parameters [22], which provides a basis for the calculation of the bottom
deck height of the offshore platform [23]. However, previous compound distribution
models do not reflect the factors that change the marine environmental elements over
time [24,25]. The sample in these studies is a sample function of a stochastic process.
Ignoring the time distribution characteristics of wave height and water increase will limit
the relevant research to a certain one-sided angle and cannot go into the depth discussion
level of its statistical characteristics [26]. Additionally, when the sample size is insufficient,
the tail of the fitted density function reaches zero too fast; thus, the tail data is insufficiently
fitted. However, the major return level happens to appear in this part, so there will
be certain error in the calculated return level by these methods, which will render the
calculated height of the bottom deck inaccurate [27,28].

In order to improve the above issues and realize the accurate calculation of the bottom
deck height of ocean platforms in areas with less measured ocean data [29,30], this paper
builds a new distribution function model based on the perspective of stochastic process
for the calculation of marine environment parameters, and then applied for the actual
calculation of bottom deck elevation [31,32]. The marginal distribution of the new model is
the extreme value expansion EED-I distribution, which uses a family of random variables
to show the statistical characteristics of design wave height and water increase in time and
space. The new model accurately calculates the combination of wave height and water
increase in Naozhou sea area as a calculation case [33,34]. Based on the level of the return
period, the bottom deck height of the offshore platform in the sea area is obtained, which
provides a reference for the safe construction of the offshore platform in the area. The
theoretical method given in this article can also be applied to the accurate calculation of
the height for the bottom deck of an offshore platform in areas with less measured data.

2. Theoretical Model Setting Up

The traditional design method for the height of the bottom deck in the engineering
industry is relatively close to the recommendations of the API specification, that is, it
generally adopts the following criteria: “the most probable peak height in a 100-year
wave condition, increase water in a 100-year storm, average high tide height and 1.5 m of
additional air gaps on top [35]. Therefore, a reasonable calculation of the wave height and
water increase value of the 100-year encounter can make the calculated bottom deck height
more accurate. This paper proposes the expanded distribution of extreme values based on
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stochastic processes, builds a stochastic compound distribution model, and then derives
the joint return level of wave height and water increase of once in 100 years.

2.1. The Expanded Distribution of Extreme Values Based on Stochastic Processes

With the help of a generation method of the continuous probability distribution family,
the stochastic process Y(t) is used as an auxiliary variable to discuss the distribution of the
stochastic process X(t) , so as to reflect the influence of the stochastic process Y(t) on the
stochastic process X(t). The expression is as follows:

Theorem 1. Let the stochastic processY(t) be a continuous stochastic process with a probability
density function q(y, t), andX(t) a stochastic process with a probability density functiong(x, t).
The distribution function isG(x, t), whenY(t) obeys the Gumbel distribution andX(t) obeys the
Pareto distribution, the distribution functionU(x, t) exists, and its expression is

u(x, t) = bαx(t)−1exp
(

blog
(
(x(t)/σ)−α

))
exp

(
−exp

(
blog

(
(x(t)/σ)−α

)))
= (bα/σ)(x(t)/σ)−1−bαexp

(
−(x(t)/σ)−bα

) (1)

where b, α are parameters, σ is a scale parameter, and x � σ > 0.

Proof: First define the distribution function of the new distribution function family:

U(x, t) =
∫ W(G(x,t))

0
q(y, t)dy (2)

In which W(G(x, t)) is the function of the distribution function G(x, t). The distribu-
tion function U(x, t) can be written as U(x, t) ∈ Q{W(G(x, t))}, which is a compound
function, Q(y, t) is the distribution function of the stochastic process Y(t). Obviously,
U(x, t) is the distribution function of the distribution function family, and its density
function is

u(x, t) = {(d/dx)W(G(x, t))}q{W(G(x, t))} (3)

The stochastic process X(t) can be discrete or continuous. Obviously, the density
function q(y, t) of the stochastic process Y(t) is transformed into a new distribution function
U(x, t) related to the stochastic process X(t) after integration to the upper limit function
W(G(x, t)) , and U(x, t) will take different forms with different expressions of W(G(x, t)) .
When W(G(x, t)) = −log(1− G(x, t)) , there exist the following:

U(x, t) =
∫ −log(1−G(x,t))

0
q(y, t)dy = q{−log(1− G(x, t))} (4)

u(x, t) = {g(x, t)/[1− G(x, t)]}q(−log(1− G(x, t)))
= h(x, t)q(−log(1− G(x, t)))

(5)

In which q(y, t) is the distribution function of the stochastic process Y(y, t), h(x, t) is
the risk function of the stochastic process X(x, t) , and u(x, t) is the density function of
U(x, t).

When the stochastic process Y(t) takes Gumbel distribution,
Gumbel distribution is f (x) = bexp(−bx)exp(−exp(−bx)):

q(y, t) = bexp(−by(t))exp(−exp(−by(t))) (6)

There is

u(x, t) = b{g(x, t)/[1− G(x, t)]}exp(blog(1− G(x, t)))exp(−exp(blog(1− G(x, t)))) (7)
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When the stochastic process X(t) obeys the Pareto distribution, there is

u(x, t) = bαx(t)−1exp
(

blog
(
(x(t)/σ)−α

))
exp

(
−exp

(
blog

(
(x(t)/σ)−α

)))
= (bα/σ)(x(t)/σ)−1−bαexp

(
−(x(t)/σ)−bα

) (8)

End of proof. �

The probability density of EED-I distribution under different parameters are shown in
Figures 1 and 2.
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2.2. Stochastic Compound Distribution

Theorem 2. When the marginal distribution is the EED-I type distribution and the related structure
function used for connection is the Gumbel–Copula function, the stochastic compound distribution
exists, and its expression is

F(x, y, t, s) = exp
{
−
[
(−lnF1(x, t))θ + (−lnF2(y, s))θ

]1/θ
}

(9)

where θ is parameter, θ � 1.
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Proof: Suppose the stochastic process X(t) and Y(s) take the EED-I type distribution, then
their probability density functions are, respectively [36,37]:

f1(x, t) = g(x, t) = (bα/σ)(x(t)/σ)−1−bαexp
(
−(x(t)/σ)−bα

)
(10)

f2(y, s) = q(y, s) = (bα/σ)(y(s)/σ)−1−bαexp
(
−(y(s)/σ)−bα

)
(11)

According to Theorem 1, the expression of the distribution function is

F1(x, t) =
∫ −log(1−F(x,t))

0
(1/σ1)exp

{
−
[(

1 +
ξh
σ1

)−1
ξ

]}{
−
[(

1 +
ξh
σ1

)−1
ξ −1

]}
dh (12)

F2(y, s) =
∫ −log(1−F(y,s))

0
(1/σ1)exp

{
−
[(

1 +
ξz
σ1

)−1
ξ

]}{
−
[(

1 +
ξz
σ1

)−1
ξ −1

]}
dz (13)

where σ1 is scale parameter, ξ is shape parameter, and F1(x, t) and F2(y, s) are the univari-
ate distributions of two stochastic processes and make the related structure function of the
two marginal distributions from the Gumbel–Copula connection function:

C(u, v) = exp
{
−[(−lnu)θ + (−lnv)θ ]

1/θ
}

(14)

Then, the density function of C(u, v) is

c(u, v) =
{

e−[(−lnu)θ+(−lnv)θ ]
1/θ

lnθ−1(u + v)/uv
}{[

(−lnu)θ + (−lnv)θ
]2/θ−2

+
[
(−lnu)θ + (−lnv)θ

]1/θ−2
} (15)

Let the univariate distribution of two stochastic processes be

u = F1(x, t) =
∫ −log(1−F(x,t))

0

1
σ1

exp

{
−
[(

1 +
ξh
σ1

)−1
ξ

]}{
−
[(

1 +
ξh
σ1

)−1
ξ −1

]}
dh (16)

v = F2(y, s) =
∫ −log(1−F(y,s))

0

1
σ1

exp

{
−
[(

1 +
ξz
σ1

)−1
ξ

]}{
−
[(

1 +
ξz
σ1

)−1
ξ −1

]}
dz (17)

Substituting Formula (15) and Formula (16) into Formula (13) can obtain the joint
distribution function of X(t) and Y(s), which is

F(x, y, t, s) = exp
{
−
[
(−lnF1(x, t))θ + (−lnF2(y, s))θ

]1/ϑ
}

(18)

In engineering applications, the distribution functions of wave height and water
increase of a stochastic process are recorded as F1(x, t) and F2(y, s), respectively. The
relationship between the return level and the return period based on engineering reality is

T =
1

P(X>x, Y>y)
(19)

where T is return period. Let u = P{X(t) ≤ x}, v = P{Y(s) ≤ y} ; t, s ∈ T, C(u, v) be the
two-dimensional Copula function, then there is

T =
1

1− u− v + F(x, y, t, s)
(20)

Through Formula (11) and Formula (12), the stochastic process wave height and water
increase corresponding to the 5-, 10-, 20-, 50-, and 100-year return periods can be obtained,
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and when combined with Formula (13) and Formula (17), one can obtain the corresponding
joint return level. That is to say, we can calculate the distribution function of wave height
and water increase through Formula 11 and Formula 12, respectively, and bring it into
Formula 8 as the edge distribution to get the expression of random composite distribution,
and then co mbine it with Formula 17 of the joint return period to calculate the joint return
period level of the wave height and water increase. �

3. Engineering Case Calculation and Analysis

This paper selects the measured hydrological data of the Zhanjiang Naozhou Marine
Environment Monitoring Station during the flood period from 1990 to 2016 as the input
data and uses the compound distribution model established above to reflect the temporal
and spatial statistical characteristics to perform relevant statistical analysis on wave height
and water increase. Sampling of the wave height and water increase data of the Naozhou
Observatory in the Western Guangdong Sea is performed with the unit time step 1 month.
Then, the data of wave height and water increase per unit time step constitute a series of
random samples. Considering the correlation between wave height and water increment,
the statistical characteristics of wave height and water increment with time are obtained.
That is to say, wave height and water increase are regarded as random processes varying
with time. Moreover, the time interval ∆T 1 year. That is, these data are sampled every
12 months (∆T = 12): Figures 3 and 4 are the 25-year wave height and water increase data
set sampling every 12 months from 1990 to 2016, respectively.
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Figure 4. The water increase data scatter plot when ∆t = 12.

First, the samples of the wave height and water increase are examined. The K-S test
results are listed for the Gumbel distribution, Weibull distribution, Pareto distribution,
and Pearson-III distribution of the wave height and water increase time series. The results
showed that all four groups of sequences passed the K-S test, where Dn is test value, D0 is
critical value, as shown in Tables 1 and 2.
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Table 1. K-S test of the distribution models of wave height series (∆t = 12).

Distribution Model Gumbel Weibull Pearson-III Pareto

Test value Dn 0.2089 0.1542 0.1138 0.2222
Critical value D0 (0.05) 0.2641 0.2641 0.2641 0.2377

Compare Dn < D0 Dn < D0 Dn < D0 Dn < D0
test result accept accept accept accept

Table 2. K-S test of the distribution model of increasing water series (∆t = 12).

Distribution Model Gumbel Weibull Pearson-III Pareto

Test value Dn 0.2354 0.1496 0.1224 0.1403
Critical value D0 (0.05) 0.2641 0.2641 0.2641 0.2377

Compare Dn < D0 Dn < D0 Dn < D0 Dn < D0
test result accept accept accept accept

Tables 3 and 4 show the specific probability density values when different distributions
are fitted to the tail data. It can also be seen that, compared with the commonly used extreme
value models, the EED-I model can better describe the tail characteristics of the data when
fitting different marine environmental element data under different data ages. Taking the
probability density values of different distributions corresponding to the wave height of
8.5 m in Table 3 for example, when the data age is 20 years, the probability density value of
the EED-I distribution is 0.0125, which is 28.8% larger than the probability density value of
the Gumbel distribution, and is 154.65% larger than the probability density value under
the Weibull distribution; when the data age is 16 years, the probability density value of the
EED-I distribution is 8.23% larger than the probability density value under the Gumbel,
and 56.05% larger than the probability density value under the Weibull distribution.

Table 3. Comparison of fitting results of different probability density functions to wave height
tail data.

Gumbel Weibull EED-I

Wave height(m) 20 years 16 years 20 years 16 years 20 years 16 years
8.0 0.0256 0.0357 0.0206 0.0343 0.0333 0.0443
8.5 0.0170 0.0243 0.0086 0.0157 0.0219 0.0245
9.0 0.0112 0.0165 0.0030 0.0061 0.0157 0.0157
9.5 0.0074 0.0111 0.0009 0.0020 0.0125 0.0128

10.0 0.0049 0.0075 0.0002 0.0006 0.0110 0.0121

Table 4. Comparison of fitting results of different probability density functions to water increase
tail data.

Gumbel Weibull EED-I

Water increase(m) 20 years 16 years 20 years 16 years 20 years 16 years
2.00 0.1438 0.1701 0.1727 0.2028 0.1603 0.1816
2.25 0.0848 0.1064 0.0922 0.1212 0.0986 0.1152
2.50 0.0494 0.0655 0.0445 0.0670 0.0610 0.0730
2.75 0.0286 0.0400 0.0194 0.0343 0.0391 0.0473
3.00 0.0165 0.0243 0.0077 0.0163 0.0267 0.0320

In order to further verify the stability of the model, a period of time (1998–2016) in the
wave height sequence was extracted, and the Gumbel and EED-I type distributions were
used to calculate the design wave heights under different return periods, and compared
with the entire time series, namely, the wave height data of Naozhou Station from 1990 to
2016. The design wave height and error calculated by different distribution models under
different return periods are obtained, as shown in Table 5. It can be seen from Table 5
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that when the measured data years are reduced, the two distribution models will produce
certain errors, and the longer the return period, the greater the error. However, the error
of the EED-I distribution is much smaller than that of the traditional Gumbel distribution.
Under the condition of a return period of 100 years, the error of the EED-I distribution is
almost only half of that of the Gumbel distribution.

Table 5. Design wave height and error of each model for different time periods.

EED-I Gumbel

Return period (years) 25 years 17 years error 25 years 17 years error
10 6.3888 6.5505 2.53% 6.5913 6.8819 4.41%
20 7.0821 7.2788 2.78% 7.4786 7.8634 5.15%
50 7.9180 8.1581 3.03% 8.6210 9.1339 5.95%
100 8.5087 8.7802 3.20% 9.4780 10.0859 6.41%

According to the wave height and water increase data of Naozhou Station from 1990
to 2016, the return levels of the wave height and water increase in different return periods
under the EED-I type distribution are calculated, as shown in Table 6.

Table 6. The return level of wave height and water increase in different return periods based on
EED-I type distribution.

Return Period (Years) Wave Height Return Level
(m)

Water Increase Return Level
(m)

10 6.5505 1.2745
20 7.2788 1.5810
50 8.1581 1.9802

100 8.7802 2.2785

According to the likelihood function and Gumbel–Pareto distribution, we obtained
the respective parameter estimates for marginal distribution of the probability model; the
results are shown in Table 7.

Table 7. Marginal distribution parameters of wave height and water increase (∆t = 12).

Wave Height Water Increase

Parameters for
marginal distribution

Parameter µ 5.1952 1.5197
Confidence interval [4.5784,5.8121] [1.1543,1.8851]

Parameter ξ 1.4797 0.8736
Confidence interval [1.1142,1.9651] [0.6750,1.1305]

According to Table 6, for the once-in-a-hundred-year value of ∆T = 12 month series,
wave height is 8.78 m and the water increase is 2.28 m. The corresponding combination
of once-in-a-hundred-year calculated by using the new stochastic compound distribution
model are 8.74 m for the effective wave height, and 1.52 m for the water increase.

The design of the deck elevation should consider many factors, the most important of
which are the astronomical tide, storm surge and wave height that constitute the elevation
of the water body. Other uncertain factors such as the subsidence of the platform and the
seabed are generally not specifically studied; therefore, the deck elevation is generally often
provided with sufficient spacing above the design wave crest. In addition, consideration
should be given to providing an air gap between the height of the wave crest and the deck,
generally 1.5 m, for waves larger than the design wave to pass.

Astronomical tides have deterministic and periodic laws. The trend value of the tide
level change can be determined by the deterministic tidal force; the fluctuation value of the
tide level change is affected by its random hydrological and geographic factors. Therefore,
if the small random fluctuations of the tide level are ignored, the astronomical tide can be
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regarded as a certain natural phenomenon with a long period of 18.61 years. In this paper,
the astronomical tidal height datum is located at 2.24 m below the mean sea level. We use
the highest annual extreme astronomical tidal level at Naozhou Station from 2000 to 2018
at 2.02 m.

To determine the design value of the maximum wave height, the “Standards for
Classification and Construction of Offshore Mobile Drilling Ships” of the Ship Inspection
Bureau of the People’s Republic of China and the “Guidelines for the Design of Marine
Steel Structures” of Japan are used and these stipulate that the maximum design wave
height is Hmax = min{2H1/3, Hb}

In which, Hb is the breaking critical wave height and H1/3 is the once-in-a-hundred-
year wave height. The effective wave height calculated by the stochastic compound
distribution is used here, which is 8.74 m.

According to China’s “Seaport Engineering Standards”, when the submarine slope
i < 1140, the ratio of the breaking wave height and the water depth of the wave can be
determined according to Table 8, so that the maximum wave height design value Hmax can
be obtained.

Table 8. Maximum ratio of breaking wave height to breaking water depth on gentle slopes.

i ≤1/1000 1/500 1/400 1/300 1/200

(Hb/db)max 0.60 0.60 0.61 0.63 0.69

Assuming the offshore platform has a water depth of 35 m and a slope ratio of 1/200.
Therefore, the breaking wave height is =24.15 m, so the maximum wave height design
value is taken as Hmax = min{2H1/3, Hb} = 2H1/3= 17.48 m

So far, the design values of each environmental element are obtained: the maximum
wave crest is 8.74 m (0.5 times the maximum design wave height); the water increase is
1.52 m; the astronomical tide is 2.02 m; the air gap is 1.5 m. Therefore, the design value of
the deck elevation calculated by the stochastic compound distribution model is 13.78 m.
In the once-in-a-hundred-year time, the univariate EED-I distribution calculates the wave
height and the return period of the increase in water. The comparison between the simple
superposition method and the calculation result of the new model is shown in Table 9,
where A1 is Maximum Peak Height Once in a Hundred Years/m, A2 is Water Increase
Once in a Hundred Years/m.

Table 9. Comparison of calculation results of univariate superposition and stochastic compound
distribution (∆t = 12).

A1 A2
Astronomical

Tide /m Air Gap /m Platform
Height/m

Univariate superposition 8.78 2.28 2.02 1.50 14.58
Stochastic compound

distribution 8.74 1.52 2.02 1.50 13.78

It can be seen from Table 9 that the stochastic compound distribution takes into account
the correlation between wave height and water increase, and its calculation result is slightly
lower than that of univariate superposition, which improves the problem of high design
value caused by simple superposition of univariate, and thus can reduce engineering cost
with certain practical significance.

4. Conclusions

In this paper, the wave height and water increase are regarded as stochastic processes,
and on this basis, an EED-I type distribution based on stochastic processes and extreme
value expansion is derived and treated as a univariate marginal distribution. Moreover,
with the Gumbel–Copula structure function applied as the connection, we are able to
establish a new stochastic compound distribution model. The measured hydrological
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data of the flood period from 1990 to 2016 at Naozhou Station are used as data to analyze
the wave height, water increase, and the joint return period of the two, and based on
which the calculation of the bottom deck height in the area can be performed with the
following conclusions:

1. Based on stochastic process and extreme value expansion, the EED-I type distribution
can better describe the tail characteristics of wave height and water increase, and it
has obvious advantages in comparison with traditional extreme value distribution.

2. Based on stochastic process and extreme value expansion, the EED-I type distribution
has good stability under the condition of less measured data. When calculating the
once-in-a-hundred-year return level, the error caused by the reduction of measured
data is almost only half of the traditional Gumbel distribution, that is, the EED-I type
distribution can be applied to the calculation of the return level in sea areas with less
measured data.

3. The stochastic compound distribution model takes into account the interaction of
wave height and water increase, and improves the issues of high design value caused
by simple superposition of univariate return level. It can calculate the bottom deck
elevation more accurately under the premise of ensuring the safety of offshore plat-
forms while at the same time save its engineering cost. Therefore, it is with certain
practical value.
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