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Abstract: Autonomous underwater vehicles (AUVs) have been widely used to perform underwater
tasks. Due to the environmental disturbances, underactuated problems, system constraints, and
system coupling, AUV trajectory tracking control is challenging. Thus, further investigation of
dynamic characteristics and trajectory tracking control methods of the AUV motion system will be
of great importance to improve underwater task performance. An AUV controller must be able to
cope with various challenges with the underwater vehicle, adaptively update the reference model,
and overcome unexpected deviations. In order to identify modeling strategies and the best control
practices, this paper presents an overview of the main factors of control-oriented models and control
strategies for AUVs. In modeling, two fields are considered: (i) models that come from simplifications
of Fossen’s equations; and (ii) system identification models. For each category, a brief description
of the control-oriented modeling strategies is given. In the control field, three relevant aspects are
considered: (i) significance of AUV trajectory tracking control, (ii) control strategies; and (iii) control
performance. For each aspect, the most important features are explained. Furthermore, in the aspect
of control strategies, mathematical modeling study and physical experiment study are introduced in
detail. Finally, with the aim of establishing the acceptability of the reported modeling and control
techniques, as well as challenges that remain open, a discussion and a case study are presented.
The literature review shows the development of new control-oriented models, the research in the
estimation of unknown inputs, and the development of more innovative control strategies for AUV
trajectory tracking systems are still open problems that must be addressed in the short term.

Keywords: autonomous underwater vehicle; trajectory tracking; modeling; control strategies

1. Introduction

An underwater vehicle is a semi-autonomous or fully autonomous underwater robot
equipped with sensing, decision-making, and execution capabilities [1]. It has been widely
used in marine exploration and mapping, underwater pipeline inspection, and scientific
and military missions. Traditional underwater vehicles are provided energy through cables,
which limits maneuverability [2]. AUVs are normally cruising with self-carried battery
and streamline configuration. In addition, AUVs are usually carrier based and have many
applications when used in conjunction with airborne equipment and tools [3]. They are
developed to complete environmental perception, location, analysis, decision-making,
and operative missions autonomously and independently in complicated environments.
Therefore, AUV research is a topic of great interest. Recent developments and applications
of AUVs are listed in Table 1.
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Table 1. AUVs and its application in various countries.

Country AUV Name Research Institute Working Depth (m) Research Purpose

USA
REMUS-6000 Woods Hole

Oceanography Institute 6000 Offshore exploration, survey, and
automatic sampling [4]

Odyssey Massachusetts Institute
of Technology 3000 Scientific investigation and ocean

automatic sampling network research [5]

CETUS Massachusetts Institute
of Technology 4000 Military torpedo detection search and

danger elimination [6]
SAUVIM University of Hawaii 6000 Cable laying and demining

China
CR-02 Shenyang Automation

Institute 6000 Mineral resources survey and
development [7]

CR-01 Shenyang Automation
Institute 6000 Pacific Polymetallic Nodules Survey [8]

“Explorer” Shenyang Automation
Institute 4500 Marine search and rescue, undersea

resource survey [9]
Germany DeePC STN Company 4000 The ice survey [10]

UK AUTOSUB Southampton
Oceanographic Centre 1600 Multi-purpose marine survey and

surveillance platform [11]

France ALIVE Cybernextix Company 3000
Equipment maintenance and

investigation, archaeology and dangerous
goods collection [12]

Portugal Delfim Dynamical systems and
ocean roboticsLAB 4000 Collection and transmission of marine

data [13]

Norway HUGIN1000 Konsberg 1000 Mine search mission [14]
HUGIN3000 Konsberg 3000 Application of fuel cell to AUV [15]

Japan Tri-TON 2 University of Tokyo,
Japan 2000 Detect underwater mineral storage [16]

Canada Theseus AUV ISE research 2000 Ice cable laying [17]

Although AUV has been studied extensively, motion stability and reliability remain
complicated due to uncertainties in an underwater environment [18]. To address these
problems, path-following and trajectory tracking control methods have been developed
to ensure proper motion of AUV [19]. Path-following control ensures the vehicle to
reach a destination by following a desired path along Cartesian coordinates. This task
involves the separate construction of geometric paths and dynamic allocation, with an
emphasis on spatial convergence in dynamics [20]. However, when performing tasks such
as maneuvering target tracking, time-sensitive target strikes, or coordinated formations,
AUV must have high precision and rapid response capabilities. Trajectory tracking solves
the problem by forcing the AUV to track the time-parameterized path [21]. In the trajectory
tracking task, the vehicle must arrive at a certain point at a pre-specified time. Therefore, it
inherently integrates the distribution of space and time into a whole [22]. However, the
trajectory tracking controller is affected by highly nonlinear vehicle dynamics and external
time-varying disturbances. These effects make it difficult to measure or estimate in an
underwater environment. Therefore, it is extremely challenging to achieve fast and accurate
trajectory tracking for AUVs [23]. The control principle of AUV trajectory tracking is shown
in Figure 1. AUV trajectory tracking control includes three parts: trajectory planning, user
interface, and trajectory tracking control. The trajectory planning includes path planning,
behavior decision, and trajectory generation. It generates the required database, such as
task and mode data, vehicle component, and user profile. The GUI displays two aspects
of interactive data, including trajectory planning and trajectory control. AUV obtains the
planned route through the GUI, and it generates deviation with the actual movement data,
and the motion control is achieved through thruster control and energy control, thereby
the trajectory tracking error is reduced.
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Figure 1. AUV trajectory tracking structure block diagram.

The establishment of the trajectory tracking model is helpful to improve the decision-
making and intervention ability of the actual system [24]. Generally, two factors need to be
considered when establishing an AUV trajectory tracking model: (i) the complexity of the
model will affect the calculation efficiency, and (ii) the accuracy of the model is the basis
for an accurate analysis of the system [25]. Inspired by robot motion modeling, Fossen
developed a six degree-of-freedom (DOF) motion model of a maritime vehicle in vector
form [26]. This form can make it easier for researchers to understand the physical meaning
of each part of the motion model, and greatly reduce the complexity of AUV motion
controller derivation [27]. Nevertheless, due to time-varying external interference, this
modeling method is difficult to accurately establish a system model. System identification
is based on the determined model structure and uses optimization search such as least
squares and genetic algorithms to identify the model parameters [28]. It not only uses
various offline data during the AUV operation process, but it also identifies the system
parameters online by designing various types of observers, laying the foundation for the
accurate establishment of AUV model [29]. Research shows that the system parameter
identification method based on neural network (NN) has achieved good performance in
AUV trajectory tracking modeling.

Accurate trajectory tracking requires the coordinated control of altitude and position
under the dual constraints of time and space [30]. Complicated non-linearity, underactuated
system, system constraints, and other issues make AUV trajectory tracking control a
challenge [31]. Various approaches have been undertaken to ensure AUV trajectory tracking
convergence speed and accuracy. Complex unknown external disturbance is an important
issue of trajectory tracking, which could affect the model accuracy and degrade the closed-
loop system performance. The commonly used robust control methods include, but are
not limited to, sliding mode control, H-infinity control, model predictive control (MPC),
NN control, optimal control, multi-agent, etc. [32]. However, conventional controllers with
fixed gains fail to guarantee high quality responses of the overall system when significant
changes occur in the vehicle dynamics and its environment [33]. Intelligent adaptive control
has proven to be successful in several nonlinear applications [34]. In addition, adaptive
control provides an ability to re-adjust the controller parameters online to achieve the
required performance when the process parameters are unknown and vary over time [35].
In contrast to the motion control of fully actuated AUVs, the main concern in the design
of controllers for underactuated AUVs is that the number of their independent actuators
is fewer than degrees of freedom [36]. This feature increases the degree of complexity in
the design of nonlinear tracking controllers for such systems. In order to overcome some
of the above-mentioned problems, several tracking controllers were developed based on
the Lyapunov direct method, feedback control law, and the backstepping method [37]. In
addition, the system constraints, such as thrust limit and safe operating area, are inevitable
in real AUV applications. To include these constraints in the controller designs, MPC
is an ideal tool, because it can handle constraints through optimization procedures [38].
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Most of the above studies are based on the assumption that all the motion states of AUV
are measurable. However, sensor failures may occur to AUVs considering the complex
underwater environment [39]. In these cases, state observer-based control methods can
provide effective solutions for such conditions. Studies show that the development of
new control-oriented models, the research in the estimation of unknown inputs, and the
development of more innovative control strategies for AUV trajectory tracking systems are
still open problems that must be addressed in the short term.

To address these issues, this review aims to: (a) provide a comprehensive survey
and review on the current control models and their associated parameters, algorithms,
and strategies; (b) help the AUV investors and developers to determine the appropriate
AUV model and control algorithms; (c) identity the future development path for AUV
and conduct in-depth research. The rest of the paper is organized as follows. Section 2
describes the modeling method of AUV trajectory tracking control, Section 3 presents the
AUV trajectory tracking control strategy, and Section 4 gives the conclusions and future
perspectives.

2. AUV Trajectory Tracking Model

The AUV spatial motion model is the basis for the analysis of motion characteristics
and the research of control algorithms. When building an AUV motion model, it is
necessary to consider the motion, the influence of environmental parameters, and the
coupling factors. There are two commonly used methods to develop AUV trajectory
tracking models: analytical model based and system identification based.

2.1. Analytical Model

Analytical model is an abstract description of AUV motion system [40]. It is a multi-
factor complex system, comprehensively considering the external environment disturbance
and its coupling factors [41]. Due to the influence of uncertain factors, the motion analytical
model of AUV is usually a nonlinear system [25]. Considering the above factors and the
AUV movement mode, the researchers established a kinematic and dynamic model. The
schematic diagram of the AUV motion model is shown in Figure 2. This section mainly
reviews the establishment of analytical models from the perspective of analytical modeling
methods, factors that affect model establishment, such as system coupling, nonlinearity,
and external environmental disturbances.

Figure 2. A block diagram of a model building system based on dynamic equations.
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2.1.1. Model Building

AUV motion is generally described in six DOF, which includes translation and rotation
components. The translation part includes surge, sway, and heave, which describe the
position of the AUV. The rotation components include roll, pitch, and yaw, which describe
the direction of the AUV [42]. The description of AUV motion is able to be achieved
through kinematics and dynamic models in the body coordinate and inertial coordinate.

Inspired by the robot motion model and vector rigid body dynamics, Fossen proposed
a vector form of marine vehicle motion model [43]. This type of dynamic system typically
uses the Newton–Euler equation and the Quasi-Lagrange equation to model the dynam-
ics [44], which makes the full use of the physical characteristics of rigid three-dimensional
space motion. This model can not only reduce the number of model parameters, but also
help to analyze the impact of dynamic equations on the vehicle motion [45]. To simplify
analysis and controller design, ref. [46] studied the dynamic equations established by the
Quasi-Lagrangian equation and divided the model into a series of interrelated subsystems.

Ref. [47] introduced additional items ∆(υ, η) in the six DOF mathematical model,
which represents structural or non-structural parameter errors, system disturbances,
or unmodeled dynamics, effectively avoiding the impact of modeling errors on AUV
performance.

Meanwhile, since the number of underactuated control inputs is always less than
the number of state variables, the difference between the level of the input matrix and
the dimension of the configuration vector is used to distinguish between a fully actuated
and an underactuated AUV. The AUV definitions regarding the fully actuated system, the
underactuated system, and the degree of underactuation are listed [48]:

Definition 1. (Fully actuated system): If instantaneous acceleration could be achieved in any
direction of v, the system is a fully actuated system. This may also mean that rank {R(v)} = dim(v).

Definition 2. (Underactuated system): If instantaneous acceleration could not be achieved in any di-
rection of v, the system is an underactuated system. This may also mean that rank {R(v)} < dim(v).

Definition 3. (Degree of underactuation): The degree of underactuated is the number of configura-
tions that cannot be controlled immediately. Expressed as: rank dim(v) −{R(v)}.

2.1.2. System Coupling Factors

The AUV movement process contains six DOF, and there is a strong coupling rela-
tionship between each degree of freedom, which makes the design of the controller very
complicated [49]. Model decoupling, which can reduce the complexity of the system
and shorten the calculation time required by the controller, is of great significance. One
option to decompress a six DOF model is to decompress the model into three independent,
non-interacting inserts: steering, diving, and speed control. Each subsystem can be lin-
earized at a constant operating point, thereby deriving the control law of each single input
multiple output (SIMO) subsystem [50]. Ref. [51] adopted a distributed implementation in
which the original optimization problem was appropriately decomposed into three smaller
sub-problems. Another decoupling method was usually to ignore the coupling between
the rolling surface motion and the two plane motions. In this case, the vehicle motion is
divided into vertical motion and horizontal motion [52].

However, when these decoupling methods are applied to highly coupled nonlinear
models, the results obtained are not satisfactory. Due to decoupling, the system assumes
that the respective degrees of influence do not affect each other, causing conflicts in control
inputs. It can be seen from the comparison that the use of the coupling system can improve
the trajectory tracking accuracy. The trajectory tracking model of the nonlinear fully
coupled system is difficult to analyze, and the output of the affine nonlinear system is
linear with respect to the control signal [53]. Therefore, ordinary feedback linearization can
be used for these systems.
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2.1.3. System Nonlinearity Factors

In some work, the highly nonlinear problem of the model can be dealt with by lin-
earizing the model around the operating point. Some researchers reduce the complexity
of the AUV model by linearizing its running speed [54]. However, most of the existing
linearization methods aim to develop a fully linear model that does not retain any nonlin-
earity. Therefore, because high-order terms are omitted, there are inevitably unmodeled
dynamics. Inaccurate modeling will reduce the system performance [55]. State-dependent
Riccati equation control (SDRE) technology can synthesize nonlinear feedback control by
allowing the nonlinearity in the system state, and at the same time, it can provide great
design flexibility for the control system design of nonlinear dynamic system, and avoid
the error caused by traditional linearization treatment [56]. In addition, ref. [55] developed
a local compact form dynamic linearization (local-CFDL) to transform the original non-
linear nonaffine system into an affine structure consisting of both an unknown residual
nonlinear time-varying term and a linearly parametric term affine to the control input. The
local-CFDL model can be rewritten in a compact form:

∆y(t + 1) = ∅(t)∆u(t) + ξ(t) (1)

where t represents the AUV running time, ∆y(t + 1) = y(t + 1)− y(t) represents the output
increment at the next moment, ∆u(t) = u(t)− u(t− 1) represents the input increment at
this moment, ∅(t) is presented to denote the partial derivative of unknown nonlinear scalar
function f (·) with respect to control input, ξ(t) denotes the residual nonlinear uncertainties
of the affined linear data model and will be estimated as a whole in the following controller
design process.

2.1.4. Environmental Disturbance Factors

The external interference of AUV is very complicated. When the AUV is operating in
a very shallow water/surface area, significant interference due to shallow water waves
will be introduced into the translational motion of the AUV. Since small AUVs are more
sensitive to wave interference, mathematical model of these interferences should be carried
out to facilitate motion planning and control purposes [57]. The common solution is to
applying a superposition of multiple regular blogs to implement the description of random
waves [57]. During the deep dive, the changes in diving depth, pressure, salinity, and
density can affect the buoyancy and should be included in the model establish [58]. Depth
control of AUVs during vertical plane motion model is written in (2), which includes
fluctuation and nonlinearity, and the linear term and nonlinear term are separated.

.
x(t) =

[
A1 02×2
A2 A3

]
xt +

[
B1

02×1

]
u(t) +

[
D1

02×2

]
ν(t) +

[
f1
f2

]
= Ax(t) + Bu(t) + Dv(t) + f(x, t)

x(t0) = x0

(2)

where the state vector as x(t) = [w q θ z]T , the wave disturbances vector as
v(t) = [Zwave Wwave]

T , the control vector as u(t) = δs(t), and the nonlinear vector as
(x, t) = [f1 f2]

T .

2.2. System Identification

The highly nonlinear and cross-coupled system dynamics, together with the unpre-
dictable complex underwater environment which introduces considerable disturbances
and uncertainties, challenges the model establish [59]. System identification-based models
focus on developing recognition algorithms to accurately estimate unknown parameters
of a model. Thus, the mathematical model could be accurately constructed to achieve
more accurate design [60]. System identification methods are divided into offline and
online methods based on the data source [61]. The schematic diagram of AUV system
identification is depicted in Figure 3.
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Figure 3. The schematic diagram of AUV system identification [62].

2.2.1. Offline Identification

Offline system estimation techniques tend to rely on repetitive methods, where data
are collected by the vehicle’s sensors, then filtered and processed. The most common
offline system identification method is the least squares (LS) [63]. The LS linear system
acts as the loss function and the system of solution equations. Its level of precision is
comparable to the identification method of nonlinear dynamic systems and has the ability
of learning fast [64]. Ref. [63] designed a Nonlinear Auto-Regressive Moving Average
eXogenous (NARMAX) model. The parameters of the NARMAX model are updated
using a recursive extended least square algorithm at each time instant. However, the
interference of various environmental factors during the operation of AUV makes the
offline measurement data noisy, and at the same time, leads to the uncertainty of the
system’s state [65]. To build a more accurate model, it is necessary to apply filtering
techniques [66]. Commonly used filtering methods include random filters and Kalman
filters (KFs). The random filtering method is based on a two-step Bayesian process, that
includes time or measurement updates [67]. The KF assumes uncertainty in the dynamics
of the Gaussian distribution system and uses the mean and covariance of the state vector
for update adjustments [68]. Observer KF was proposed to handle measurement noise
and mild nonlinearity. However, the AUV system is influenced by nonlinear factors
and require nonlinear filtering methods [69]. Extended Kalman filter (EKF) is commonly
used in underwater environments to implement nonlinear filtering [42], which uses the
instantaneous linearization of each time step to approximate nonlinearity [70].

2.2.2. Offline Identification

The online system identification method collects data and estimates system dynamics
as the vehicle operates in real time [71]. This allows the model parameters to update
automatically and more reliably, especially when changes to the environmental conditions
occur [72]. In the field of online identification techniques, NN, and KF techniques have been
investigated for decoupled and coupled motion models. NN has an inherent capability of
approximating nonlinear functions for AUV depth trajectory tracking control. Ref. [73] used
NN approximators and adaptive robust control strategies to estimate model uncertainties
in the design process due to unknown vehicle parameters, unmodeled dynamics, and
constant or time-varying interference caused by waves and ocean currents. Ref. [74] used
linear parameterized NN (LPNN) to estimate the uncertainty of vehicle dynamics, in
which the basis function vector of the network is constructed according to the physical
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characteristics of the vehicle. Ref. [58] adopted the NN to approximate the complex AUV
hydrodynamics and differential of desired tracking velocities. The bound of the generalized
disturbance, which is composed of NN approximation error and ocean disturbances, are
approximated based on the adaptive estimation technique. At the same time, the KF
estmates optimal states for a linear system using Gaussian error statistics [75]. Based on KF
recognition, ref. [76] established a set of decoupled AUV subsystems with different degrees
of freedom. In addition, the extended Kalman filter (EKF) is another effective tool for
AUV system identification. The EKF is a recursive updating method that has been widely
used in AUV system identification for its excellent performance in arithmetic robustness,
recognition accuracy, and fast convergence [42].

The online system identification methods are more reliable when the AUV parameters
and environmental conditions vary. However, this modeling method lacks transparency
and has heavy computation burden due to the large dataset. The multi-model framework
realizes modeling and identification of complex nonlinear systems through problem de-
composition. The global system model consists of a set of models that integrate different
degrees of effectiveness. The multi-model framework can directly and qualitatively inte-
grate object knowledge, which is simpler than the system identification method [61]. The
comparison of different modeling methods in AUV trajectory tracking is shown in Table 2.

Table 2. Summary of the research studies on the modeling of AUV trajectory tracking system.

Classification Authors Influencing Factors Method of Modeling Important Finding

Analytical
model

[43]

The external
environment

disturbance and its
coupling factors.

The Newton–Euler
equation and the
Quasi-Lagrange

equation.

Not only reduces the number of model
parameters, but also helps to analyze the

impact of dynamic equations on the
vehicle motion.

[46]

The external
environment

disturbance and its
coupling factors.

Quasi-Lagrangian
equation.

Divided the model into a series of
interrelated subsystems.

[47]

The external
environment

disturbance and its
coupling factors.

Introduces additional
items ∆(υ, η).

Avoid nonlinear modeling errors.

[51] System coupling.

The optimization
problem can be

broken down into
three smaller

sub-problems.

This sub-problem should be solved in
parallel so the calculation time can be

greatly reduced.

[77] System coupling.

Ignore the coupling
between the rolling
surface motion and

the two plane
motions.

Shorten the calculation time required to
determine each controller.

[53] System coupling. Affine nonlinear
systems. Improved trajectory tracking accuracy

[54]
Complexity and the
nonlinearity of the

model.

Linearizing an
operating forward

speed.

The high nonlinearity of the model is
handled.

[56]
Complexity and the
nonlinearity of the

model.
SDRE

Offer great design flexibility systematic
and effective means for the design of

control systems for nonlinear dynamical
systems.
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Table 2. Cont.

Classification Authors Influencing Factors Method of Modeling Important Finding

Analytical
model

[1]
Complexity and the
nonlinearity of the

model
local-CFDL Avoid errors caused by the traditional

linearization process.

[57]

The significant
interference caused by
shallow water waves is

introduced into the
translational motion of

the AUV.

A superposition of
multiple regular

blogs to implement
the description of
random waves.

Perform mathematical model of these
disturbances to facilitate exercise planning

and control purposes.

System
identification

[64] N/A least squares (LS) Offline system identification method.

[69] Measurement noise
and mild nonlinearity.

Observer Kalman
filter.

Remove noise and nonlinearity to make
the model more accurate.

[42]

The AUV system is
influenced by nonlinear

factors and require
nonlinear filtering

methods.

Extended Kalman
filter (EKF).

Use the instantaneous linearization of
each time step to approximate

nonlinearity.

[73]

The external
environment

disturbance and its
coupling factors.

NN approximator
and adaptive
technology.

Estimate the uncertainty of the model due
to unknown vehicle parameters,

unmodeled dynamics, and constant or
time-varying disturbances caused by

waves and ocean currents.

3. AUV Trajectory Tracking Control
3.1. Significance of Control Strategy in AUV Trajectory Tracking

AUV trajectory tracking requires the vehicle to track a time-varying reference trajectory
in space. It not only requires the center of mass of the AUV to move along the trajectory,
but also requires the arrival time and even the velocity and attitude of the arrival. Due to
the complexity of the external environment and its own structure, AUV trajectory tracking
control mainly includes the following aspects: (1) Nonlinearity is a prominent feature of
AUV in terms of dynamics. Therefore, the obtained dynamic coefficients are difficult to
be accurate, and ocean currents are more likely to interfere with it. Based on the above
reasons, AUV puts forward higher requirements for its own robustness, adaptive or self-
tuning controllers are essential; (2) due to the influence of the uncertainty of the AUV
underactuated system, it is necessary to focus on its nonlinear robust control, which is
also the difficulty of developing AUV; (3) ignoring system constraints during the design
phase may result in degraded trajectory tracking performance. Therefore, it is desirable to
consider these constraints in the design of the tracking controller.

3.2. Methodologies of Control Strategies Applied in AUV Trajectory Tracking
3.2.1. Mathematical Modeling Study

Many mathematical models of control strategies for AUV trajectory tracking have been
studied in the literature. This section will introduce several typical control mathematical
models.

Optimal Control

(1) Linear quadratic regulator (LQR)

The LQR is a highly effective method to design an optimal full-state-feedback con-
troller for linear, or linearized systems [78]. The correction and design of the LQR needs to
find the appropriate state variables and control quantity weighting matrix according to
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the response curve, without determining the closed-loop pole position according to the
required performance [79].

Ref. [80] designed an LQR based on a linearized model and applied it to a nonlinear
model to track the desired trajectory. Consider the linear time-varying state space model:

.
χ̃ = Atχ̃(t) + B(t)Ũ(t) (3)

where χ̃ = χ− χeq and Ũ = U−Ueq, A(t) is a 12 × 12 matrix and B(t) is a 12 × 4 matrix,

and they are calculated as follows: A(t) = ∂z
∂χ

∣∣∣ χ = χ̃eq(t)
U = Ũeq(t)

, B(t) = ∂z
∂U

∣∣∣ χ = χ̃eq(t)
U = Ũeq(t)

.

The feedback LQR control law can be written as follows:

U(t) = −K(t)χ̃(t) (4)

where U(t) represents a vector of feedback control input of length 4, χ̃(t) = χ(t)− χeq(t)
represents a state error vector of length 12, and K(t) represents a 4× 12 matrix that contains
control gains that vary over time.

However, traditional LQR algorithm does not consider current disturbances and
AUV dynamics. To simulate the actual situation, the excitation must be known before
determining the optimal control force to obtain a more reliable solution [81].

(2) State-dependent Riccati equation (SDRE) control

The SDRE control solves the optimal control problem of nonlinear systems by con-
structing a linear structure, which has great flexibility and ensures a large range of pro-
gressive stability through the selection of the State-dependent coefficient matrix weight
coefficient [82].

Ref. [56] obtained the nonlinear feedback control law through the quasi-linearization
of the dynamic equation and the calculation of the algebraic Riccati equation. Avoid errors
caused by traditional linearization processing. State-dependent coefficient (SDC) of the
nonlinear dynamic equations specified as:

.
x = Ax + Bu (5)

where, x = [ξ ζ u w q xs xb]
T , u = [T us ub]

T , A = H−1F, B = H−1E, H12 =

[
H11 H12
H21 H22

]
,

F =

[
F11 F12
F21 F22

]
, E =

[
E11
E21

]
.

Ref. [53] used an SDRE controller in a non-affine structure without decoupling the
six DOF. The position error of 43.6 mm is negligible compared the with total measured
distance of 8.77 m. The control law is in the form of:

u(t) = −R−1 ∂}(x(t), u(t))
∂u(t)

k(x(t), u(t))x(t) (6)

where k(x(t), u(t)) is the symmetric positive definite solution of the State-dependent Riccati
equation as:

k(x(t), u(t))A(x(t)) + AT(x(t)k(x(t), u(t))− k(x(t), u(t))B(x(t), u(t))R−1BT(x(t), u(t))k(x(t), u(t)) + Q = 0 (7)

where Q is the weighting matrix for states, symmetric positive semi definite, and R is
weighting matrix for the control inputs, x(t) ∈ <n is the state vector, u(t) ∈ <m is
the subsystem speed, A(x(t)) : <n → <n×n and B(x(t), u(t)) : <n → <n×n , prepares the
system for implementing the suboptimal control.

Ref. [83] optimized the system by using the quadratic performance index to solve
the SDRE and obtain the sub-optimal control law of the input unconstrained model. Al-
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though the system parameters and control fin deflection constraint conditions are uncertain,
effective depth control can still be achieved. This control law is given by:

.
xa1 =

[
A(x, p) 04×1

C 0

][
x

xs1

]
+

[
B(p)

0

]
δs +

[
d
−Zr

]
, Aa1(x, p)xa1 + Ba1(p)δs + Ev

(8)

where 0 denotes null matrices of appropriate dimensions, introducing the dependence
of matrices Ai and B1 on the perturbation vector p, B(P) =

[
B1

T(P), 0T]T ∈ R4 and

d =
[
d1

T , 0T]T ∈ R4, Zr is prescribed depth, xs1 is the integral of the depth trajectory

tracking error, xa1 is the state, δs is input, C = [0, 0, 1, 0], v =

(
d1
Zr

)
∈ Ωv ⊂ R3,

E =


1 0
0 1

0
0

0 0
0 0
0 0

0
0
−1

.

It can be seen from the above research that SDRE shows good effects in system
coupling and nonlinear processing. However, there are situations where global asymptotic
stability could not be achieved. In this case, estimating the attractive area is valuable and
essential. More important, a method of estimating the size of the attractive area could
be used.

(3) Model Predictive Control (MPC)

MPC recursively solves the open-loop optimal control problem by using real-time
state measurement as the initial condition [84]. It systematically incorporates the system
state and controls the input constraints [26]. Due to the high flexibility in expressing various
control problems, it allows MPC to digest any nonlinearity of the system model without
any approximations.

Ref. [39] developed a disturbance observer-based nonlinear MPC scheme for cross
tracking of underactuated AUV under sea current disturbance. The stability time is 110 s,
and the error is under the 5% limit. The proposed model predictive control system with
disturbance observer is shown in Figure 4.

Figure 4. Nonlinear model predictive control system with disturbance observer (Reprinted from
Reference [39] with permission from IJMS, copyright 2017).

Ref. [59] developed a Lyapunov-based nonlinear MPC (LMPC). Linearization can
be avoided by adding shrinkage constraints in MPC and the closed-loop stability of the
controller can be ensured. The formula of LMPC can be expressed as Equation (9).

min
û ∈ S(δ)

J =
∫ T

0
‖X̃(S)‖2

Q + ‖ũ(S)‖2
Rds + ‖X̃(T)‖2

P (9)
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where X̃(S) is the predicted state trajectory of the vehicle with respect to the predictive
control ũ(S), evolving from X(t0) using the system model, X̃ = X̂−Xd is the error state
and ũ = û− ud is the control error, S(δ) denotes the family of piecewise constant functions
characterized by the sampling period δ and T = NδT is the prediction horizon, the
weighting matrices Q, R, and P are positive definite.

Considering the high computational complexity of nonlinear programming related to
NMPC, ref. [51] proposed the distributed MPC (DMPC) implementation to alleviate the
computational burden. The average computation time confirms the improvement with the
DMPC implementation. In addition, NMPC faces a fierce conflict between a longer calcula-
tion time and a shorter system sampling period. To address this conflict, ref. [85] modified
the continuation/generalized minimal residual (C/GMRES) algorithm. The C/GMRES
algorithm efficiently solves the NMPC problem within 10% of the sampling period.

During the underwater operation of AUV, there are inevitably problems such as
input saturation and state constraints. Ref. [86] designed the NMPC scheme to use ocean
currents for the calculated control input to keep the energy consumed by the thruster at
a reduced level. Various constraints were considered during this period, such as sparse
obstacles, working space boundaries, control input saturation, and predetermined vehicle
speed limits.

Although MPC has achieved good performance, it has the disadvantage of involving
complex calculations. Nonlinear MPCs face fierce conflicts between longer calculation times
and shorter system sampling periods. Therefore, according to the real-time requirements
of MPC, different strategies including offline precomputation, delay compensation, event-
triggered strategy, and numerical continuation are proposed in an attempt to shorten the
calculation time. The comparison between different optimal control methods in AUV
trajectory tracking is shown in Table 3.

Table 3. Optimal control method in AUV trajectory tracking.

Control Strategy Classification Improvement Control Object Control Effect Ref.

LQR LQR — Track the reference
trajectory.

Accurate tracking of
spiral, sawtooth paths
and 3D Dubin paths.

[80]

SDRE SDRE

A hyperbolic tangent
sigmoid function is

introduced to
equivalently replace

the rudder angle
variable.

Achieve the rudder
saturation constraint

problem.

The error of the
trajectory tracking to
converge smoothly to
the steady state value.

[56]

The quadratic
performance index.

Deal with suboptimal
underwater surface
control problems in

AUV.

Depth control is
achieved with actuator

saturation and
parameter uncertainty.

[83]

MPC

MPC
Genetic algorithm. Track the reference

trajectory.

Track the given
nonlinear path with

satisfactory accuracy.
[87]

Recurrent neural
network.

Control of AUVs in a
vertical plane.

Track the given
nonlinear path with

satisfactory accuracy.
[88]

LMPC C/GMRES algorithm.
Handling the actual

constraints of the AUV
thruster.

Improve the algorithmic
efficiency of the NMPC

algorithm.
[85]

DMPC Subproblems and the
warm start strategy.

Solve AUV control
problems to track

time-varying
trajectories.

Reduce controller
runtime and achieve

good control.
[51]
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Nonlinear Time-Invariant Control

(1) Sliding mode control (SMC)

A remarkable trait of the SMC is its robustness to time-varying parameters, and
external environment interference [77]. In addition, terminal sliding mode control (TSMC)
has a better effect in convergence speed, interference suppression ability, and uncertainty
problems.

To achieve fast convergence and high steady-state tracking accuracy, TSMC is consid-
ered to be superior to traditional SMC techniques. Ref. [89] constructed a robust disturbance
rejection control law using disturbance observers and modified TSMC. Lyapunov analysis
is performed to prove stability and performance. However, the problem with TSMC is the
singularity problem with unbounded control inputs [90]. To solve the singularity prob-
lem, ref. [91] proposed an adaptive non-singular integral terminal sliding mode control
(ANITSMC), which makes the speed and position tracking error locally converge to zero
within a finite time. The results show that the ANITSMC can achieve faster convergence
speed and better anti-interference effect than adaptive proportional integral sliding mode
control. ANITSMC control block diagram shown in Figure 5.

Figure 5. ANITSMC control block diagram (Reprinted from reference [91] with permission from the Institution of Engineer-
ing and Technology, copyright 2017).

Ref. [92] accomplished the finite-time error convergence and robust control task by
designing a nonsingular fast fuzzy terminal sliding mode controller (NFFTSMC) with
disturbance estimator for the six DOF dynamics of an AUV. The NFFTSMC controller
expression with perturbation estimation is:

τη = M̂η(η)(
..
ηd + β

q
p

sig2− q
p (

.
e) +

1
α

γsigγ−1(e)β
q
p

sig2− q
p (

.
e) + k f z)− τ̂dis + N̂η(v, η,

.
η) (10)

where η denotes the vector of position and orientation of the vehicle expressed in inertial
frame, υ is the vector of linear and angular velocity expressed in body-fixed frame, α =
diag[α1, · · · , αi, · · · αn] ∈ <n×n in which αi(i = 1, · · · n) > 0, β is a positive constant, p
and q are positive odd integers satisfying q > p, τ̂dis is the vector of estimated lumped
uncertainty term, γ is an auxiliary vector to estimate the unknown perturbations from the
dynamics of TSM manifold, N̂η

(
υ, η,

.
η
)
= Ĉη(υ, η)

.
η+ D̂η(υ, η)

.
η+ Ĝη(η).

The SMC based control design suffers from the chattering phenomenon, which leads to
a drop in the AUV control performance [93]. Ref. [94] employed an adaptive fuzzy sliding
mode with PID sliding surface to deal with the depth trajectory tracking. Due to the integral
term chattering problem not appearing. After that, ref. [95] used continuous adaptive PI
terms instead of discontinuous switching items in the SMC. Adaptive fuzzy PI sliding
mode control (AFPISMC) achieve high precise tracking ability in complex underwater
environment. The method yields superior performance in terms of smooth and fast
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trajectory tracking along with robustness against disturbances and perturbations. The
AFPISMC control block diagram could be demonstrated in Figure 6.

Figure 6. Block diagram of AFPISMC (Reprinted from reference [95] with permission from Springer-
Verlag Berlin Heidelberg, copyright 2017).

Ref. [96] improved the sliding surface technique and obtained an adaptive nonfluctu-
ating sliding mode controller with bounded estimates. The speed jump problem caused by
the initial error is solved, the thrust of the propeller is avoided, and the control input and
speed limit are satisfied. Considering the longitudinal speed control, we take the sliding
surface S1 as:

S1 = ue + λ1ue + λ2

∫
ue (11)

Considering the heading angle and angular velocity tracking control, taking the sliding
surface S2 as:

S2 = re + eψ + λ3

∫ (
re + eψ

)
(12)

In Equations (11) and (12), S1 represents the first sliding surface, S2 represents the
second sliding surface, ue represents the longitudinal speed feedback control amount, re
represents the heading angle and angular velocity feedback control amount, λ1, λ2, λ3 are
positive constant, eψ the heading angle deviation.

In addition, ref. [97] proposed a double closed-loop adaptive integral SMC without
jitter. Replacing the sign function with a saturation function is used to overcome the jitter
problem inherent in SMC. Double-loop chattering-free adaptive integral sliding mode
control scheme is shown in Figure 7 as follows:

Figure 7. Block diagram for the double-loop chattering-free adaptive integral sliding mode control scheme (Reprinted from
reference [97] with permission from Elsevier, copyright 2017).
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Ref. [98] proposed a second-order SMC with a PID sliding surface, which is verified
that the root mean square error of the second-order SMC with the switching controller is
lower than that of the second-order sliding mode without the switching controller, and its
closed-loop system is exponentially stable in the presence of parameter uncertainties and
unknown disturbances. The second-order sliding surface is:

.
si(t) + βisi(t) = kpi(t)ei(t) + kii

∫ t

0
ei(τ)dτ + kdi

.
e(t) (13)

where kpi, kii, kdi and βi are positive constants, for all i = 1, 2, 3, βi determines the rate
of decay for si(t), the results show that the second-order sliding mode controller can
compensate for the uncertainty of fluid dynamics and hydraulic parameters and eliminate
external disturbances during movements.

In future research, for the inherent vibration phenomenon of the SMC system, filter or
blur the SMC to make the output of the controller smoother. At the same time, a second-
order SMC can be used to compensate for uncertain fluid dynamics and disturbances.

(2) Backstepping control

Backstepping control is a nonlinear control that uses virtual control quantities that can
handle environmental uncertainties [99]. It decomposes a nonlinear model into subsystems
which do not exceed the system order. The design of intermediate virtual control quantities
and Lyapunov functions for each subsystem has been investigated by using the backward
recursion method [100]. By combining the linear stability theory, adaptive control, and
observer design, the accurate tracking of the AUV trajectory in a complex environment
is realized.

Considering that the external disturbance of the system dynamics model cannot be
measured directly, ref. [101] used a high-gain observer to estimate system disturbances
and compensate the control system. For the system dynamics of the longitudinal and
lateral velocity bidirectional channels, the design of the bidirectional high gain observer is
as follows:

Longitudinal speed channel :
{

p1 = ŵ1 − µ1m11u
.

p1 = −µ1(p1 + µ1m11u)− µ1(m22υr− d11u + u1)
(14)

Transverse speed channel :
{

p2 = ŵ2 − µ2m22υ
.

p2 = −µ2(p2 + µ2m22υ)− µ2(−m11ur− d22ν)
(15)

where w1, w2 is the external environment disturbance, u, ν, r are respectively the surge,
sway of the AUV in the body coordinate system, m11, m22 is the inertial parameter including
the added mass, u1 is longitudinal thrust. By adjusting the size of the parameter µ1, µ2,
the time constant of the observer could be changed to estimate the disturbance. d11, d22 is
the AUV system hydrodynamic damping coefficient.

Based on the advantage of a backstepping technique, ref. [102] constructed the speed
error function to obtain the appropriate control force and torque. This helps to improve the
accuracy of trajectory tracking in 3D space. The second error equation is:

Z2 = V− Vd = Ve (16)

where V is the surge sway, Vd is the desired velocity vector, Ve is the speed error.
However, the traditional backstepping control methods have a singularity problem. In

response to this problem, ref. [103] used a backstepping design method in the design, and
combined the input matrix decomposition of the high-frequency gain matrix. Although
there are uncertainties in system parameters and interference forces, the submarine can
still perform diving plane maneuvers. In addition, ref. [99] designed an adaptive rate
for external interference, and used the backstepping method to define the virtual speed
error variable. This control method can ensure that the underwater vehicle jump to the
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designated area when there is external interference, and also solve the singular value
problem in the traditional reverse thrust method.

Robust nonlinear controllers with a hierarchical structure (HRN) are designed for
complex and simplified models of an AUV. Ref. [104] designed an HRN control technique
that included a backstepping control for the first subsystem and a sliding-mode control for
the second subsystem to achieve proper trajectory and orientation tracking.

Although several challenges as stated above have been addressed, external disturbance
and system uncertainties are another two issues that need to be solved in tracking controller
design for surface ships. To solve these problems, an observer-based estimation was
preliminarily designed by [105] to estimate the disturbance and system uncertainties. Then,
a backstepping controller was synthesized with a compensation control effort incorporated
for accommodating the disturbance and uncertainties. The proposed controller guaranteed
that the desired trajectory can be followed with an exponential rate of convergence.

The backstepping control is characterized by a complicated operation that is caused
by the repeated difference of the virtual controller and increases computational burden
of the control algorithm. As the system sequence increases, so does the complexity of
the controller. Dynamic surface control techniques could be used to solve this problem
in future research. The comparison between different nonlinear time invariant control
methods in AUV trajectory tracking is shown in Table 4.

Table 4. Nonlinear time invariant control algorithm in AUV trajectory tracking.

Control
Algorithm Research Purposes Improvement Control Effect Ref.

Sliding mode
control

Improve control
accuracy

Robust sliding mode
controller

Successfully controls the AUV roll angle,
pitch angle and yaw angle within 10 s. [106]

Sliding mode variable
structure control

The AUV can accurately reach the
termination point from the starting point. [107]

Fuzzy logic The trajectory tracking accuracy of the
vehicle in all directions is very high. [46]

Solve the jitter
problem

Bounded adaptive
estimation

Solve the problem of speed jump due to
initial error in conventional backstepping
method, avoiding thruster saturation and

satisfying control input and speed
constraint conditions.

[96]

Dual closed-loop adaptive
integral sliding mode

controller

The designed controller can effectively
eliminate the flutter effect. [97]

Self-adaptive fuzzy PI
sliding mode control

PISMC has less oscillator response and
the shortest delay time. [95]

Adaptive fuzzy sliding
mode with PID sliding

surface

Avoid response oscillating and reduce
arrival time. [94]

Achieve the
finite-time

convergence of the
system dynamics

The terminal sliding mode Force the AUV’s position to track the
desired time-varying trajectory. [54]

Adaptive nonsingular
integral terminal sliding

mode control
Better robustness and faster convergence. [91]
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Table 4. Cont.

Control
Algorithm Research Purposes Improvement Control Effect Ref.

Sliding mode
control

Solve the limitations
of actuators

The second-order sliding
mode controlled

Effectively compensate for the
uncertainties of the hydrodynamic and

hydrostatic parameters of the vehicle and
can eliminate unpredictable

disturbance effects.

[108]

A second-order sliding
mode controller using PID

sliding surface

2-SMC with switching controller showed
smaller rms error in steady state than
2-SMC without switching controller.

[98]

Realize horizontal
trajectory tracking

Line-of-sight method

The underwater vehicle can be accurately
set according to the preset, except for

deviations at the starting point and the
turning point.

[109]

Combination of the lateral
trajectory error method

and the line-of-sight
method

Guarantees global κ-exponential stability
of the cross-track error to straight line

trajectories in three-dimensional space.
[110]

Combining the
cross-tracking error

method and the
line-of-sight method

The sliding mode controller has good
tracking performance for time-varying

depth signals.
[111]

Backstepping
control

Estimate faster
convergence of
parameters and
tracking errors

Adaptive control scheme Realize three-dimensional track precise
tracking control.

[104,
112]

AUV’s virtual speed
control and trajectory

tracking enable
asymptotic stability

Hierarchical control The robustness of the system under
environmental disturbance is guaranteed.

[105,
113]

Adaptive Control

The central concept of adaptive control is to estimate unknown parameters online
using known system conditions. It suppresses the influence of external disturbances,
environmental changes, and the effect of the system coupling with itself. Adaptive controls
also decrease modeling errors and their influences [55].

Ref. [114] developed an adaptive control law for AUV to track the desired trajectory.
The desired state-based regression matrix controller provides consistent results under
fluid dynamic parameter uncertainties. The proposed adaptation control law is shown in
Figure 8.

Figure 8. Structure of the adaptation control law.
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Based on the attractive manifold design approach, ref. [115] developed an adaptive
autopilot with equivalent uncertainty for diving level control of submersibles. The results
show that in the closed-loop system with σ-modification, the pitch angle and depth tracking
error are finally uniformly limited.

In addition, ref. [32] proposed an improved sight-based adaptive controller for un-
derwater vehicles. The terminal SMC is used to improve the robustness and asymptotic
convergence, and a wind-resistant compensator is used to reduce the effect of actuator
saturation.

Under the premise of ensuring the accuracy of adaptive control, a fast convergence
parameter estimation algorithm should be studied. In addition, combining adaptive control
with other control methods (such as backstepping control, SMC, and NN control) will
result in better control schemes.

Robust Control

Robust control describes a system that has parameter uncertainties and limits un-
modeled dynamics [58]. Different from adaptive control, robust control needs to maintain
certain performance indicators under a known control structure [23].

At present, two robust controllers are used in AUV trajectory tracking control re-
search: (i) H∞ control, and (ii) exponential convergence robust control. Ref. [116] designed
the heading controller and the trim controller based on robust H∞ control theory. This
effectively realized 3D AUV tracking control and steady state control accuracy. For an
AUV trajectory tracking control with dynamic uncertainties and time-varying external
disturbances, ref. [23] proposed three index-stable controllers: (i) the minimum-maximum
controller, (ii) the saturation controller, and (iii) the smooth transition controller. The results
showed that the filter, position, and seed tracking errors of the three controllers had expo-
nential convergence characteristics. Block diagram of the three proposed exponentially
convergent robust controllers is shown as Figure 9.

Figure 9. Block diagram of the three proposed exponentially convergent robust controllers (Reprinted from reference [23]
with permission from Elsevier, copyright 2017).

Intelligent Control

(1) Fuzzy control

The fuzzy controller is based on the manual control strategy of the operator or on
fuzzy information that the designer knows about the process [117]. The fuzzy control
method has been proposed for AUV trajectory tracking.
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Ref. [118] created a virtue of the adaptive fuzzy-based dynamic surface control scheme.
The tracking errors using this scheme can converge to zero faster and without chattering. To
simultaneously control the speed and attitude of the AUV, ref. [119] proposed a self-tuning
nonlinear fuzzy PID controller. The output signal from the fuzzy control is used to fine
tune the PID parameters. The block diagram of self-tuning nonlinear fuzzy PID controller
is shown in Figure 10.

Figure 10. Block diagram of self-tuning nonlinear fuzzy PID controller (Reprinted from refer-
ence [119] with permission from Hammad, copyright 2017).

In addition, ref. [120] used layered closed-loop fuzzy control to achieve underactuated
AUV horizontal trajectory tracking control. The fuzzy inference system is used to achieve
the highest level of control to obtain the guidance controller. However, the above studies
did not consider the actuation saturation of the vehicle, which means that the control input
is not limited. Ref. [121] controlled the vertical and horizontal planes of underactuated
AUV with actuator saturation and unknown disturbances. Direct adaptive fuzzy control
is used to compensate the effect of actuator saturation, which ensures the stability of the
trajectory tracking system when the actuator is saturated.

The aforementioned research shows that the combination of fuzzy control and other
control methods can achieve better trajectory tracking effects. In addition, the traditional
membership function is determined based on the researcher’s experience. Therefore, it is
essential to further develop turning and learning techniques.

(2) Neural network (NN) control

NN is a collection of neurons or nodes with adjustable connection weights [122]. Due
to the NN’s ability to process data, learn nonlinear systems [123], and provide approxima-
tions [124], it has achieved good results in AUV trajectory tracking.

The NN’s approximation ability and adaptive methodology can compensate for un-
known parameters like coupling and external disturbances of the system [73]. Ref. [125]
combined the unscented KF pose estimator with an adaptive NN tracking method to
estimate the AUV altitude. Ref. [126] studied the adaptive robust control problem based
on NN. The results indicated that it is possible to adjust only one parameter without
determining the number of NN nodes. Ref. [37] used the DSC method to design the AUV
trajectory tracking control model and the NN to estimate AUV model uncertainties.

Linear parameterized radial basis functions (RBFs) are widely used as adaptive func-
tions in NN-based adaptive controllers to simulate nonlinear dynamics and all object
uncertainties [122]. To overcome parameter uncertainties and realize the trajectory tracking,
ref. [127] introduced the RBF NN to estimate unknown parameters and select an adaptive
law to guarantee the best estimate of NN weights. Ref. [123] combined a neural adaptive
controller and an RBF NN with passive boundary conditions, feedback linearization, and
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approximation ability of AUV swing and echo velocity. Simulation results show that the
AUV effectively tracked the required trajectory through smooth transient performance.

Due to changes in the hydrodynamic coefficients, parameter uncertainties and mod-
eling errors can result in poor controller performance. Ref. [128] used NNs to enhance
the structure of the dynamic linear compensator. The NN extended the working range
of the vehicle and achieved control of the nonlinear system. Ref. [124] conducted AUV
trajectory tracking control research in discrete time with a continuous AUV model. NN
reinforcement learning was used to overcome the effects of model parameter uncertainty
and environmental disturbances. Two NNs were used for controller design. One NN was
used to compensate for controller uncertainty and the other NN was used to estimate the
evaluation function for optimal AUV tracking performance.

Although NNs have been successfully used in AUV trajectory tracking control, it
entails a large amount of calculation. Therefore, it is necessary to reduce neurons and
simplify the network. At the same time, adopting a better network structure and learning
scheme could solve inherent problems such as a local minimum. Recent work in this
direction includes deep learning and extreme learning. However, relatively few results
have been applied to the control field.

(3) Reinforcement learning (RL)

Current developments in the field of deep RL have made neural networks viable
approximators of the value and policy function [129]. The progress was expanded by
the development of a number of policy function and actor–critic algorithms which allow
the RL agent to select continuous values for the control actions in order to solve complex
continuous control tasks [130]. In the RL control scheme, the input parameters are the data
that can be measured by the on-board sensors directly, and the outputs of the designed
controller are set to the actions of the vectored thruster [131].

Policy-gradient-based models are particularly sensitive to the shape of the reward
function. The smallest variations can lead to the convergence or not of the model. Therefore,
a trade-off between the reward function and the complexity of the environment must be
found. In order to perform a waypoint tracking mission, ref. [132] designed the reward
function, where the reward function takes into account low-level variables such as linear
and angular velocities and their respective references. The result show that the thrusters
were 11.14% less solicited by the latter controller. Considering different factors which
actually affect the control accuracy of AUV navigation control, ref. [133] developed a
reward function for deep RL controller. The designed reward function can effectively
improve reliability and stability, reduce energy consumption, and restrain the vectored
thruster sudden change. However, these methods are still difficult to apply directly to the
actual AUV system because of the sparse rewards and low learning efficiency. Ref. [134]
proposed a deep interactive RL method for path following of AUV by combining the
advantages of deep reinforcement learning and interactive RL. They further propose a
deep RL method that learns from both human rewards and environmental rewards at the
same time. The result show that, AUV can converge faster than a DQN learner from only
environmental reward.

Model-free predictive control is a novel data-driven control approach. It can calculate
directly the control input by using a great deal of input and output datasets. Ref. [135]
proposes a model-free goal-driven deep RL method, based on the DDPG algorithm, for
self-tuning of the low-level PID controllers of mobile robots. The formulation includes a
gradient inverting scheme for constraining the actor outputs along the training phase. The
introduction of universal value functions, and its extension to the policy network, allows
for improved adaptability, making the agent able to adapt to different operative conditions.

When RL is applied to AUV trajectory tracking systems, the state and action variables
are continuous, and due to the generality of the dynamics and reward functions considered,
it is usually impossible to derive exact, closed-form representations of the value function
or control policy. In the context of AUV trajectory tracking control, more research is
needed into determining which kinds of problems benefit from using DNNs as function
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approximators. This might have to be done by getting a better understanding of how the
representations are learned for common network types and what types of functions are
represented and learned efficiently. The comparison between different intelligent control
methods in AUV trajectory tracking is shown in Table 5.

Table 5. Intelligent control algorithm in AUV trajectory tracking.

Control
Algorithm Classification Improvement Control Object Control Effect Ref.

Fuzzy control Fuzzy PID

Self-tuning
nonlinear fuzzy
PID controller

Control position
and speed to

follow desired
trajectories.

Compared with traditional
PID, the response speed is

faster and the minimum error
time is reduced.

[119]

Hierarchical
closed-loop fuzzy

control

Closed loop planar
trajectory tracking.

Motion and velocity errors are
bounded and fast converging,
showing the robustness of the
control algorithm for external

disturbances.

[121]

Direct adaptive
control

Compensate for
the effect of

actuator
saturation.

System stability for trajectory
tracking in the presence of

actuator saturation.
[20]

Neural network
control

Adaptive neural
network

Unscented Kalman
filter Pose estimation.

Ensure the accuracy and
certainty of the estimate, as

well as the feasibility of
trajectory tracking control.

[125]

Filtered technique

Trajectory tracking
of AUV with

model errors and
external

disturbances.

Avoided “explosion of
complexity”. [126]

Linearly
parameterized

radial basis
function

Estimate unknown
terms. Removing the inherent error. [123,

127]

Nonlinear
adaptive controller

Precise trajectory
tracking.

A satisfactory approximation
capacity and clearly result in

superior tracking
performance.

[74]

Online neural
network controller

Dynamic linear
compensator

Compensating
model error.

Extend the operating range of
the AUV beyond the capacity

of the linear controller.
[128]

Reinforcement
learning

Address unknown
disturbances,

parameter
uncertainties and

control input
nonlinearities.

Obtain the optimal tracking
performance.

[124,
136]

Hybrid control Dynamic surface
control

Tracking curve or
straight line.

Reduces controller
complexity. [37,47]
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Table 5. Cont.

Control
Algorithm Classification Improvement Control Object Control Effect Ref.

Reinforcement
learning

Reinforcement
learning

Designed the
reward function

Precise trajectory
tracking.

The thrusters were 11.14% less
solicited by the latter

controller.
[132]

Deep
reinforcement

learning

A reward function
for deep RL

Improve AUV
trajectory tracking

precise.

Effectively improve reliability
and stability, reduce energy

consumption, and restrain the
vectored thruster sudden

change.

[133]

Interactive
reinforcement

learning

Learns from both
human rewards

and environmental
rewards at the

same time

Improve rewards
and learning

efficiency.

AUV can converge faster than
a DQN learner from only
environmental reward.

[134]

Model-free
goal-driven

deep RL

Based on the
DDPG algorithm

Self-tuning of the
low-level PID
controllers of
mobile robots.

Improved adaptability,
making the agent able to

adapt to different operative
conditions

[135]

Others

(1) Cascade systems

A nonlinear cascade system is composed of two subsystems in a cascade struc-
ture [137]. The control enters only one of the subsystems, and the change in the state
of another subsystem is achieved through the association between the two subsystems.
This design method is characterized by simplified controller design, ignoring some nonlin-
ear terms. This results in uncomplicated expression control laws.

Researchers have used cascade systems to analyze and control the horizontal plane [138]
and three-dimensional movement [139] of AUVs. To improve water level tracking control
of AUVs, ref. [138] proposed a control torque design based on the cascade system theory.
The system is broken down into two cascade systems: position tracking and heading
angle tracking. The inversion method obtains a globally consistent, asymptotically stable
linear track following controller for the heading angle tracking system. Ref. [139] studied
the global trajectory tracking control. Based on the results of the time-varying cascade
system, the tracking error kinematics and dynamics were divided into two separate sub-
systems. Ref. [67] used the nonlinear cascade system stability theory to decompose the 3D
linear tracking system model into a cascade of two horizontal systems (horizontal tracking
and vertical plane linear tracking), and then select the appropriate altitude angle. The
instructions are further broken down into cascade position tracking and altitude tracking
systems.

(2) Bio-inspired control

The bio-inspired dynamics model has the ability to smooth and bound the error
output, thereby obtaining smooth, physics-constrained speeds, forces, and moments [140].
This method takes into account the constraints of mechanical dynamics and successfully
solves the problem of dynamic constraint matching and jumping speed of underwater
vehicles [141].

Ref. [142] combined a bio-inspired NN model with a Lyapunov function, which
solved the problem of speed jumps in discrete paths. Ref. [143] solved the problems of
impact and sharp jumps in angular velocity that cannot be achieved during the initial
movement of the AUV through the biologically inspired shunt model and nonlinear
feedback trajectory tracking control method. Ref. [144] proposed a 3D motion control based
on a bio-inspired neural dynamics model by constructing a simple intermediate dummy
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variable and combining the Lyapunov function to design trajectory tracking control law.
This achieves global asymptotic stability and smooth continuous output of horizontal and
vertical planes.

Based on a knowledge base, ref. [145] presented an original ship course-keeping
algorithm. Its integral part is a computer-borne ship movement dynamical model based on
a set of signals obtained from the object’s input and output, which has been avoided the
problems occurring while designing classic control algorithms for a complex, non-linear
ship model. The designed algorithm was compared to LQR controller as well as feedback
linearizing one. The results prove high quality performance of the proposed method.

3.2.2. Physical Experimental Study

In order to verify the reliability of the mathematical model and numerical simulation
of the control strategy, it is more important to conduct physical experiment research in
AUV. In order to evaluate the control method proposed in AUV trajectory tracking, the
control algorithm is compiled into C/C++ language, MATLAB, etc., and then integrated
into the control software. At the same time, sensors are installed in the underwater robot to
measure its depth, speed, and other data. However, there are still errors between the actual
experimental data and the simulation results [146]. This article introduces some typical
experimental cases.

In order to prove the feasibility of the developed controller, ref. [98] adopted the
AUV Cyclops, which is equipped with a Doppler velocity log to obtain the positions and
velocities of AUV, a fiber-optic gyro unit to obtain heading and yaw rate, and a digital
pressure transducer to obtain the AUV’s depth. They applied 2-SMC with the switching
controller, which is verified that the root mean square error of the second-order SMC with
the switching controller is lower than that of the second-order sliding mode without the
switching controller.

Ref. [147] translated the control strategies into C/C++ programming, and integrates it
into the vehicle control software. A depth sensor with an accuracy of 0.003 m is installed
on the UVIC-I AUV, and the heave speed is obtained through the difference of the depth
sensor data. An MPC whose coefficient changes with the error is introduced to adjust the
control increment vector weighting matrix. The results show that when the tracking step
length is 1 m, this method can reduce the setup time by about 2 s.

To verify the tracking performance and robustness of the proposed scheme, ref. [148]
used a small remote-controlled underwater vehicle to carry out an experimental procedure
in a water tank. The deployed vehicle, VideoRay PRO, is equipped with three thrusters
that affect the surge yaw motion. In addition, the Polhemus-Isotrack device connected to
the host computer via 30 Hz RS-232 serial communication is used as the attitude feedback
sensor for the motion control scheme. As predicted by the theoretical analysis, despite the
lack of knowledge about the parameters of the vehicle dynamics model, the tracking with
the specified performance is successfully achieved, and the error is strictly evolving within
the predefined performance range.

It can be seen from literatures, AUVs are usually equipped with sensors, which can
obtain the position and speed of the AUV. Therefore, the data-driven control methods have
great significance to AUV trajectory tracking control in a complex environment. Deep
learning, reinforcement learning, and model-free predictive control methods will be of
great significance in AUV trajectory tracking control.

3.3. Control Performance

The performance of AUV trajectory tracking determines its operation accuracy. The
main control performance indicators include control accuracy, system response speed,
trajectory tracking convergence speed, stability, and robustness. Table 6 shows the per-
formance comparison of different controllers in AUV trajectory tracking. From the above
literature, we can see that the following contents are worth noting: [39] developed a dis-
turbance observer-based nonlinear MPC scheme for cross tracking of underactuated AUV
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under sea current disturbances. The stability time is 110 s, and the error is under the 5%
limit. Ref. [53] used an SDRE controller in a non-affine structure without decoupling the
six DOF. The position error of 43.6 mm is negligible compared with the total measured
distance of 8.77 m. For depth trajectory tracking control, ref. [147] introduced a MPC whose
coefficient changes with the error to adjust the control increment vector weighting matrix.
The results show that when the tracking step length is 1 m, the method can reduce the
setup time by about 2 s.

For AUV dynamics, time-varying, nonlinear, and unpredictable external environmen-
tal uncertainties, the control system must be adaptive and robust, and the classic controller
such as PID controller has a fixed gain. When the state of the vehicle and the environment
change significantly, there is no guarantee that the entire system will respond well. Modern
control theory is much broader than classical control theory can handle, including linear
and nonlinear systems, stationary systems and time-varying systems, and univariate sys-
tems and multivariable systems. Although the above controller has achieved good control
effects in AUV trajectory tracking control, it still faces the following challenges: (i) Fails to
consider the achievability of control speed and mechanical dynamic constraints, such as
the actual AUV acceleration range. (ii) AUVs may suffer from failures in unknown and
complex marine environments, and they require a stable and reliable control method. (iii)
Uncertainties caused by model errors and unmodeled dynamics are often expressed as
unknown nonlinear functions of system states, control inputs, etc., and may also contain
unknown parameters, making system controller design particularly difficult. Intelligent
control is not based on an accurate mathematical model of the controlled object. It is based
on knowledge, based on input/output data/information causality, and intelligent inference
control theory. Intelligent methods are therefore used to solve control problems in complex
systems, such as fuzzy control, neural network control, and reinforcement learning.

Table 6. Summary of different type of controller in trajectory tracking control.

Control Types Strength Weakness Future Improvement Whether Based
on Model

PID Flexibility, simplicity, and
good performance.

Poor resistance to external
interference.

Developed by combining other
control algorithms. Y

LQR

Can set the unstable
system, and the method

is simple and easy to
implement.

Lacks the characteristics of
robustness.

Online iterative learning linear
quadratic regulator (OILLQR). Y

SDRE Ensure a wide range of
progressive stability

Only applicable to the affine
nonlinear system in the form
of state correlation coefficient

(SDC).
Can only guarantee the local

asymptotic stability of the
closed-loop system.

Each mathematical model of
each cycle can be processed

into a form similar to a linear
system, and the feedforward

method is used to compensate
for the nonlinear redundancy

terms.

Y

MPC

Effectively overcome the
uncertainty of controlled

objects, the dynamic
effects of lag and

time-varying factors.

Heavy online computational
burden.

Offline precomputation, delay
compensation, event triggering

strategies, and digital
continuations.

Y

SMC

Has a certain resistance
to modeling errors,

time-varying parameters,
and external
environment
interference.

Jitter problem. The filtering or fuzzy sliding
mode control method. Y
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Table 6. Cont.

Control Types Strength Weakness Future Improvement Whether Based
on Model

Backstepping
control

The actuator’s control
output is continuous and
the control system does

not experience jitter.

Vehicle tracking speed jump
problem.Inherent

disadvantage of “explosion
of complexity”.

The “dynamic surface control”
technique. N

Adaptive
control

Ability to re-adjust
controller parameters

online

Asymptotic convergence
under ideal conditions of

time infinity.

Combined with other control
methods. N

Robustness
control

Ensure a certain level of
dynamic performance

while maintaining
stability.

Cannot counter the complex
control system in actual

engineering

The combination of different
methods can make the control

scheme more effective.
Y

Fuzzy Control

The control system can
maintain good

performance even when
the characteristics of the
controlled object change

or perturb.

When establishing methods
of fuzzification and inverse
fuzzification, there is a lack

of systematic methods.

The neural network can
dynamically adjust the

membership function and the
fuzzy rule according to the

system information.

N

NN
Greater degree of fault

tolerance and strong data
processing capabilities.

Exists a limitation referred to
as “the curse of

dimensionality”.

Use the “Minimum Learning
Parameter (MLP)” algorithm
to reduce the computational

burden of the algorithm.

N

Cascaded
system

Simplifying the controller
design, the expression

control law is not
complicated.

_ _ N

Bio-inspired Eliminate the speed jump
problem. _ _ Y

4. Conclusions and Future Perspectives

Through the analysis of the existing technology, it is found that the modeling method
and control strategy play a key role in high-precision and fast trajectory tracking, which
also affects the accuracy of underwater operations. Through advanced modeling methods
or control strategies, more attention has been paid to the accuracy of trajectory tracking.
There is a conflict between the error convergence speed and the high-precision control
system. Therefore, balancing the relationship between the two is a challenge. In this work,
the latest literature on the methodology of modeling methods and control strategies aimed
at improving the error convergence speed and high precision of AUV trajectory tracking
has been systematically studied.

The review has been developed around a proposed classification for modeling ap-
proaches and another classification for control strategies. Moreover, a discussion with the
aim of establishing suitable modeling, control approaches, and research gaps that need
to be addressed is also established. In this way, from the discussion, it is concluded that
most of the simplified and approximated models reported are an oversimplification of the
AUV trajectory tracking systems, which are not useful to test the behavior of the controllers
under realistic conditions, and the system identification models are an attractive option for
control systems design and testing. Considering the powerful capabilities of deep learning
and reinforcement learning in data processing, these methods will have great potential in
the establishment of AUV trajectory tracking models.

Furthermore, the review presents three case studies, which illustrate the development
of a control-oriented modeling strategy, and the design of the most common control
approaches. In the case study, three control strategies are explained and implemented,
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showing their procedure, specific results, and features. At present, most of the articles in
AUV trajectory tracking control use MATLAB/Simulink simulation research. However,
there are few actual underwater experimental studies that can verify the unreliability of
mathematical models and numerical simulations. At the same time, when designing the
controller, efficiency is also an important criterion to be considered, because it could achieve
the control target with less energy consumption in a limited time, thereby obtaining better
performance.

In addition, the control performance with different control strategies have been com-
pared. In order to meet the requirements of control accuracy, many studies have proposed
an advanced controller combined with artificial NN, which can fully meet the requirements
of control accuracy. In addition, in order to minimize tracking errors, artificial NN seems to
tend to increase convergence speed and achieve high accuracy, especially when combined
with traditional control algorithms (such as PID, fuzzy control, MPC) it achieved great
performance in AUV trajectories tracking.

Finally, the performance of AUV trajectory tracking control is of great significance
for exploring the underwater environment and performing underwater operation tasks.
The theoretical contribution of trajectory tracking control also helps to improve operation
performance. According to the review and the results obtained, the development of
new control-oriented models, the research in the estimation of unknown inputs, and the
development of more innovative control strategies for AUV trajectory tracking systems
are still open problems that must be addressed in the short term. At the same time, the
combination of environmental data-driven methods, artificial simulation (machine learning
for human-computer interaction applications), and powerful fault-tolerant systems with
AUV control will have far-reaching significance.
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