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Abstract: This article presents the most frequent damage in the bearing structure of a rail car during
rail/sea transportation. The study includes load modes for the bearing structure of an open car
such as unloading with a grab and transportation by a train ferry. It was found that the most
vulnerable element of the bearing structure of an open car during unloading with a grab is the top
cord. The authors suggest applying a viscous material (an elastomer) to reinforce the top cord. This
solution was confirmed by means of a strength calculation, whose results showed the efficiency
of the solution. The bearing structure of an open car during the train ferry transportation can be
protected by mounting special fixation units on the bolster beams. The geometry of such units was
chosen according to that of a chain binder. The results of the strength calculation demonstrated
that the strength of the bearing structure of an open car was provided with the application of the
fixation units suggested. The article also presents the results of the experimental determination of the
strength of the improved bearing structure of an open car based on the finite element method and
full-scale bench testing. The research conducted might be used by those who are interested in higher
operational efficiency of rail cars during rail/sea transportation.

Keywords: bearing structure; open car; security strength; security; train ferry transportation; trans-
port mechanics

1. Introduction

A higher efficiency of international transportation can be maintained by the mutual cooper-
ation of transport operators. Nowadays, the most popular are rail and maritime transportation.

The research into the working conditions of transport means during international
rail/sea transportation demonstrated that the most vulnerable element is the bearing
structure of a rail car. The damage is caused by the loads that exceed the allowable values.
Moreover, it should be noted that the bearing structure of a car is not suited to all operation
modes, e.g., the unloading with a grab, transportation by a train ferry, etc.

This leads to damage of the bearing structure of a rail car, requiring off-schedule
repairs, additional maintenance expenditures, etc. Therefore, there is an urgent need to
develop the technique for the customisation of the bearing structure of a rail car for effective
operation during international rail/sea transportation.

The strength of the bearing structure of an improved Zans car with better technical
and economic characteristics is determined in [1,2]. The strength calculation was made
with the finite element method. The results of the calculations confirmed the efficiency of
the designing solutions taken. It should be noted that the designing stage did not include
measures aimed at the structural reliability of rail cars during rail/sea transportation.
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The special features of the theoretical research into the optimisation of the bearing
structure of a freight car were studied in [3] by means of the finite element method. An
open car BOXN25 was taken as the prototype. However, these measures do not provide
secure transportation by train ferries.

The strength of the bearing structure of a car intended for intermodal transportation
is determined in [4]. The design model was built in accordance with the PN-EN standards.
The calculation was made with the finite element method.

The analysis of the theoretical and experimental research into the strength charac-
teristics of rail vehicles by an example of the centre sill of a freight car is given in [5] in
which the authors applied modern software programs. This approach turned out to be
effective and efficient, i.e., the authors found the right area in their research. However, the
calculation did not include the potential loads on a car during rail/sea transportation.

A selection of the structural solutions for elements of a car with a low tare mass is
conducted in [6]. The authors made a comparative analysis of the strength characteristics,
durability and stability of the bearing structure with the minimum mass and produced of
different materials. An analysis of the causes of crack development in the bearing structure
of a car frame is given in [7]. The study presents the method used for identifying some
causes of crack development near weld joints. The calculation was made for the frame of a
Sgmns wagon. However, the research did not include the operational conditions for the
rail cars during rail/sea transportation.

Strength research of the bearing structure of a car under the least favourable modes of
loading and shunting impacts is presented in [8,9]. The study describes the measures for
protecting the bearing structure of a rail car. However, the authors did not consider the
issue of the transportation of cars by train ferries.

Improvement of the method of calculating the strength of the upper strapping of the
side walls of the gondola car body is presented in [10]. Refined calculation schemes are
proposed that take into consideration the unloading of frozen cargo from an open-top car
on a car dumper. It is important to say that the work does not outline the prospects for
improving the supporting structure of the gondola car to ensure its durability in operation.
The peculiarities of using the theory of the optimal design of the supporting structure of the
body of a dead-bottom gondola car are highlighted in [11]. The results of the research made
it possible to determine the optimal configuration of the gondola car unloading bins. At the
same time, the authors have not proposed design solutions aimed at ensuring the strength
of the gondola car supporting structure under the most unfavourable operating conditions.

The choice of structural solutions for the elements of cars with a low tare weight is
carried out in [12]. As a methodology, a comparative assessment of the strength, durability
and stability indicators of the supporting structure of the minimum mass made of different
materials was used. However, in this work, the most unfavourable modes of loading
the supporting structures of gondola cars—unloading with a grab bucket, as well as
transportation on railway ferries—were not included.

Determination of the load of the gondola car body under operating conditions and
ways of improving its design to ensure strength and service life are considered in [13]. To
ensure the strength of the components of the body structure, it is proposed to strengthen
it with stiffeners, as well as the use of high-strength steel in their manufacture. An im-
provement of the gondola car design to ensure its safety during loading and unloading
operations is carried out in publications [14,15]. The proposed improvements are aimed at
changing the geometry of the most loaded components of the supporting structure. The
results of the strength calculation confirmed the feasibility of the decisions taken. At the
same time, the authors of these works did not take into account the loads that can act on
car bodies during transportation on rail ferries.

A study of the dynamics of the load-bearing structures of wagons during transporta-
tion by rail ferries by sea is carried out in [16]. In this case, the dynamic load that acts
on the car during the oscillations of the railway ferry was determined by differentiating
the law of movement of the sea wave. The studies carried out became the basis for the
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formation of requirements for the calculation of wagons for transportation by sea [17,18].
At the same time, the calculations for the strength of the load-bearing structure of the car,
as well as the improvement of its design for the reliability of fixing on the deck, have not
been considered in the work.

In [19], the questions of fastening the load-bearing structures of wagons on the decks
of railway ferries are dealt with. The requirements for multiple vehicle mountings are
given. Features of the construction and application of multi-turn means for securing cars
on ferry decks are considered in [20]. The safety requirements for using these fasteners
are given. However, the authors did not take into account the effects of the fasteners
under consideration on the strength of the load-bearing structures of the wagons during
sea transport.

In [21,22], a study of the dynamic load of a container as part of combined trains during
transportation on rail ferries is carried out. The conditions for the safe transportation of
containers have been determined, taking into account the typical scheme of interaction with
the wagon. Measures are proposed to ensure the stability of containers on wagons during
transportation by ferries. However, the data research was carried out on combined trains.

The peculiarities of the carriage of wagons on railway ferries without running gears
are highlighted in [23]. The advantages of the proposed technology for the transportation
of wagons are given, as well as the prospects for its development. It is important to say
that the authors did not consider the issues of dynamic load and strength of car bodies,
taking into account the considered technology.

Analysis of the literature [1–23] allows us to conclude that the issues of studying the
load and ensuring the strength of the load-bearing structures of cars during operation in
railway–water communication require further development. This makes it necessary to
conduct research in this direction, which will improve the efficiency of the operation of
wagons in the railway–water communication.

2. Objective and Tasks of the Research

The purpose of this research is to substantiate the measures to improve the bearing
structure of an open car to provide a higher security during rail/sea transportation. To
achieve this purpose the following tasks were set:

• to suggest the measures for a higher strength of the bearing structure of a car during
unloading with a grab;

• to suggest measures for the tight securing of the bearing structure of a car on the train
ferry deck;

• to conduct experimental research into the strength of the improved bearing structure
of a car.

3. Determination of Causes of Damage to the Bearing Structure of a Car during
Rail/Sea Transportation

The unloading of gondola cars in ports is carried out by means of grabs (Figure 1).

Figure 1. Unloading of the car with a grab (a) overhead grab; (b) power grab.
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It should be mentioned that this unloading method may cause serious damage to
structural elements of the body because the geometry of the body is not fitted to interac-
tion with the grab. The most frequent damage to the bearing structure of a body during
unloading with a grab are cracks, deformations, ruptures of the top cord and weld joints,
etc. Additionally, the top cord of the frame suffers the most (Figure 2).

Figure 2. Damage to the top cord of a car body during unloading with a grab (a) crack in the top
cord; (b) rupture in the top cord.

The open car is also badly damaged during train ferry transportation because its
bearing structure is not suited for interaction with the lashing devices applied for unloading
(Figure 3).

Figure 3. Securing of a rail car on the train ferry deck (a) Geroi Plevny; (b) Greifswald.

The car elements can also be damaged due to sea disturbance (Figure 4). Thus, the car
on the train ferry deck may lose its stability or even overturn. As a result, the train ferry
can lose stability and sink.

Therefore, there is a need to improve the bearing structure of a rail car to protect it
during rail/sea transportation.
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Figure 4. Damage to the elements of the bearing structure of a rail car (a) deformation of the top cord;
(b) deformation of the tow brace.

4. Substantiation of Improvements to Protect the Bearing Structure of an Open Car
during its Unloading with a Grab

This research deals with the introduction of viscous elements in the bearing structure
of an open car in order to decrease the loads during unloading with a grab in seaport
terminals. An elastomer was suggested as the viscous material and the damper in the
conditions of impact interaction between the grab and the top cord.

To study the dynamic loading of the supporting structure of the gondola car body
during impact interaction with the grab bucket, a differential equation of the body displace-
ments was compiled (Equation (1)). The design scheme is shown in Figure 5. The moment
of inertia of the body was considered as the inertial coefficient. The potential component
of the energy balance was considered through the rigidity of the spring sets on which the
gondola car body rests.

Figure 5. Computational model scheme of a gondola car.

The created mathematical model of the dynamic load of the supporting structure of the
gondola car body during impact interaction with the grab bucket has the following form:

Ik
..
ϕ + C

B
2

ϕ = Mgb − β
B
2

.
ϕ, (1)

where Ik is the moment of inertia of the gondola car body; C, the spring kits stiffness;
B, the width of the gondola car body; β, the coefficient of the viscous material damping
with which the upper rail of the car is filled; Mgb, the moment of forces that occurs when
the grab bucket interacts with the supporting structure of the gondola car and

..
ϕ,

.
ϕ, ϕ,
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the generalised acceleration, speed and displacement of the supporting structure of the
gondola car during impact interaction with the grab bucket.

The origin of the coordinate system is located at the centre of mass of the body.
The input parameters of the mathematical model are the geometric characteristics of the
gondola car body, the parameters of the spring sets of bogies and the parameters of the
grab bucket. The solution of the above model was carried out using the Runge–Kutta
method in the MathCad software package. The initial displacements and speeds are taken
equal to zero [24–26].

The calculation results showed that the acceleration of the supporting structure of
the gondola car when struck by a grab bucket is about 3 m/s2, which is 35% lower than
acceleration values arising in a standard structure. In this case, the coefficient of viscous
resistance of the elastomer must be at least 0.3 kN s/m.

The strength of the improved bearing structure of an open car was calculated. The top
cord of an open car with elastomer was modelled as a body with the geometry identical to
the inner section of the top cord and the characteristics identical to that of the elastomer
(Figure 6). The research was made in the SolidWorks Simulation software using the finite
element method [27–30].

Figure 6. Spatial model of the gondola car supporting structure.

A 12–757 open car was taken as the prototype. Isoparametric tetrahedrons were used
as the finite elements. The optimal number of elements in the finite element model was
found with the graphic analytical method [31,32]. The method is based on the graphical
(geometric) presentation of feasible solutions and the objective function of the problem. The
essence of the method is to plot the dependence of the maximum equivalent stresses on the
number of finite elements. When this dependence begins to be described by a horizontal
line, this is the optimum in the number of finite elements.

The number of elements was 637,118, the number of nodes was 204,135, the maximum
element size was 65.0 mm and the minimum element size was 13.0 mm. The maximum
element side ratio was 651.33. The percentage of elements with a side ratio of less than
three was 25.4. The percentage of elements with a side ratio of more than ten was 26.9. The
minimum number of elements in a circle was 12. The element size gain ratio was 2.0. The
model was secured in the areas of support on the bogies. Steel 09Mn2Si was taken as the
structural material.

It was taken that the grab mass was 1800 kg [33]. In order to simulate the impact
interaction of the grab bucket with the upper strapping of the gondola car supporting
structure, a pad was installed on it, the geometric parameters of which are equal to the area
of contact with the grab bucket (Figure 7). Shock was applied to this pad using SolidWorks
Simulation software options.
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Figure 7. Modelling the contact zone of the grab bucket with the upper strapping of a gondola car.

When creating the design scheme, it was taken into account that the body of the
gondola car is subject to a vertical static load due to the weight of the load Pv

st, the pressure
of the expansion of the bulk cargo Pbk, as well as the load from the grab bucket Pgb (Figure 8).
At the same time, the blow was considered as absolutely hard. The leaning of the body
on the bogies was modelled by placing elastic ties on the centre plates. In this case, the
stiffness of the springs is 8000 kN/m, i.e., corresponding to the stiffness of the bogie spring
sets 18–100.

Figure 8. Computational scheme of a gondola car.

The results of the strength calculation for the bearing structure of an open car are
given in Figure 9.

The calculation demonstrated that the maximum equivalent stresses in the bearing
structure did not exceed the allowable values and amounted to about 320 MPa, which is
32% lower than in the standard design. The maximum displacements were about 20 mm.
Thus, the strength of the bearing structure of an open car body with consideration of
improvements was provided [17,18]. The maximum equivalent stresses in the bearing
structure were reduced three times in comparison to those in the typical structure.

Due to the fact that the upper piping is not under the influence of cyclic shock loading
from the grab bucket in operation, the calculation for the fatigue of this unit was not
carried out.
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Figure 9. Stress strain state of the bearing structure of an open car body during impact interaction
with a grab.

5. Improvements in the Bearing Structure of an Open Car for Stable Securing on the
Train Ferry Deck

The strength of the bearing structure of an open car body during transportation
by train ferries can be provided with a special fixation unit used for securing the body
(Figure 10) [25].

Figure 10. Location of fixation units on the bolster beam for securing a rail car on the deck (a) front
view; (b) side view.

The strength of the bearing structure of an open car body was studied with a spatial
model. Some reinforcing diaphragms were used on the bolster beam where the fixation
units for chain binders were mounted [25].

The design diagram of an open car body during sea disturbance (the highest loads on
the bearing structure of a car) included the following forces (Figure 11): vertical static force,
Pv

st; wind force, Pw; lateral pressure from the freight, Pp and force on the body through
chain binders, Pc. Due to the spatial layout of a chain binder, the force through it to the
bearing structure of an open car body was decomposed (Figure 12).
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Figure 11. Design diagram of an open car body.

Figure 12. Application of the forces from a chain binder to the fixation unit.

The actual force application to the fixation units for chain binders was modelled by
means of mounting special elements (pads), the configuration of which was identical to the
geometry of the contact hook area. It ensured the maximum approximation to the actual
pattern used for securing an open car on the deck. The numerical values of the forces to
the bearing structure of an open car body during sea disturbance are given in Table 1.

Table 1. Forces to the open car body during sea disturbance.

Forces to the Open Car Body
Entry 1

Components of the Forces from the Chain Binders, kN

Inertia Force, kN Wind Force, kN Force from Chain Binders, kN

Vertical
Static
Force,

kN

Inertia
Force,

kN

Wind
Force,

kN

Pressure
Force,
kPa

Force
from

Chain
Binders,

kN

XY YZ XZ XY YZ XZ XY YZ XZ

pz = 811 175 9.4 15.5
−1.02 54 px = 31

py = 31
py = 22
pz = 38

px = 21.9
pz = 38

px = 1.7
py = 1.7

py = 1.2
pz = 2.04

px = 2.04
pz = 1.2

px = 27
py = 47

py = 27
pz = 47

px = 27
pz = 47

When determining the loads to the open car body the authors took into account that
a roll was caused by the static action of the wind to the upper projection of the train
ferry loaded with cars on the upper deck. According to the actual hydro-meteorological
characteristics of the Black Sea basin, the roll angle was 12.2◦.

Additional elements were mounted in the areas of support of an open car body on the
centre plates, sliders and stop-jacks.
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The pressure from the bulk freight (black coal) to the walls of an open car was deter-
mined using the Coulomb method with Sinelnikov’s adjustment [25] as follows:

p = γ′h′
cos2(ρ′+ ∝′)[

1 +
√

sin ρ′ sin(ρ′±α′)
cos∝′

]
cos α′

g± Fθ , (2)

where γ′ is the volumetric freight mass, t/m3; h’ is the height of an open car body, m; ρ′

is the internal friction angle (for ideal bulk freight it equals the angle of natural slope);
α′ is the roll angle of an open car relative to the longitudinal axle, degrees; and Fθ is the
additional pressure conditioned by the inertial component acting to the bulk freight at the
angular displacements of a train ferry relative to the longitudinal axle, kPa.

The pressure force of the bulk cargo to the side walls of an open car body was taken
as a distributed load according to the Simpson’s rule with the maximum typical for the
actual operation conditions [25–34]. The maximum pressure from the bulk freight to the
side wall of an open car body amounted to 15 kPa. To determine the inertial loads that are
transferred from the chain ties to the supporting structure of the gondola car, mathematical
modelling of its dynamic loading during the rolling of the rail ferry was carried out. At the
same time, the following mathematical model was created:(

D
12g

(
B2 + 4z2

g

)) ..
θ +

(
Λθ

B
2

)
.
θ = p′

h
2
+ Λθ

B
2

.
F(t), (3)

where D is the weight displacement of a railway ferry; B, the rail ferry width; h, the rail
ferry board height; Λθ , the vibration resistance coefficient; zg, the coordinate of the centre
of gravity of the rail ferry; p′, the wind load and F (t), the course of forces that perturbs the
movement of a railway ferry with car bodies placed on its decks.

..
θ,

.
θ, θ are the generalised

acceleration, speed and movement of a railway ferry loaded with open wagons during
rolling. The origin of the coordinate system is located at the centre of mass of the rail ferry.

It was assumed that the body is rigidly fixed on the deck of the ferry and repeats
its trajectory of movements during rolling. The shock effect of the sea wave was not
considered. The calculation was carried out for the railway ferry “Heroes of Shipki”, which
moves in the Black Sea. The following parameters of sea waves are taken equally: wave
height as 8 m and period as 9 s [35]. In this case, the value of the wind load was taken as
1.47 kPa in accordance with the recommendations given in [16]. This source was taken
as decisive because it became the primary basis for the formation of requirements for the
calculation of wagons for transportation on ferries [17,18].

The calculation results showed that the acceleration that acts on the car body extreme
from the bulwark is about 2.4 m/s2. This acceleration value is considered when determining
the inertial load acting on the body from the chain tie. In this case, the angles of the location
of the chain tie in space were taken into account (in the XY and XZ planes, the tilt angles in
accordance with the normative documentation are equal to 60◦, and in the YZ plane to 30◦).

The finite element model included isoparametric tetrahedrons, the optimal number
of which was determined using the graphic analytical method. The number of elements
in a mesh was 288,951, the number of nodes was 94,664, the maximum element size was
120 mm, the minimum element size was 24 mm, the maximum element side ratio was
571.21 and the percentage of elements with a side ratio of less than three 16 and more than
ten was 36.6.

The results of the calculation are given in Figure 13. The research demonstrates that
the maximum equivalent stresses are in the radial part of the fixation unit for a chain binder;
they amounted to about 300 MPa, which is 38% lower than in the standard design.
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Figure 13. Results of the strength calculation for the bearing structure of an open car body.

The stresses in the vertical sheet of the bolster beam were in the range of 176 MPa,
and they did not exceed the allowable values for the steel grade of the body frame. The
maximum displacements were in the middle part of the side wall of an open car body
when it tilted during a roll; they amounted to 5.8 mm.

The research into the fatigue strength of the bearing structure of an open car body
transported by a train ferry during sea disturbance was made in the SolidWorks Simulation
software. Fatigue analysis is performed in a linear form when stress accumulation is
diagnosed. Damage accumulation theory stipulates that an AC stress cycle above the
fatigue limit causes damage. The total damage is equal to the sum of the damage caused
by individual stress cycles. The test base included 107 cycles. The results demonstrated
that the strength of an open car body with the consideration of cyclic loads was provided.

The design service life of the bearing structure of an open car body adjusted to train
ferry transportation was determined with the following technique given in [36–38]:

Tn =
(σE/[n])mN0

B feσm
ae

, (4)

where σE is the average strength endurance of a detail, MPa; n is the allowable safety factor;
m is the fatigue curve rate; N0 is the number of tests; B is the coefficient characterising a
period of continuous operation of an object, s; fe is the effective frequency of dynamic loads,
Hz and σae is the amplitude of equivalent dynamic stresses, MPa.

The following input parameters were included in the calculation: the average durabil-
ity limit, taken as 0.5 of the material (steel grades 09Mn2Cu and 09Mn2Cu of 172.5 MPa)
the test base cycles (recommended for steel); the continuous operation time for the bearing
structure of a body of 1.5 × 106 s (based on the actual operation of a train ferry); the
effective dynamic load frequency determined by means of the excitation force parameters
(for a sea wave) and for waves with a period of 9 s it equals 0.1 Hz; an admissible safety
factor of two; a fatigue curve rate for the welded structure of four and the amplitude of the
equivalent dynamic stresses defined through the strength calculation of the stress strain
state of the bearing structure of an open car of 176.2 MPa.

The design service life of the bearing structure of an open car used for transportation
by a train ferry was calculated as about 30 years.
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It should be noted that the actual service life of the fixation unit is longer, because
under the normal operation conditions (calm sea or slight sea disturbance) it is loaded with
the tension from the chain binders amounting to about 54 kN.

Moreover, the appropriate maintenance techniques and diagnostic system can prolong
the service life.

6. Experimental Strength Research of the Improved Bearing Structure of an Open Car

The strength of the improved bearing structure of an open car was studied during the
full-scale bench testing.

The initial stage of the research included the designing of a fixation unit for chain
binders. It included the designing and production of a detachable wooden mould for
casting the steel elements. The radial lugs and rounded parts of the mould were made
of a viscous mixture consisting of liquid glass and chock. Four castings of Steel 32Cr06A
with fluidity level σT = 441 MPa, rupture stress σB = 638 MPa and relative elongation
δ = 10% were formed; the strength characteristics were improved by adding Ni together
with normalising and hardening. This steel grade is recommended for manufacturing cast
pieces in the car building process.

The castings were mechanically treated until they reached the nominal dimensions.
The units were joined to the bolster beam of a car by overlap welding with a double

joint (Figure 14) calculated for strength in advance. The units were mounted on side of the
bolster beam.

Figure 14. Location of the fixation unit for chain binders on the bolster beam of an open car.

The wire slings with a weight capacity of 196.2 kN were used in designing the chain
binders. One end of the sling was fixed on the unit, and the other end was fixed by a
bracket welded to the 50-millimeter metal sheet (Figure 15).

The spring suspension was relieved with stationary 294.4 kN jacks, whilst the chain
binders and the bolster beam were loaded on side of a car. This diagram modelled the
action of the 196.2 kN mechanical jacks to the end support parts of the bolster beams. The
forces on the bolster beam were measured with a force gage with a capacity of 196.2 kN.

The relative strains in the bolster beam were determined with the classic strain mea-
surement method.

The places for the strain gages were found through theoretical research. As far as
the forces on the fixation units for chain binders under the condition of a roll of the train
ferry transferred symmetrically, the strain gages were installed on the vertical sheet of one
bolster beam (Figure 16).
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Figure 15. Loading of the fixation unit for chain binders.

Figure 16. Location of strain gages on the vertical sheet of the bolster beam of a car.

The strain gages were arranged as a Wheatstone bridge. A compensating strain
gage was mounted on the homogeneous non-deflecting plate (09Mn2Cu) of a car body
(Figure 17). The strain gages were connected in the electric diagram with the 0.5 mm2 wires.
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Figure 17. Compensating plate with a strain gage.

The bolster beam was loaded to research the deformations that corresponded to the
following forces applied: 49.1 kN were the tension forces of the chain binders; 98.1 kN,
the forces to the car body through the chain binders at small roll angles (up to 10) and
147.2 kN, the forces to the car body through the chain binders at large roll angles (more
than 10). Considerable relative deformations were recorded by strain gages No. two, three,
four and nine (Figure 16).

Based on the obtained relative deformations, the authors calculated the stresses in the
corresponding areas of the bolster beam that showed that the forces from the chain binders
through the special fixation units ensured the structural safety factor exceeding two.

The strength of the bolster beam section with strain gages No. three and four can be
improved with reinforcing diaphragms.

It should be noted that the experimental research with the strain measurement method
has an error conditioned by the metrological parameters of the gages, equipment, connec-
tion line, conditions of the experiment and measuring scheme used [39–41].

The measuring error was defined by the following formula:

∆ε = ∆εs + ∆εme, (5)

where ∆εs is the systematic measurement error and ∆εme the random measurement error.
Here, the systematic measurement error was conditioned by the tolerances for out-

of-parallelism and the width of a beam of equal bending resistance, and in accordance
with [41] for the standard beam, it amounts to 4%.

A random measurement error is defined by the following formula:

∆ε =
εa

εe
, (6)

where εa is the absolute measurement error and εe is the error obtained in the experimental
research. The research results showed that the value was 8.8% and the total error was 12.8%.

It is important to note that these values of errors can be reduced by using smaller
tolerances for non-parallelism and the thickness of the calibration bar. At the same time,
based on the practical experience of conducting experimental studies using the method of
electrical strain gauging by the authors of the article, this error is acceptable.
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7. Conclusions

This research presented measures to improve the strength of the bearing structure of
a car during unloading with a grab. The authors suggested the introduction of viscous
elements in the structure. An elastomer can be taken as the viscous element and the damper
during the impact interaction between the top cord and the grab.

The maximum equivalent stresses in the bearing structure of an open car amounted to
about 320 MPa, which is 32% lower than in the standard design. The maximum displace-
ments were about 20 mm. Thus, the strength of the improved bearing structure of an open
car body was provided. It should be noted that the maximum equivalent stresses in the
bearing structure were reduced three times in comparison to those of the typical structure.

The authors suggested measures to adjust the bearing structure of a car for tight
securing on the train ferry deck by means of a special unit for the fixation of the chain
binders mounted on bolster beams of the frame.

The maximum equivalent stresses were recorded in the radial part of the fixation
unit for chain binders. They amounted to about 300 MPa, which is 38% lower than in the
standard design. The stresses in the vertical sheet of the bolster beam were in the range
of up to 176 MPa. They did not exceed the allowable values for the steel grade of the
body frame.

This study dealt with the determination of the design service life of the bearing struc-
ture of an open car with the consideration of its regular use for train ferry transportation.
The design service life amounted to about 30 years.

The research also included the determination of the strength of the bearing structure
of a car with consideration of the improvements suggested. The full-scale testing was
based on the strain measurement method. The most loaded areas of the bolster beam of an
open car were found. The error of the experiments was 8.8%.

The results of the research may be used by those who aim to achieve the higher
operational efficiency of cars during rail/sea transportation.
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