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Abstract: Early detection of environmental disturbances affecting shellfish stock condition is highly
desirable for aquaculture activities. In this article, a new biophysical model-based early warning
system (EWS) is described, that assesses bivalve stock condition by diagnosing signs of persistent
physiological dysfunctioning. The biophysical model represents valve gape dynamics, controlled by
active contractions of the adductor muscle countering the passive action of the hinge ligament; the
dynamics combine continuous convergence to a steady-state interspersed with discrete closing events.
A null simulation was introduced to describe undisturbed conditions. The diagnostic compares
valve gape measurements and simulations. Indicators are inferred from the model parameters,
and disturbances are assessed when their estimates deviate from their null distribution. Instead of
focusing only on discrete events, our EWS exploits the complete observed dynamics within successive
time intervals defined by the variation scales. When applied to a valvometry data series, collected
in controlled conditions from scallops (Pecten maximus), the EWS indicated that one among four
individuals exhibited signs its physiological condition was degrading. This was detected neither
during experiments nor during the initial data analysis, suggesting the utility of an approach that
quantifies physiological mechanisms underlying functional responses. Practical implementations of
biological-EWS at farming sites are then discussed.

Keywords: valvometry; dynamic model; biological early warning system; optimisation; ecophysiology

1. Introduction

Bivalves are ectothermic organisms that have colonized most aquatic and marine
ecosystems. They are mainly sedentary species, live under a wide range of environmental
conditions, and exhibit a variety of behaviors manifested by shell movements [1]. As a con-
sequence, numerous authors have suggested bivalves would be good sentinels of aquatic
environment quality (e.g., [2], and references therein) and this, in turn, inspired several
long-term contaminant bioaccumulation programs using the shellfish species (e.g., [3]).
However, many bivalve species are also extensively fished and cultivated [2,4]. This implies
a need for a different type of monitoring that is better suited for evaluating shellfish stock
growth and health within the constraints of aquaculture installations.

Since bivalves open and close their shells as part of their normal physiological func-
tions and in response to stress, a large variety of valve movement monitoring approaches
for natural [5] or farmed [6] environments have been proposed. Measurements of the
valve movement frequency and amplitude (shell opening distance and how ‘wide’ the
valves are open) have been conducted using various devices, since the early 20th cen-
tury [7]. Valve gape dynamics are considered a good means to monitor environmental
quality because valvometry measurements are both rapid and sensitive, and they provide
a direct estimate of the health status of the organism [8]. Valve gape is also a cost-effective
variable to measure. The signal has also been shown to integrate past living conditions that
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have influenced behavior and physiology [8–10]. Many studies have shown that different
bivalve species respond to environmental factors. Variations in the valve opening ampli-
tudes and movement frequencies have, thus, been attributed to changes in temperature for
Crassostrea virginica [11], pH for several bivalve species [12,13], salinity for Mytilus edulis
[14], the presence of toxic algae for Pinctada fucata [10] and Mytilus galloprovincialis [15],
cadmium chloride concentrations in Corbicula japonica [16], contaminants of heavy metals
(e.g., copper) in Corbicula fluminea [17], alkaline solutions (e.g., biofouling compounds) in
Mytilus edulis [18], suspended particulate matter concentrations in Pecten maximus [19], and
noises in Magallana gigas [20].

Although several studies [5,6,21] have shown the interest and feasibility of valvometry
monitoring systems (see Table A1), Tran et al. [22] remarked that most efforts were focused
on developing and improving valvometry technology and not data analysis. After this,
a number of articles were published proposing new methods (see Table A2). For example,
Sow et al. [23] and Coudret et al. [24] proposed a statistical method based on a Gaussian
kernel identification and smooth regression analysis. Durrieu et al. [25] and Jou and
Liao [26] developed similar statistical analyses to detect changes in closing events frequency;
and Azais et al. [27] described discrete transitions between four states of valve gape
dynamics: two steady-states, opened and closed, and two transitory phases (i.e., opening
and closing) using a Markov chain model.

However, all these methods are still phenomenological. Very few studies have tackled
the problem of the quantification of the processes underlying the biological responses. We
argue that without understanding processes that can explain observed behaviors, it is not
possible to fully assess problems of bivalve conditions, because this means identifying
dysfunctional patterns within highly variable individual dynamics. Among the most ad-
vanced reflections was the work performed by Jou et al. [17], who tried to explicit response
functions. These authors struggled with false warnings in their controlled experimental
conditions, and they also anticipated the problems with false positive or negative detec-
tion of dysfunction conditions within natural environments. The solution proposed was
to increase the number of monitored factors, but this is unlikely to work without some
sort of explicit function of the cause-to-consequence mechanisms [28]. A warning system
system requires a precise definition of time and spatial scale (i.e., resolution), as well as
an alarm criteria, in order to characterize changes of the observed dynamic regime [29] to
work effectively.

The overall purpose of our study is to develop a new type of valvometry-based early
warning system. This system aims to assess the physiological state of the organisms, while
identifying local or global sources of disturbances. For this, we use a quantitative modeling
framework designed to simulate valve gape dynamics as an indicator of their physiological
state [30]. In this earlier study, we quantified bivalve gape dynamics based on biophysical
processes that govern opening and closing of the shell. Simulations of this model were
tested against the experimental results obtained from a species characterized as extremely
sensitive (Pecten maximus, L. [31]). Our objective here is to use this model to elaborate
a condition tracking and warning system for bivalve stocks in extensive aquaculture
environments. We have revised its formulation to include controls by environmental factors,
and a generic limitation function has been introduced. Then we combined sequential
valvometry records with null simulations. We address the notion of synchronicity between
individuals to be able to define survey units, as well as the problem of variation scales
in time and space. Finally, we discuss how data can be assimilated in the model and how
an early warning system (EWS) would decide if disturbances have begun to affect the
stock condition.

2. Constructing a Model-Based Biological-EWS
2.1. Basic Definition of the Early Warning System for Bivalve Aquaculture

Extensive shellfish aquaculture consists of an immeasurable amount of individuals,
spread over large areas. In contrast, most monitoring systems collect a very small number
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of data series, which are analyzed statistically to reveal anomalies that can be interpreted as
environmental disturbances. The source of disturbances is often identified by correlating
indicators of the anomaly with environmental variables that are collected locally or recov-
ered from remote surveys [32]. EWS must have a specific operating mode, with the ability
to analyze data in real time and to account for both the current state and past changes.
Although many of the biological early warning systems (biological-EWS) only use thresh-
olds (e.g., [33]), a complete EWS must be based on a forecasting trend [33,34]. Besides,
many techniques were used to analyze data in the general domains of process modeling
and machine learning, but none of them have attempted to simulate biological processes
within a dynamic modeling framework. At present, this is the only means to forecast the
physiological state of the animal under different environmental regimes. Ultimately, it is in
the best interest of shellfish farmers to quantify the condition of shellfish, since this would
increase their marketability [35].

However, several questions have arisen from the development of biological-EWS [32],
highlighting three challenges that need to be addressed:

1. first is to determine adequate temporal (defined by the individual dynamics) and
spatial (defined by the environmental factors) scales of variations;

2. second is to assess the inter-individual variability and consider how this source of
variability can be filtered out to detect potential sources of disturbances;

3. third is to provide precise and operational definitions of the practical components of
the EWS. Setup, measurement protocols, maintenance, task flow, computer time, and
outputs should be carefully established, in such a way that the system can be tested
and be adapted to a large range of conditions.

Overall, except for specific mechanisms, a biological-EWS based on statistical analysis
may reveal signs of disturbance, but does not permit the establishment of a diagnosis of
the reasons for the physiological dysfunction [36]. To solve this problem, the biological-
EWS should contain means to test hypotheses about the underlying mechanisms of the
observed dynamics.

In our approach, the model and its implementation explore how to meet these chal-
lenges. The computer codes have been written in Scilab 6.1.0, a free and open source
software for modeling and analysis (distributed under a GPL licence, and available at
http://www.scilab.org (accessed on 29 September 2021)).

2.2. Valvometry to Infer Shell Valve Movements

Valvometry is the measurement of the valve gape distance in bivalve shells [7].
The same term may also refer to a set of different measurement techniques, from early
“sooted glass” techniques [7] to automated devices, such as strain gauges [37], Hall-effect
sensors (HES) [10], impedance electrodes [22], and fiber optic sensors [38]. Of all the
sensors tested, HES have several distinct advantages. They make very high frequency
measurements, are relatively inexpensive, and are small, light, and simple to install. A HES
consists of a semi-conductor glued on one valve and a magnet glued on the other. Therefore,
only one electrical cable links the HES to the data acquisition device. There are, however,
some disadvantages specific to this type of sensor [1,30]:

1. The technology of the sensor is based on the electromagnetic properties of the system
composed of a magnet and the Hall-effect semi-conductor. It cannot be used if any
other significant magnetic sources interfere with the system.

2. The use of the HES system requires intensive calculations to treat the data series
for two main reasons. First, the dynamic geometric property changes during valve
movements complicates all of the calculations; second, the resulting inverse function
that evaluates the valve gape distance from a series of Hall voltage measurements
(see [1] for full details) implies finding the positive real roots of a polynomial function.

3. The calibration step, which converts the Hall voltages into valve gape distances is
difficult to assess before the data series of the Hall current variations are collected.

http://www.scilab.org
http://www.scilab.org
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The admitted procedure is to perform measurements, then to sever the adductor mus-
cle(s) of the bivalve and calibrate the Hall voltage as a function of known distances.
This is accomplished by inserting a series of wedges between the two valves [1]. How-
ever, in monitoring systems it is necessary to calibrate the HES on living organisms,
prior to beginning survey measurements start. It can be performed by chemically
relaxing the adductor muscle(s) [39] before inserting the calibrated wedges between
the valves.

4. As for any other electronic sensors, the sources of electrical noise [40] may affect
the resulting measurements [41] and the electromagnetic properties are modified by
environmental variability (e.g., temperature [42]). In addition, the precision of any
valve gape distance estimates made in terms of sensitivity will decrease with the
distance between the magnet and the semi-conductor [1].

Despite these disadvantages, the problems linked with sensor functioning can be ad-
dressed during the monitoring program with a site-specific calibration and data acquisition
testing phase. For this reason, we have developed a specific protocol [1]. In the present arti-
cle, we will not discuss these issues further, considering that whatever type of sensors and
associated calibration function is used, estimates of the valve gape distances and angles are
unbiased and sensitive enough to detect variations required for the monitoring program.

2.3. Modeling the Dynamics of Bivalve Shell Valve Movements

The basis of the model used in this study was described in a previous article ([30];
also see the summary in the Appendix A). It is the first biophysical model to represent
processes involved explicitly in variations of the gape angle. Briefly, our model describes
how the distance between the two valves, δ, changes as a function of the angle (called the
gape angle, α, in radians) formed by two rays placed on each valve (Figure 1). The origin
is located at the umbo, and the plan formed by the two rays is perpendicular to the axis
materialized by the hinge. When the gape angle α = 0, the shell is closed. The gape angle
is used because this parameter is less sensitive to changes in specific protocols, such as
where the sensors are placed on individual organisms, and with differences in the sizes
of organisms used. Any changes in α(t) are explained in terms of the passive forces, due
to the ligament action, and the active forces (opening force (FO) and closing force (FC))
from the adductor muscle, which act to close the two valves. The adductor muscle(s) is
anchored onto the shell interior some distance away from the valve edge and the hinge
ligament. When the adductor muscle is active, it uses energy to shorten the muscle, pulling
the valves closer. Closing the valves also means the muscle works against the elastic hinge
ligament (stretching it). The valves open passively (the muscle relaxes and the hinge
ligament returns to its shorter, unstretched state) with no additional energy input.

The primary dynamic model (Appendix A, Equation (A1)) is hybrid and simulates
both continuous and discrete dynamics of the valve movements. The only factor applied
to the dynamics is an instantaneous transition of the adductor muscle state. For the
continuous dynamics, the existence of equilibrium solutions of the model depends on the
existence of a balance between the passive and active components (see Appendix A).

For the passive component, due to the action of the ligament, the trivial equilibrium
is reached when α(t) = αmax, and this is the only stable steady state. Inversely, the active
component, due to the action of the adductor model, has a non-trivial stable equilibrium
solution, expressed as:{

p∗U =
rs

rs + as + ar
, p∗A =

ar
rs + as + ar

, p∗F =
as

rs + as + ar

}
(1)

Combining these two stable state conditions allowed us to determine the value of the
stable equilibrium angle:

α∗ = cos−1

(
1− ζ2

(
1−

√
Q

ar
rs + as + ar

)2
)

(2)
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where ζ =
√

1− cos(αmax)).
αmax (αmax ∈]0, π/2[), the maximum opening angle, was measured, hence ζ was

calculated. The parameters vector {Q, r, s, a} ∈ R+∗4 must still be identified. Nevertheless,
this calculation has shown that there is a steady state for which the effort performed by
the contraction of the adductor muscle compensates for the passive force imposed by the
ligament. This effort can be sustained, as long as the parameters r, s, and a (recovery,
deactivation, and activation rates, respectively) remain constant. The equilibrium value
depends on the fraction of fibers that are activated, p∗A. Hence, based on the relative impor-
tance of the product ar, the activation rate is multiplied by the recovery rate. Conversely,
the fraction of fibers that can be mobilized to perform fast closing, p∗U , depends on the
relative importance of the product, rs, multiplying the recovery rate by the deactivation
rate. Finally, the equilibrium fraction of fibers that are de-activated, p∗F depends on the
relative importance of the produce as, multiplying the activation rate by the deactivation
rate.

Then, considering that there is a set of N environmental factors that can influence
the adductor muscle, we hypothesize that a minimal standardized limiting function f (ξ)
regulates physiological rates within the muscle sub model. This function is expressed as:

f (ξ) =
N

∏
i=1

ξ
bi
i ebi(1−ξi) (3)

where ξi = (emax,i − ei)/(emax,i − eopt,i) with emax,i is the upper tolerance limit for the
environmental factor ei, eopt,i is the optimal value at which f (eopt,i) = 1 and bi is a parameter
that conditions the curvature of each controlling factor i. This means that there is no defined
minimum value for the limitation function, even if there is a lower environmental boundary,
below which the organism cannot ensure basic physiological requirements. In some cases,
the limitation function gets very close to zero, in order to ensure continuity with the
lethal condition of the lower environmental boundaries. In other cases, this continuity
is not relevant (e.g., when a phase change, from liquid to ice occurs). For any maximum
environmental boundary, emax,i (upper tolerance limit), the value of the limitation function
f (ξ) (Equation (1)) was set to zero. The domain of application of this function is, therefore,
[−∞, emax,i]. A multiplicative effect, as used in f (ξ), is commonly used for eco physiological
studies and is justified by the requirement that if one environmental factor places an
individual in one of its physiological boundaries, then whatever the values of the other
factors are, the physiological function cannot be ensured any longer (i.e., f (ξ) ' 0).

The muscle submodel (Appendix A, Equation (A3)) modulates three rates {a, s, r}, all
in time−1, where r is the muscle recovery rate, s is the fiber deactivation rate, and a is the
fiber activation rate. In our biological-EWS, we consider that these rates could be affected
by the environmental variability, hence deviate from optimal values for the physiology
of the organism. The functions that modulates these rates as a function of environmental
changes are then written as:

{r = ropt f (ξ); s = soptg(ξ); a = aopt f (ξ)} (4)

where g(ξ) = (ν+ f (ξ)(1− ν)) with ν ≥ 1 is the amplification coefficient for the parameter
s. The limitation value for a and r (the fibers’ activation and recovery rates, respectively)
at the optimal environment value is equal to 1 and decreases to reach 0 when either
the upper or lower environmental tolerance limit of the organisms is reached. For s,
the fiber deactivation rate, the limitation function is reversed, with a minimal value equal
to 1 at the optimal environment, and a maximum value defined by the amplification
coefficient, ν, reached at the environmental tolerance limits. An example of the response
effect curves are presented (Figure 2). The functions f (ξ) and g(ξ) are asymetrical, leading
to asymetrical rates of variations (expressed by the first derivatives), with, in the presented
example, sharper effects above the optimal value than below. This led to not including
any acclimation mechanism (i.e., optimal rates of the biophysical processes are fixed) and
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variations of the environment are considered over time frames that are much longer than
the scale of the valve dynamics.

Figure 1. Schematic illustration of a generic bivalve system (a) with the parameter relationships
hypothesized in this article. The dashed lines indicate the theoretical intersections between the
anchor points at the hinge and on the valve, where closing and opening forces are generated. When
the adductor muscle is active, it pulls the two valves closer together (FC), working against the hinge
ligament. When the adductor muscle is relaxed, the hinge ligament shortens (Fh; b), pulling the
two valves apart (FO). The resulting gape angle (α) and gape distance (δ) can be estimated from the
sensors, permitting estimation of both forces. Essentially the system resembles two rigid levers (b)
attached to each other at each end. No dimensions are implied by the illustration and details will
differ, depending on the species.

Figure 2. Generic functions describing the influence of the environmental variables on the biophysical
model parameters. (a) Standardized limitation functions f (x) (solid line) and g(x) (dashed line)
applied to a, r, and s, respectively. (b) The analytic derivation of the limitation functions shows the
variation rates of the limitations of a and r (d f (x)/dx), solid lines) and the variation rates of the
limitations of s (dg(x)/dx = (1− ν)(d f (x)/dx), dashed line) ν being an amplification coefficient.

2.4. Dynamic Criteria Describing the Physiological Condition of Bivalves

In the quantitative framework described above, two categories of dynamic criteria
describe the physiological condition of bivalves: continuous and discrete. The physiological
condition is first characterized by the value of the non trivial equilibrium of the continuous
dynamics, which quantifies the potential for the individual to maintain a partial opening. It
is then characterized by the frequency and amplitude of the discrete events, which quantify
the reaction capacity of the individual. It comes second, because the reaction capacity is
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conditioned by the continuous state, which determines what fraction of the fibers can be
mobilized for discrete closing events.

Criteria are calculated from the dynamic model parameters, which are assumed to
be attributes of the species. However, they are determined at the organism level, for each
studied individual. Monitoring and biological-EWS systems implement replicates most of
the time (e.g., [33]), but very few study the synchronization process of the discrete events
and their control by external factors. This involves not only studying co-occurrences of the
discrete event, but also the distribution of time between two events and the deviation from
a null model. In our previous valvometry study with scallops [30], we found that under
controlled constant conditions, the occurrence dynamics of single closing events could not
be distinguished from a pure, stochastic process; there was an average occurrence rate
of approximatively 2.4 h−1. This was confirmed by the fact that the observed probability
distribution of time intervals between two events did not deviate significantly from an
exponential law. This pattern defined the null model. Paradoxically, in this same study,
the amplitude did not follow the same stochastic process dynamics, and instead seemed
to have been controlled by the organisms. Even if the resulting distribution could not be
characterized by any known analytical distribution law, the observed probability distribu-
tion deviated from any corresponding simulated one. However, the unexpected detection
of a stochastic closing occurrence pattern suggests that fast closing events in bivalves are
performed in the absence of synchronizers. This can be interpreted as if there is no internal
synchronizer, then only external environmental variables can play such a role. Furthermore,
the detection of external synchronizers in the individual valvometry series implies that
several individuals, placed in the same conditions, would exhibit the same behavior. Thus,
individual replicates should be implemented in any biological-EWS system.

2.5. Diagnosing Disturbances from Valvometry Measurements

Building on what we have learned in the previous section, a set of criteria can be
defined to diagnose disturbances from valvometry data series:

1. A sustained increase in the steady-state opening angle,
2. A sudden and repeated increase in the closing peak frequency, and
3. A significant increase in the intensity of closing peaks, up to extreme events of

complete and sustained closure of the shell.

The first criterion indicates a decrease in physiological performance, hence an increas-
ing physiological difficulty to maintain the adductor muscle fibers activated and contracted.
The plots in Figure 3 show how these changes can occur under environmental control for
a generic bivalve species. The maximum opening angle was standardized to 1 and the
equilibrium value was arbitrarily defined (without losses of generality) between 0 and 1.
The valve gape dynamics were then simulated, applying (in successive intervals of 24 h)
a series of deviations from the optimal conditions for the adductor muscle contraction
(fixed in the standardized interval [0, 1], here at 0.7). First the standardized environmental
factors decreased from 0.7 to 0.35 (between 24 h and 48 h). The opening standardized
angle increased concomitantly from 0.5 (equilibrium at optimal) to ca. 0.76. The amplitude
of closing peaks increased, as well, from a maximum of approximately 0.3 to ca. 0.5,
on average. Then, the standardized environmental factors decreased again from 0.35 to 0.01
between 48 h and 72 h (close to the lower boundary) and the opening angle at equilibrium
increased from 0.96 degrees (equilibrium at optimal) to ca. 0.995 degrees (i.e., close to the
maximum valve gape value). In addition, the amplitudes of the peaks decreased to very
low values (ca. 0.021 on average).



J. Mar. Sci. Eng. 2021, 9, 1084 8 of 24

Figure 3. Examples of the model behavior with a generic bivalve submitted to environmental variations. (a) The imposed
temporal variations of a standardized environmental factor (solid lines). The boundaries of 0 and 1 indicate when the
values of the standardized environmental factor caused the bivalve to lose its capacity to ensure basic physiological
functions. (b) The corresponding standardized valve gape angle variability of a generic bivalve under the imposed
conditions. The minimum steady-state opening angle was reached when the standardized environmental factor was at the
optimal value for the physiological rates of a, b and s. When the environmental factors deviated from the optimal value,
the standardized opening angle increased.

Next, after a return to the optimal value between 72 h and 96 h, the standardized
environmental factors increased from 0.70 to 0.85 between 96 h and 120 h. The standardized
opening angle increased consequently from 0.50 to 0.78, and the amplitude of the closing
peaks increased from 0.40 degrees to ca. 0.60. Finally, when the standardized environment
factors increased from 0.85 to 0.99 between 120 h and 150 h. The standardized opening
angle at equilibrium increased consequently from 0.79 degrees to 1.00 degrees and the peaks
amplitude decreased down to values very close to 0. All fibers were deactivated at this
stage. This simulation illustrates how the steady state opening angle (α∗) can be modulated
by environmental changes. The minimum value for the steady state opening angle was
achieved when the values of the environmental variables are optimal. However, measured
data series contain a variability that could not be explained by deterministic control , hence
should be considered and quantified when comparing simulations with observations.
This is particularly true when estimating parameters because uncertainties are typically
calculated by optimization when fitting curves to the data; classically, the sensitivity to
detect disturbances is conditioned by the requirement that the amplitude of the estimators
changes is greater than these uncertainties.

The simulation shown in Figure 3 demonstrates that continuous and discrete dynamic
criteria are not independent, as conceived in the model framework. The maximum ampli-
tude is reached for intermediate equilibrium opening angle between the minimal value (at
optimal conditions), and the maximum opening angle, for which the closing amplitude
tends to zero. Thus, the baseline condition is described by a set of inter-related parameters
(formally {K, Q, r, s, a}) that defines both the continuous steady-state value and capacities
to close the shell abruptly. Therefore, the three criteria are linked together. Any change
in equilibrium modifies the possibilities and intensities of closing peaks, and vice versa.
Furthermore, it would be difficult to discriminate changes in one of the criteria regarding
the others from one individual data series. An objective to combine the three criteria
therefore requires replication. In addition, as mentioned above, the identification of an
environmental stress-induced behavior can only be validated if a set of several individuals,
submitted to identical environmental conditions present the same valve movement pattern
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deviating from the null distribution assessed by the baseline condition. The number of
individual replicates, however, does not have to be high. Indeed, for a purely stochastic
process, the rate of synchronization between two individuals in a 10 s period was only 0.6%
and nearly null for three individuals and more.

3. Working with Data

The primary purpose of the warning system is to assess the state of the shellfish stock
by monitoring individual behaviors. The EWS proposed in his study is based on a process
quantification, in which the formulation of the equations can be interpreted in term of
biophysical dynamics. The dynamic model accounts for past states and can be used to
predict future states explicitly. So far, our presentation of the development of the warning
system has focused on a valve gape model without linking simulations with measurements.
In essence, this is a virtual valvometry system that can be adapted to any bivalve species.
The model aims to describe and quantify a known situation (i.e., all parameters are iden-
tified and refer to a specific condition of a simulated individual). In an ideal situation,
under the hypothesis that physiological processes are not subject to acclimation, parameter
values can be determined using a set of controlled experiments that cover the full range
of environmental variability expected at a particular location. Then these parameters can
be applied to the current situation, which accounts for environmental variables without
any further parameter optimization. However, this ideal situation is not realistic and
parameter identification still needs to be integrated into the monitoring process. The model
should then allow for data assimilation (sensu lato), which not only helps to constrain the
dynamics to an optimum trajectory (the deviation from the observations is an indicator of
the predictability of the dynamic model) but would also provides sequential series of the
optimal parameter estimates that can provide indicators of the (ecophysiological) state of
the shellfish. By using these indicators, the critical values of the EWS can be defined.

3.1. Optimization in the Framework of Hybrid Dynamics

The first task of the optimization process was to develop an accurate method to detect
peaks (occurrence, frequency, and amplitude). We applied a method to detect peaks, based
on the variation of speed and turning points [30]. To verify the accuracy of this method,
we simulated time series using the model, then applied the method and compared the
results of detection with the discrete events time imposed in the simulations. The results
are presented Figure 4. We allowed for random fluctuations, generated by a Wiener process,
of the environmental control around the optimal value (upper panel of Figure 4a).
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Figure 4. Comparison between calculated and estimated peaks, using a simulated series of valve
gape variations of 72 h. (a) Environmental conditions are set to an optimal value (grey, dashed line),
with a random white noise (grey solid line), and then used to simulate the dynamic of the valve gape
angle (black, solid line). Starting (blue circles) and ending (orange crosses) times of peak occurrences
were identified using speed and acceleration of variations. The steady-state standard angle (red
solid line) was set to 0.5. (b) Cross-validation of the calculated vs. estimated peak occurrences
times; the symbols and color codes are identical to (a). (c) Cross-validation of the calculated vs.
estimated standardised peak amplitudes (d) Histogram of the observed distribution of the duration
between two peaks; the solid line with “X” symbols is the theoretical distribution (e) Histogram of
the distribution of peak amplitudes; the distribution is dependent on the occurrence sequence and
does not coincide with any theoretical distribution.

The lower left panel of Figure 4 shows that the empirical distribution of the time
duration between two events (Figure 4d) follows an exponential law, close to the theoretical
distribution, regardless of the fluctuation in the environment (Figure 4a). The distribution
of peak amplitudes (Figure 4e) is dependent of the series of peak occurrence, hence on the
duration between two peaks, and does not follow a priori any known theoretical distribu-
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tion. Therefore, the reference distribution can only be seen as an empirical distribution
characterizing the simulation. The estimated peaks show a good concordance with the sim-
ulations, and correlations between estimated and calculated occurrence times (Figure 4b)
and between estimated and calculated amplitudes (Figure 4c) are both close to the linear
equality. Except for few deviations, the occurrence of the peak (starting value) was well
estimated. The estimated amplitudes (differences between the higher and lower value of
the peaks) were slightly underestimated, the calculated values been systematically larger
(Figure 4c). However, the differences never exceeded 5%.

The main challenge of the optimization process is that {Q, r, s, a} cannot be deter-
mined from valvometry measurements alone [30]. Ancillary experimental data of direct
measurements of the muscle activity and related forces that are generated should be mea-
sured for the species of interest. Even if forces can be estimated using dynamometer
measurements [43], the method is very intrusive for individuals hence, it can only be
installed for a very limited time and is not practical to deploy on many individuals for a
monitoring program.

Therefore, it is necessary to consider simplifying the optimisation process performed
from valvometry measurements only. The relative importance of the recovery rate, r,
conditions how a hierarchy can be built. Let set a and s being of equal value. If r is
much greater than a and s, then p∗A and p∗U will converge toward 0.5, while p∗F will
converge to zero. In the best configuration, the activation rate is significant and the
deactivation rate is negligible, leading p∗A to converge to 1, while p∗U and p∗F will converge
to 0. The following hierarchy {r > a > s} is suitable for the current problem of optimization.
From this hierarchy, some transformations must be made to identify the vector {Q, r, s, a}.
As Q (dimensionless) is a scaling factor between ε2 and pA, it can be set to 1 with no loss
of generality. Then, {1, r, s, a} can be standardized by stating that {a = k1r, s = k2r}. It
follows that k2 is linked to k1 by:

k2 =

(
1
ε2 − 1

)(
k1

k1 + 1

)
(5)

hence the identification is restricted to the two parameter vector, {K, r}. The identification of
{K, r}, and consequently {s, a}, was accomplished by optimizing the time series segments
between two identified discrete peaks. A direct search algorithm [44] was used to minimize
the sum of the square root differences between the simulated and observed valve gape
angle values.

3.2. Using Valvometry Data and Series of Parameter Estimates to Detect Disturbances

Next, the warning system is constructed with a protocol defined from the identified
criteria and the optimization procedure described above. Because of the hybrid nature of
the dynamics, the monitored time series from a set of individuals must be segmented into
a series of discrete successive sequences. Each sequence was then used to analyze and di-
agnose the state of the system by comparing observations with simulations. The definition
of the duration of the discrete sequences was conditioned by the time scale of the dynamics
(i.e., a time slot that encompasses the dynamics including both the continuous and discrete
regimes). As the continuous regime was characterized by a convergence to a steady state
between two discrete closing events, the minimum time scale was defined as about the
inverse of half of the frequency of the peak occurrence (i.e., the Nyquist frequency).

To illustrate our approach, we used a data series presented in our two previous
studies [1,30]. They corresponded to the Hall-Effect valvometry measurements that were
collected in controlled conditions of temperature and salinity. A 12 h light-dark discrete
cycle was imposed on the system. Four individuals (numbers 1 to 4) were observed for a
total of 193 h (ca. eight days). Valvometry measurements were recorded at 10 Hz.

The average occurrence rate for the four individuals and for the recording period
was estimated to be 2.6 ± 0.28 (SE) h−1. Thus, the duration of sequences were fixed
at 1 h. In each time interval of one hour, K and r were estimated using optimization.
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The procedure evaluates each calculation value of a and s with a fixed Q (set equal to 1. k1
and k2 were re-estimated (see Equation (5)) at each iteration. Then, the steady-state value
of the angle, α∗ was calculated using Appendix A Equation (A6).

Two issues arose during the optimization procedure:

1. When there was no peak, there was no means to detect a convergence to an equilib-
rium, hence it was impossible to estimate K, and the last value estimated was used
for the simulation. This occurred 16, 37, 83, and 47 times over 193 time periods for
individuals 1 to 4, respectively.

2. When the equilibrium value (continuous baseline) drifted continuously (i.e., increased
or, rarely, decreased monotonously), then the estimated values of {r, a, s} tended
to drift in such a way that the equilibrium estimate (Appendix A Equation (A6))
got closer to the extreme value, αmax, or zero, respectively. Then, the equilibrium
value was forced to be the average of the series and the parameter optimization was
ignored. This occurred 22, 29, 17, and 24 times over 193 periods for individuals 1 to 4,
respectively.

The results of four indicators are presented Figure 5. The upper panels (a) and (b),
shows the direct continuous and discrete dynamic indicators. On the panel (a), the relative
equilibrium angle exhibited stable values near 0.4 for individuals 2, 3, and 4, while it drifted
significantly for individual 1, from 0.48 to 0.62. On the panel (b), changes in the number of
peaks show that the highest record was reached for individual 2, with 13 peaks in one hour.
The maximum number reached for the random occurrence with the observed frequencies,
equal to 2.6 ± 0.28 (SE) h−1, and for 800 simulations (ca. four series of 193 sequences) was
12 peaks per hour. This value was reached only for individuals 2 and 3. The lower two
panels (c) and (d) corresponds to the parameter estimates. Changes in K, panel (c), exhibit
series of peaks for all individuals. Finally, changes in the ratio r/s (lower right, panel d)
show that individual 1 was the only specimen to have decreased consistently below the
threshold value of one. Hence, for individual 1, the the recovery rate (r) was consistently
lower that the deactivation rate (s) after ca. period 30. For individual 3, the ratio r/s
decreased initially to the threshold value, between ca. periods 30 and 90, then increased
again above the threshold value and reached a level close to the values for individuals 2 and
4. By examining these 4 indicators, we remarked that, despite fluctuations, the condition of
individual 1 differed from the conditions of individuals 2, 3, and 4 and there was no global
synchronization among them.
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Figure 5. Indicators of the changes in observed valve gaping from four individual scallops as a
function of the successive time-sequence definition (a sequence lasts 1 h). For all plots, individual 1 is
the red line, individual 2 is the grey line, individual 3 is the blue line, and individual 4 is the black
line. Panel (a) shows variations of the standardized opening angle (dimensionless) at equilibrium.
Panel (b) shows the number of peaks per sequence; the dotted line is the expected maximum number
of peaks under the null hypothesis. Panel (c) shows the estimated value of K per sequence of one
hour. Panel (d) shows the r/s ratio per sequence of one hour. The black dotted line represents the
threshold below which the deactivation rate becomes greater than the recovery rate, and the area
between the curve of individual 1 and this horizontal line was filled to show the proportion of time
above and below this threshold.

4. Discussion
4.1. A System Based on Quantification of the Valve Gape Dynamics

Several monitoring and early warning systems, based on valvometry measurements,
have been described in the literature (e.g., [8,23,45–49], see also Table A2); additionally,
a few systems have been commercialized (Table A1). The system that we proposed in
this study is, to the best of our knowledge, the first to be built on a biophysical model
of the adductor muscle dynamics. This type of model offers an important advantage,
compared to a system that only seeks statistical indicators of dysfunction. Our proposed
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approach constructs an explanatory biophysical framework for the patterns observed
that can be linked to physiological observations. Furthermore, indicators are derived
from quantification of the dynamics. The only other similar approach is that described by
Gnyubkin [50], who proposed a biophysical model to simulate the movements of the valves,
invoking the antagonist actions of the ligament and the adductor muscle. His model was
designed on a single, second-order, differential equation that quantified the dynamics of
the valve gape distance. Gnyubkin’s model includes three strictly positive parameters and
a function, P(t), interpreted as the outer force that sets the pendulum in motion (the contractile
force of the adductors, which close/open valves and/or keep them in a fixed position). The main
problem of this function is that if P(t) is set to 0 (no contractile force), the stable equilibrium
opening is equal to 0. To cope with this, Gnyubkin bounded P(t) by a constant (“Const”)
that fixes the distance of partial opening. In contrast, our model significantly improves on
the biophysical framework by allowing the equilibrium opening as an emergent property
of the muscle dynamics. This change is why optimization of a series of parameters of the
muscle dynamics is possible and from which we can derive an indicator of dysfunction
(e.g., the ratio between recovery and deactivation rates). In addition, the dynamic pattern is
complex because it is submitted to multiple dynamic regimes (primarily a discrete regime
that controls fast clapping movements and a continuous regime that sustains a stable
partial opening state) that cannot be grasped with only one (set of) equation(s), nor one
unique statistical model (e.g., [27]).

These dynamic regimes led to the definition of disturbance indicators:

1. For a continuous regime, the equilibrium opening value is a balance between the
passive opening force produced by the ligament and the active force contraction
capacity of the adductor muscle. The wider the valve gape angle, the lower the
contraction strength. Therefore, this is a relevant indicator of the physiological
condition of the organism. As with all ectotherms, the metabolism is sensitive to
temperature changes, but bivalves have developed physiological abilities to cope with
unfavorable changes: primarily, the diversity of fibers allows different behaviors with
minimizing the amount of energy [51]. An example of this is the catch behavior of the
smooth muscle, allowing valve closing to avoid desiccation for bivalves in intertidal
conditions, even if large temperature changes occur at the same time.

2. For a discrete regime, which is mainly characterized by fast closings to expulse water
and wastes and any irritating exogeneous particles or organisms. Bivalves also close
their shell quickly when perceiving a threat. A behavior of repeated or sustained
closing events is an indicator of stress. The deviation of the closing event probability
from random process distributions is a good indicator and can lead to the definition
of thresholds, but the identification of external disturbances relies on the detection
of synchronized behaviors, hence requires replication. There is no standardization
regarding replications and about the number of individuals that should present
a synchronized behavior to detect an external disturbance. Surprisingly, there is
no statistical estimate of such a number, even if the the analysis of the individual
disturbed behavior heavily rest on statistics (e.g., [25]).

3. A particular regime applicable only for mobile species (i.e., not attached to a substrate
and able to swim over short distances) is characterized by a reflex-type series of
contractions that create strong valve movements. For scallops, used as a model
organism in this study, such activity is used to bury (to orient the opening toward the
main flow direction), to jump, or to swim [1]. It causes sequences of slow increases of
the valve gape angle followed by a sharp closing and then a slow reopening [1,30].
This requires a substantial amount of energy, hence these episodes are limited in time
and tend not to occur if the organism is physiologically deficient. Such behaviors
occur in case of punctual stress (e.g., threat by predators) but not exclusively and they
may be difficult to exploit because of their scarcity.

The adductor muscle is the active component that counters the passive opening of
shell valves by the ligament located at the umbo (Figure 1). The biophysical formulation
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is the most appropriate because it is straightforward and expresses forces that generate
movements. It is, however, a terminal function and should be enriched by two fundamental
principles of control. The first control is provided by the concentration of the calcium-
troponin complex and the second control is stimulation by the nervous system of the
organism. The model proposed in [52], developed for vertebrates, links these two controls,
modulating the concentration of the calcium-troponin by the occurrence of successive
stimulations. This model indicates that there is also an equilibrium force that can be
achieved, a function of the concentration of the calcium-troponin, which is dynamically
controlled by stimulations. The second control, crucial for discrete events occurrence, is
performed by the nervous system of the organism. In the absence of ancillary data (i.e., the
electrical activity of the nervous system), it is very difficult to introduce this control of the
adductor muscle, hence at this time, the model is still restricted to a phenomenological
description of discrete event occurrences.

Once the dynamic regimes were assessed, the sequences on which estimates could
be performed were determined, in such a way that a complete set of dynamic criteria
can be studied. Once again, the null model (no disturbances and a random occurrence of
closing peaks) was used to define the sequence duration. The continuous dynamics were
assumed to be close to a local equilibrium (defined by the environmental condition values),
and the occurrence of the closing peaks was considered to follow a distribution law that
corresponded to a pure stochastic process (Figure 4). Indicators can be calculated for each
sequence as deviation from the null model. Thresholds are defined by the extreme values of
the null distribution. Hence the threshold indicates when disturbances affect one or several
component of the dynamics. The variability of the environment can be taken into account
using the limiting functions described in Equations (1) and (2). Nothing guarantees that the
optimal conditions are fulfilled, and the parameters of these functions can be estimated by
successive iterations. Particularly, the minimum angle is achieved by and defines optimal
parameters. However, in the description of the model, we mentioned that the two limiting
functions f (ξ) and g(ξ) can be asymmetrical, inducing asymmetrical rates of variations,
rising questions about the potential for acclimation, that were not taken into account in the
present study, because of a lack of quantitative knowledge about the evolutionary ecology
of bivalves.

In the experimental context, environmental conditions were controlled and not con-
straining for individuals (i.e., were not set close to tolerance limits ). In this context, our
EWS diagnosed that individual 1 showed a decline in physiological condition when the
other individuals did not, or at least, recovered after a short period of slight decline (e.g.,
individual 3). The deterioration of individual 1 was assessed mainly because the r/s ratio
decreased below the threshold of 1, indicating that the recovery does not compensate
de-activation any longer. This result was not identified when analysing the outcome of
the experimental work [1] or while constructing and simulating the biophysical dynamic
model [30]. It demonstrates the relevance of our approach and the benefits an Early Warn-
ing System derived from combining valvometry measurements and a dynamic modeling
of underlying physiological mechanisms.

4.2. Scoring the Dynamic Regimes

To facilitate the interpretation of the assessment methods, scoring system were intro-
duced as formal approaches to support decision theory [53]. To interpret indicators , a
scoring system was proposed, providing an image of how each individual performs in
their environment, over a series of consecutive intervals. The simplest scoring system is to
start from 0 and to count +1 if the indicator is deviating from favorable conditions, −1 if it
converges to favorable conditions, and 0 if it does not change from one sequence to another.
Therefore, such a scoring system is a qualitative expression of the discrete dynamics of
parameter changes at the scale of the sequences. A simple process to shift the baseline is to
reset negative values to zeros (which then converge to the optimal condition). The main
disadvantage is that any random fluctuation modifies the score and then contributes to a
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possible drift of the system behavior. Figure 6 illustrates this by presenting the results of
scoring the successive changes in equilibrium angle. In the upper panel (a) any increase
in the equilibrium angle (overall muscle relaxation) is scored +1, any decrease, −1, and 0
otherwise. The score increased fast for individuals 1 and 3 and slower for individuals 2
and 4.

To cope with the variability, there are two options. The first is to integrate changes
over a given past sequences window, but the size of the window can only be determined
arbitrarily. The second option is to compare changes regarding the estimated variability of
the pure random corresponding predictor. The score is modified only if the variation of
the indicator if larger than the standard error of the corresponding estimates. The lower
panel (b) of Figure 6 shows results of this procedure. Scoring that account for variability
makes the drift less pronounced and the variations of individual 1 did not differ from the
3 others. A scoring system is a promising communication tool for our biophysical modeling
framework and is complimentary to estimates and indicator calculations. However, it
requires a separate, specific development to improve usability.

Figure 6. Variation of the score attributed to changes in the equilibrium angle calculated for each
individual scallop in Figure 5. Individual 1 is the red line, individual 2 is the grey line, individual 3 is
the blue line and individual 4 is the black line. In the upper panel (a), the score was established by
a simple rule of +1 when the equilibrium angle increased, −1 when it decreased and 0 otherwise.
In the lower panel (b), the score was weighted by the sensitivity of the estimate: changes were
accounted if they were higher than the estimate variability, i.e., the discrepancy between simulations
and observations.

4.3. Practical Consideration about Data Acquisition and Alerts

Some biological-EWS are based on the detection of behavioral changes by organ-
isms in situ (e.g., [23]) and others use semi-controlled experimental conditions (e.g., [33]).
The advantage of the second setup is that it allows for the regulation of the variability by
tempering the effect of environmental fluctuations. Our initial development [1,30] used
controlled experiments to evaluate the sensor technology and to test simulations of the
model we designed to represent the observed valve gape dynamics. We believe that this
remains a preferred path for an alert system, since it can simplify the comparison between
simulations and observations because it decreases the number of parameters describing
the response to environmental variability.

The third challenge mentioned in (Section 2.1), stressing the need to provide precise
and operational definitions of the practical components of the EWS, was not entirely
addressed in this study. However, we can state that the instrumented group of individuals
used in the alarm system should be placed in flow-through tanks, at different locations
in the exploited area, or basin. This will respect the conditions of the definitions used in
the model. Each unit must, at least, record basic environmental variables temperature,
salinity, turbidity, and valve-gape distance variations on the set of selected individuals.
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The system should be conceived as an evolving tool, allowing it to be enriched with new
measures as information about the dynamics at a particular site improves. Finally, another
set of individuals constituting a background, or controlled, survey unit should be set-up in
controlled environmental conditions, separated from the alarm system individuals .

5. Conclusions

This study presented a new approach for biological-EWS based on valvometry mea-
surements and simulations of a biophysical model. We have shown how our system
can distinguish environmental disturbances from physiological weaknesses using the
synchronization of responses among a group of individuals kept in identical conditions.
To characterize undisturbed situations, we introduced a null model where discrete events
are random and physiological parameters are controlled by variations of environmental fac-
tors. From this modeling, we inferred four disturbance indicators: (1) the equilibrium angle,
(2) number of peaks, (3) amplitude of closing peaks, and (4) the muscle fiber recovery-to-
deactivation rates ratio. Disturbances are assessed when indicator values deviate from
their null distributions. The biological-EWS described here is advanced enough to be tested
in a farming site configuration. At this stage, we anticipate that our framework would
evolve in collaborative platforms with different stakeholders involved in improving the
conditions of shellfish culture.

Author Contributions: Conceptualization, J.-M.G., S.H., and J.C.-G.; methodology, S.H.; scilab
coding, J.-M.G.; validation, J.C.-G.; data curation, J.C.-G.; writing—original draft preparation, J.-M.G.
and J.C.-G.; writing—review and editing, S.H. and J.C.-G.; Visualization, J.C.-G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The link to the archived data files can be requested from the first
author.

Acknowledgments: The authors would like to express their gratitude to Luc Comeau (Fisheries and
Oceans Canada) for having shared his expertise about valvometry meaurement techniques. The
authors would also like to thank all the reviewers for their constructive remarks.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2021, 9, 1084 18 of 24

Appendix A. Biophysical Model

Full details of the model development are given in Guarini et al., 2020b [30]. In this
appendix, we provided a brief summary for completeness.

The model we designed was based on the angle, α (in radian), formed by two rays
placed on each valve, in such a way that α = 0 when the shell is closed. The origin was
located at the umbo, and the plan formed by the two rays is perpendicular to the axis
materialized by the hinge.

Changes in α(t) result from two forces, a passive one (FO (in Newtons)), produced by
the ligament that opens the shell, and a second active one (FC (in Newtons)), produced
by the adductor muscle that is used to close the shell. The dynamics of the varying angle,
noted α(t), was expressed as:

α̇(t) = K((ε(t))2 −QpA) (A1)

where K (in radian.t−1) and Q (dimensionless) are two parameters that need to be estimated
from experimental data; pA (dimensionless) represents the proportion of active fibers in
the adductor muscle; and ε(t) (dimensionless) represents the relative elongation of the
ligament. It was calculated as:

ε(t) = 1−

√
1− cos(α(t))
1− cos(αmax)

(A2)

where αmax (in radian) is the maximum opening angle.
The fraction of active fibers in the smooth adductor muscle, pA, was calculated by a

biophysical submodel adapted from Liu et al. (2002) [54] to maintain a fraction of fibers
that can be mobilized to perform fast closing events (Guarini et al., 2020b) [30]:

ṗU = rpF − apU
ṗA = apU − spA
ṗF = spA − rpF

(A3)

where pF and pU are the complementary fractions of deactivated and inactive fibers, which
can still be mobilized, respectively. {a, s, r} (all in t−1) is a vector of the physiologically
defined parameters, with a representing the activation rate, s the deactivation rate, and r
the recovery rate of the adductor muscle fibers.

Superimposed on the continuous dynamic regime, described by equation system (A2),
the shell valve movements are characterized by discrete closing events (identified as closing
peaks). These closing events, interspersed in the continuous dynamics, are performed either
to ensure maintenance tasks (expulse water and wastes) or to respond to stressful factors.
We hypothesized that all the available fibers (represented by pU) would be mobilized at
once to close the shell. In the present study, we simplified the discrete transition of the
model, by only considering an activation of all available fibers. The transitions were then
formulated as: 

pA(t) ← pA(t) + pU(t)
pU(t) ← 0
pF(t) ← pF(t)

(A4)

For the continuous dynamics, the existence of equilibrium solutions of the model
[Equation (A1)] depends on the existence of a balance between the passive [Equation (A2)]
and active components [equation system (A3)]. For the passive component (due to the
action of the ligament), the trivial equilibrium is reached when α(t) = αmax, and is the
only stable steady state. Inversely, the active component (due to the action of the adductor
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model), expressed by equation system (A3), has a non-trivial stable equilibrium solution,
expressed as: {

p∗U =
rs

rs + as + ar
, p∗A =

ar
rs + as + ar

, p∗F =
as

rs + as + ar

}
(A5)

Combining these two stable state conditions in Equation (A2) allowed us to determine
the value of the stable equilibrium angle:

α∗ = cos−1

(
1− ζ2

(
1−

√
Q

ar
rs + as + ar

)2
)

(A6)

where ζ =
√

1− cos(αmax)). αmax (αmax ∈ [0, π/2]), the maximum opening angle was
measured; hence, ζ was calculated. In contrast, the parameters vector, {Q, r, s, a} ∈ R+∗4,
must be identified. In all cases, there is a steady state at which the effort, performed by
the contraction of the adductor muscle, compensates for the passive force imposed by
the ligament. This effort can be sustained as long as the parameters r, s, and a (recovery,
deactivation, and activation rates, respectively) remain constant. The equilibrium value
depends on the fraction of fibers that are activated, p∗A, hence the relative importance
of the product ar, the activation rate multiplied by the recovery rate. Conversely, the
fraction of fibers that can be mobilized to perform fast closing, p∗U , depends on the relative
importance of the produced rs, the recovery rate multiplied by the deactivation rate.
Finally, the equilibrium fraction of fibers that are de-activated, p∗F, depends on the relative
importance of the produce as, the activation rate multiplied by the deactivation rate.

Appendix B. Bivalve-Based Systems Mentioned in Scientific Literature

Table A1. Bivalve alarm systems using valvometry mentioned in scientific literature. Systems marked
with an asterisk (*) appear to have been commercialised. The reference given as a technical source
contains the best technical description of the system, but is not necessarily the earliest publication.

Name Developer or Owner Technical Source

Dreissena-Monitor * U. Cologne (Germany) Borcherding 1992 [55]

Micrel Ifremer (France) Floch 1998 [56]

MosselMoniter * Delta Consult B.V. (Netherlands) Kramer and Foekema 2001 [5]

MolluSCAN eye * U. Bordeaux (France) Sow et al., 2011 [23]

MusselTracker San Jose State U. (USA) Miller and Dowd 2017 [57]

Sense-T U. Tasmania and CSIRO (Australia) Andrewartha et al., 2015 [6]
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Appendix C. Analytical Methods in Valvometry-Based Water Quality Monitoring Systems

Table A2. Analytical methods employed with, or proposed for, valvometry-based water quality monitoring systems. To the best of our knowledge, none have been implemented on a
permanent basis within shellfish farms. The table lists the primary bivalve species studied, gives a brief description of calculational frameworks and the experimental observations used in
calculations. All the articles are qualified by the developmental status of the systems: empirical studies report on tests within experimental and/or laboratory systems; data analysis means
articles describe new methods of calculation applicable to valvometry data series; operational means the article describes a use-case.

Bivalve Model or Statistical Framework (Measurements Used) Status Source

associated with MolluSCAN

review article non-parametric model with kernel density estimates (valve gaping with experi-
mental correlation to desired parameter)

operational Andrade et al., 2016 [21]

Crassostrea gigas estimated survival function with a semi-Markov model (least visited opening
width)

data analysis Azaïs et al., 2014 [27]

Oysters estimates kernel density of valve gape state to estimate probability an individual
will survive or not, post-observation period (opening amplitudes)

data analysis Coudret et al., 2015 [24]

C. gigas discrete signal processing of tail conditional probabilities (valve gaping and
closing speed)

data analysis Durrieu et al., 2015 [25]

C. gigas same as Durrieu et al., 2015 (valve gaping, closing speed, and enzyme biomarkers) data analysis Durrieu et al., 2016 [47]

Corbicula fluminea statistical comparison of behavioral and biochemical estimates (valve gaping,
agitation, tissue contamination, and proteomics)

empirical Miserazzi et al., 2020 [16]

C. gigas non-parametric kernel regression, then correlation with parameter of interest
(valve gape distances, movement speeds, and valve opening patterns per 24 h
interval)

data analysis Sow et al., 2011 [23]

C. fluminea non-parametric kernel regression, then correlation with parameter of interest
(valve gaping, siphon extension, and contaminant assays)

empirical Tran et al., 2003 [22]

C. fluminea logistic regression of valve response time as a function of contaminant dose
(valve closure and contaminant detection threshold)

empirical Tran et al., 2004 [58]

C. fluminea similar to Tran et al., 2004 added maximum likelihood estimators (valve closure
and contaminant detection threshold)

empirical Tran et al., 2007 [59]
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Table A2. Cont.

Bivalve Model or Statistical Framework (Measurements Used) Status Source

associated with MosselMonitor

Dreissena polymorpha; Mytilus edulis comparison of descriptive statistics (average amount of time valves closed
hourly and percentage of maximum opening distance)

operational Kramer et al., 1989 [5]

Anodonta woodiana comparison of descriptive statistics (average amount of time valves closed
hourly and percentage of maximum opening distance)

operational Giari et al., 2017 [33]

Other developments

C. gigas suggests statistical correlation with environmental conditions (valve gape, heart
rate, and body T)

empirical Andrewartha et al., 2015 [6]

C. gigas, M. edulis statistical correlation with arbitrary threshold set to 20% (synchronous move-
ments and amplitude variance)

empirical Bouget and Mazurié 1999 [60]

review article suggests possible experimental correlation with ocean pCO2 (valve gaping
behavior)

empirical Clements and Comeau 2019 [12]

M. galloprovincialis statistically-tested comparisons of periodicity of gaping and environmental
parameters (relative valve openness)

empirical Comeau et al., 2018 [61]

M. galloprovincialis mixed-model ANOVA of valve gaping and algal toxin concentrations (valve
gaping parameters)

empirical Comeau et al., 2019 [18]

M. galloprovincialis unnamed time-series analysis (averaged resistances from sensors classified as
“not defective” by analog system)

empirical Gnyubkin 2009 [49]

C. fluminea 3-parameter Hill equation fit of valve closing time series to construct dose-
response profiles (fitted daily valve closing activity curves)

empirical, data analysis Jou and Liao 2006 [26]

C. fluminea see Jou and Liao 2006, with siphon movements added (fitted daily valve and
siphon activity curves, as well as circadian rhythms)

empirical Jou et al., 2016 [17]

C. fluminea see Jou et al., 2006 (behavioral toxicity assays and valve daily activity) empirical Liao et al., 2009 [62]

M. californianus statistical inference on estimates (valve gaping, body T, and posture) empirical Miller and Dowd 2017 [57]

M. edulis statistical inference on estimates, linear regression (valve gaping and distance
traveled in contaminant exposure tests)

empirical Redmond et al., 2017 [8]

M. edulis time series analysis of response curve and statistical inference (valve gape
distance and closing)

empirical Riisgård et al., 2006 [63]
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