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Abstract: In this study, the time-varying wind stress drag coefficient in the Ekman model was in-
verted by the cubic spline interpolation scheme based on the adjoint method. Twin experiments
were carried out to investigate the influences of several factors on inversion results, and the conclu-
sions were (1) the inverted distributions with the cubic spline interpolation scheme were in good
agreement with the prescribed distributions of the wind stress drag coefficients, and the cubic spline
interpolation scheme was superior to direct inversion by the model scheme and Cressman interpo-
lation scheme; (2) the cubic spline interpolation scheme was more advantageous than the Cressman
interpolation scheme even if there is moderate noise in the observations. The cubic spline interpo-
lation scheme was further validated in practical experiments where Ekman currents and wind speed
derived from mooring data of ocean station Papa were assimilated. The results demonstrated that
the variation of the time-varying wind stress drag coefficient with time was similar to that of wind
speed with time, and a more accurate inversion result could be obtained by the cubic spline inter-
polation scheme employing appropriate independent points. Overall, this study provides a poten-
tial way for efficient estimation of time-varying wind stress drag coefficient.

Keywords: wind stress drag coefficient; time-varying; Ekman model; adjoint assimilation; cubic
spline interpolation

1. Introduction

Wind stress over the sea surface is a primary driving force of upper ocean circulation
and ocean surface waves and is an important mechanism by which the atmosphere con-
veys momentum to the ocean. Therefore, the exact estimation of wind stress is important
for the simulation and forecasting of atmospheric and oceanic processes [1]. Meanwhile,
wind stress is a key parameter for understanding physical processes in both the atmos-
phere and ocean, whose determination is important for coupled ocean-atmosphere mod-
eling [2].

Usually, wind stress is parameterized by the wind stress drag coefficient (WSDC). It
has long been recognized that the drag coefficient of the sea surface does not depend on
wind speed alone, while it has been highlighted that the wind drag coefficient strongly
depends on the sea roughness [3,4]. In previous studies, the WSDC was usually assumed
to be a constant [5], considered as a linear function with respect to wind speed [6], or
further believed to be a nonlinear function with respect to wind speed [7,8]. At present, it
is widely accepted that wind stress coefficients vary nonlinearly with wind speed (and
thus with time)—especially at high wind speeds [9,10]. Some scholars have found that
spatially and temporally varying WSDC fields are needed in a variety of climate and air—
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sea interaction studies [11,12]. In particular, with the improvement of the time resolution
of the model, it is meaningful to study the WSDC with daily variations. The determination
of the WSDC is a difficult problem in the field of marine science and atmospheric science
because of the interaction between air and sea; this difficulty stems from the problem of
turbulence. The turbulence problem is difficult to solve because of its variability in time
and space. Ocean observations at near-inertial frequencies show that the turbulent closure
model is better at predicting wind speed than the plate model [13]. There are a variety of
options for turbulent closure models, such as models depending on Richardson number,
k-¢ model, M-Y model, Prandtl mixed-length model, KPP model, etc., which play im-
portant roles in different regions and different events [14-18]. However, as the ocean en-
vironment often changes with space and time, and the observation data are insufficient,
the applications of various turbulence models are easily limited. Specifically, the parame-
ters calculated by different models vary greatly, and few models can be accurately applied
to all sea areas or problems in the world.

During recent decades, data assimilation has played an important role in the deter-
mination of unknown parameters. The process that the parameters are estimated by—
assimilating observations with a data assimilation method —is known as parameter esti-
mation. The adjoint method is a powerful tool for parameter estimation, which has been
widely used by many scholars. Zhang et al. [19] successfully explored how eddy viscosity
is developed with varying wind fields, but did not consider the WSDC. Cao et al. [20]
proposed an estimation scheme to evaluate the eddy viscosity profile (EVP) at the bottom
of the Ekman boundary layer based on the adjoint method. Zhang et al. [21] successfully
inverted the time-varying vertical eddy viscosity coefficients in the Ekman model and also
found that the inversion results were much more sensitive to the observations in the upper
layers.

In order to improve the computational efficiency and accuracy of parameter estima-
tion, independent point (IP) schemes were used by some scholars in the adjoint method
[22-24]. The so-called IP scheme is where the WSDCs at some selected IPs are taken as
control variables and those at other points are calculated by interpolating values at IPs.
There are many interpolation schemes, such as the Cressman interpolation based on linear
interpolation. However, the Cressman that was interpolation traditionally used in the IP
scheme can result in unsmooth curves. Meanwhile, we found that the cubic spline inter-
polation (CSI) scheme was often used in practice because of its favorable smoothness and
continuity [25-28]. Therefore, we try to use the CSI instead of linear interpolation to invert
the time-varying WSDC in an Ekman model. We aim to improve the simulation capability
of the model and provide a reference for the selection of WSDCs in other ocean models.
In order to verify the feasibility and accuracy of the CSI scheme, twin experiments and
practical experiments are conducted.

The organization of this paper is as follows: In Section 2, the numerical model and
CSI scheme are introduced. In Section 3, a series of twin experiments are carried out to
verify the feasibility of the CSI scheme. In Section 4, practical experiments are carried out
to verify the inverted effect of the CSI scheme. Finally, conclusions are given in Section 5.

2. Numerical Model
2.1. Governing Equations (Forward Model)

In this paper, the Ekman model [29] with time-varying WSDC on the sea surface is
used, and its governing equations are:
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The boundary conditions are

% %’;Wu %=%’;— w2, @
2 =0 2 = ()

The initial conditions are:
u|’=0 =u,, v|l=0 =,. 4)

where ¢ is the time; z is the water depth, and the vertically upward direction of the z-
axis is positive, with z=0 at the ocean surface; u (positive to the east) and v (positive
to the north) are the horizontal velocity components; f is the Coriolis parameter, which

is set as a constant in this model; A is the eddy viscosity coefficient; C, is the time-vary-
ing WSDC; p, and p, are densities of air and seawater, respectively; u, and v, are
horizontal components of wind speed at 10 m altitude; Ho is the depth of the Ekman layer.

2.2. Adjoint Equations (Inverse Model)

The adjoint model, which is derived by the Lagrangian multiplier method and the
adjoint operator in functional analysis, plays an important role in the estimation of model
parameters. The cost function, which quantifies the difference between the model output
and observations, is defined as:

J(u,v,4,C,) = %Km“z((u —0) +(v="D))dzdt (5)

where # and V denote the observed velocities, and K . is a weight coefficient. In par-

ticular, it is equal to 1 in this study [30]. According to the Lagrangian multiplier method,
the Lagrange functional is constructed as:

L(u,v, 4,C A, iy =J +

ou_ o 0 40 @ O (©)
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where A and u are Lagrange multipliers for u and v, respectively. The problem of

minimizing the cost Function (5) is equivalent to finding the stationary point with respect
tou, v, C;,, 4 and p under the condition that the gradients of the Lagrange func-

tional are 0. Then, the following equation can be obtained:

OL(us v, 4, Cys As 1) _ 0, oL, Cnott) _, 7)
Y Op
aL(M,V, A, Cd’/l’ lu) _ 0’ aL(u, V, A, Cd,ﬂ,,/l) =0. (8)
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Equation (7) recover the original governing equations, while the Equation (8) result
in the adjoint equations, which are formulated as follows:
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The corresponding boundary conditions and initial conditions are:
04 0
==, Z =0 (11)
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where T is the total time of integration.
From Equation (9), we can obtain the gradient of cost function with respect to time-
varying WSDC:

;Tjd=_z_:_ (Ma)2+(va)2x(uaﬂ,z=0+va,u:=0), (14)

The detailed finite-difference scheme for the above equations is given in Appendix
A.

2.3. Independent Points Scheme and Cubic Spline Interpolation

The basic idea of the IP scheme is simple. For example, the WSDCs are assumed to
be varying in time and I = {x1, x2,..., x10} are the time index. First, the indexes of the IPs L
= {x1, x4, x7, x10} are a subset of 1. For convenience, these IPs are selected uniformly. Sec-
ond, the WSDCs at all IPs can be inverted by the adjoint method. Finally, the WSDCs at
the other points (i.e., x2, x3, x5, x6, x8, and x9) can be interpolated from those at the IPs.

The CSI scheme is used for interpolations in this study and the cubic spline function
is employed in this scheme.

Given a series of IPs within the interval [a b], where a=x, <x, <---x, =b, and the

corresponding function values are y,,y,,:-,»,, a cubic polynomial S(x) can be con-

structed in any interval [x,,x,, | tosatisfy S(x,)=y,, which is expressed as:

S()=a,+bx+cx’ +dx° (x, <x<x,), (15)

i

where a,, b, ¢, and d, are the spline interpolation coefficients, and the above Equa-

tion (15) must satisfy the condition of smooth continuity:

S =S(x),
S'xH=8"(x"), (=1,2,-,n—1) (16)
S"(xHy=8"(x).

Meanwhile, Equation (15) must satisfy the boundary condition. In this study, the nat-
ural boundary condition is taken, which can be formulated as:

§"(x,)=5"(x,)=0. (17)
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The selection and calculation of spline functions are presented in Appendix B. The
calculation process of spline interpolation coefficients of S(x) can be found in Pan et al.

[31].

3. Twin Experiments and Results
3.1. Estimation of WSDCs with Different Distributions

As mentioned in the introduction, the WSDC and wind speed are time-varying. In
addition, the variation of wind speed over time above the ocean is complex, and the spe-
cific distribution of the WSDC over time is unknown. Thus, we designed a group of twin
experiments to verify the performance of the CSI scheme in the inversion of different pre-
scribed WSDC distributions. Five cases of temporal WSDCs and wind speed are as fol-
lows:

Case 1 C, (1) = 0.00024 4 0.00192 cos(rz / 2T),
ase 1:
u,(t)=10cos(wt / 2T)+ 25.
Case? C, (1) = 0.0012 4 0.00096 cos(rz / T),
ase Z:
u,(t)=10cos(mt/T)+25.
Case 3 C,(t) = 0.0012 + 0.00096 cos(27t / T),
ase o:
|1, (1) = 10cos(27t / T) +25.
Case 4 C,(t) = 0.0012 + 0.00096 cos(4nt / T),
ase 4:
|u, (1) = 10cos(47t / T)+25.
Case 5 C, () = 0.0012 + 0.00096 cos(87z / T),
ase o:
u,(t)=10cos(87t / T)+ 25.

where T is the same as in the inverse model.

It can be inferred that the prescribed WSDC is increasingly more complex from Case
1 to Case 5. Note that the WSDC of Case 1 is set as 0.00024 in order to keep its variation
range the same as that of Cases 2-5, and wind speed only exists in the east-west direction
(ie, v,=0).

In order to further highlight the effectiveness of the CSI scheme, experiments with
direct inversion by the model (DIM, in which the WSDC at each point is independently
inverted) and with Cressman interpolation (CI) schemes are also designed for compari-
son. The calculation formulas of the three schemes are shown in Appendix B. The number
of selected IPs with different inversion schemes for each case is shown in Table 1. Model
parameters are set in Table 2. The main purpose of this is to estimate time-varying WSDCs
in this study. As mentioned above, the time-varying eddy viscosity has been studied in
previous studies, such as Zhang et al. [21]. Therefore, we set the eddy viscosity as a vari-
able that only varies with depth. The classical distribution of the eddy viscosity coefficient
(A ) can be found in the experimental results of Yu and O'Brien [29] (
A=3.9%10""h’ —8.3x10~*eh+0.0524 (0 < h <100), where h is depth), which has been

widely used in ocean models [32-34]. The initial guess value of WSDC is set as 1.2 x 103
in all cases. Considering that the observation data are only available at some depths (5 m
and 35 m), two layers (i.e., the first and the seventh layers) of observation data are assim-
ilated in this section. The abbreviations of some variables are shown in Table 3.
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Table 1. The IPs with different inversion schemes in the first group of experiments.
Scheme DIM CI CSI
Casel \ 5 5
Case 2 \ 7 7
groupl Case 3 \ 7 7
Case 4 \ 9 9
Case 5 \ 17 17

DIM for a scheme of direct inversion by the model, CI for Cressman interpolation scheme, and CSI
for cubic spline interpolation scheme.

Table 2. Model parameters.

Parameters Symbol Value Units
Total integration time T 10 day
Time step At 0.5 hour
Vertical space step Az 5.0 m
Ekman depth Ho 100 m
Initial zonal velocity Uy 0 m-s!
Initial meridional velocity Vo 0 m-s™
Coriolis parameter A 10+ s
Sea-water density P 1.025 = 103 kg-m
Air density Pa 1.2 kg-m

Table 3. A list of abbreviations and variables.

Name Abbreviation
Wind stress drag coefficient WSDC
Cubic spline interpolation CSI
Direct inversion by the model DIM
Cressman interpolation CI
Independent point P

Mean absolute error MAE
Mean absolute error MRE

)

)

©)

4)

The experimental steps are as follows:

Run the forward model with prescribed WSDCs, and the calculated velocities are
regarded as pseudo “observations”.

Run the forward model with the initial guess value of WSDC (Cdo= 1.2 x 107) to
obtain the simulated values of velocity.

Run the inverse model with the difference between the “observations” and simula-
tions by the model. The gradients of the cost function with respect to WSDCs can be
calculated according to Equation (14). By employing an optimization algorithm, the
WSDC can be optimized.

By repeating steps (2) and (3) until the inversion results meet a convergence criterion,
the final inversion values of WSDC are obtained. Since the cost functions are almost
no longer declining after 500 iterations, we finally selected 500-step iteration for all
experiments.



J. Mar. Sci. Eng. 2021, 9, 1220

7 of 21

The prescribed and inverted WSDCs are shown in Figure 1. It can be seen that the
prescribed distributions of WSDCs (Case 1-5) can be successfully inverted by the CI
scheme and the CSI scheme, while they are partially inverted by the DIM scheme. As the
distributions become increasingly more complex from Case 3 to Case 5, the consistencies
between the inverted distributions obtained by the CI scheme and the prescribed distri-
butions are getting weaker, while the inversions obtained by the CSI scheme are still in
good agreement with the prescribed distributions, even at the wave peak and trough.

<1073 Casel «102 Case2 <103 Case3
25 25 5
(a) (b) (<)
2] 2 2
1.5 15 1.5
1 1 1
t
@ 05 0.5 0.5
Q
= 0 0
[ 0 5 10 0 5 10 0 5 10
8 . <107 Case4d . <103 Caseb
o | “ife)
©
2 2 ;
a Given
1.5 115 DIM
1 1 —ClI
0.5 0.5 csi
0 0
0 5 10 0 5 10
Time(days)

Figure 1. The prescribed distributions of WSDCs and inversion distributions of WSDCs obtained by
the adjoint assimilation of different schemes. Panels (a—e) correspond to Cases 1-5, respectively.

The mean absolute errors (MAEs) and mean relative errors (MREs) between pre-
scribed and inverted WSDCs after assimilation are shown in Table 4. The magnitude or-
ders of MAEs for the DIM scheme were all 104, while those for the CI scheme and CSI
scheme were about 105-10-¢. In Case 1, the MRE for the DIM scheme was slightly larger
than 25%, and furthermore, the MREs of Case 2-5 were more than 70%, indicating that
the results of the DIM scheme were poor. When the distributions were relatively simple
(Case 1-3), the MREs of the CI scheme and CSI scheme were less than 6%. Thus, the reli-
ability of the inversion results was high. In addition, the MREs of the CI scheme increased
to 17.73% and 20.00% for the two complex distributions (Case 4-5), but the MREs using
the CSI scheme remained at a low level (4.48% and 6.34%), which shows that the inversion
results of the CSI scheme were more reliable.

Table 4. The mean absolute error (MAE) and mean relative error (MRE) between the prescribed and
inverted WSDCs with different schemes in different cases.

DIM CI CSI
MAEs MREs MAEs MREs MAEs MREs
Case 1 1.79 x 10+ 25.01% 7.89 x 10-° 6.00% 2.77 x 10-¢ 0.18%
Case2  3.27x10* 78.25% 7.65 x 10 1.07% 3.33 x 10-¢ 0.61%
Case3  3.23x10* 76.66% 5.34 x 10 5.66% 1.29 x 105 1.25%
Case4  3.62x10* 80.45% 9.78 x 10 17.73% 3.34 x 10 4.48%
Case5  3.43x10* 79.25% 1.06 x 10+ 20.00% 3.83 x 10~ 6.34%
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We further analyzed the curves of the normalized cost function, which are shown in
Figure 2. It is shown that the cost functions for the DIM scheme were only decreased by
1-2 orders of magnitude. On the contrary, those with the CI scheme and CSI were scheme
generally decreased by 2-4 orders of magnitude. The results indicate that the latter two
schemes can achieve better simulation results, demonstrating better inverted WSDCs. Alt-
hough the cost functions of the CSI scheme decreased more slowly than those of the CI
scheme during the several early iterations, they were lower after a certain amount of iter-
ations, indicating that the inversion effect of the CSI scheme was more advantageous.

0 100 200 300 400 500 O 100 200 300 400 500
Case5

Case1 Case2
0 0
(a) b
. (b)
72,
= -4 | T ———
2 —4
] Q 100 200 300 400 500 O 100 200 300 400 500
= Case3 Cased
8’ 0 0
= -1{{c) 1 L(d)
c
L -2
=
—2t
e 3
=
'S
el
7]
o
(&)

(e) —DIM
—Cl
—cCsl

0 100 200 300 400 500
Iterations

Figure 2. The variation curves of cost functions with different inversion schemes in Group 1. (a—e)
correspond to Case 1-Case 5, respectively.

The above results indicate that the CSI scheme showed good inversion ability for
WSDCs of different complexities. Here, the simulation ability of current velocity was also
assessed. The variations of the MAEs of the horizontal current velocity components (u and
v) with the iterations are shown in Figure 3. It can be seen that the MAEs of the CI scheme
and the CSI scheme in Cases 1-5 were obviously smaller than those of the DIM scheme.
In cases 1-3, the MAEs of the CI scheme decreased more rapidly with increased iteration
steps, but the final values of the MAEs were at the same level as those of the CSI scheme.
However, for the relatively complex distributions (cases 4-5), the MAEs of the CSI scheme
were still smaller than those of the CI scheme.
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Figure 3. The MAEs between the observed and inverted velocity components (u and v) in Cases 1-
5 (the figure shows the result after taking logarithm logo).

In conclusion, the prescribed distributions of WSDCs can successfully be inverted by
the adjoint method with CI or CSI schemes even if only two layers of data are assimilated.
As the WSDCs from Case 1 to Case 5 were increasingly more complex, the CSI scheme
obtained the best inversion result, and the CI scheme followed. At the same time, the DIM
scheme obtained the worst inversion, again indicating that the IP scheme is an effective
tool in parameter estimation based on the adjoint method.

3.2. Estimation of WSDCs under Different Observation Noise

In all the above cases, the perfect observations without any noise were directly pro-
duced by the forward model. However, there was noise in the actual observations of cur-
rent velocity and wind speed, which might have affected the inversion results. Zhang and
Lu [35] indicated that the average difference between the inversion results and true values
would increase abnormally, so long as observation errors increased to a certain level.
Therefore, we designed another group of experiments to investigate the potential effect of
different data noise on WSDC estimation. Considering the distribution complexity, the
WSDC in Case 5 was adopted in this group. Gaussian white noise was added to observa-
tions of current velocity u(i,j), Wi, j) and wind speed u, (i), respectively, representing
the observation errors in the real ocean. Specifically, errors with different ratios to each
observation value were added to the perfect observations (shown in Table 5). Since group
1 showed that the CI and the CSI schemes were significantly better than the DIM scheme,
the former two schemes were used in this group.
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Table 5. The experiment setting in the second group of experiments.

Noise
Case 5-1 3%
Case 5-2 5%
G 2
roup Case 5-3 10%
Case 54 15%

The prescribed and inverted WSDCs for different observation noise are shown in
Figure 4, and the correlation coefficients between them are shown in Table 6. It is clear
that the prescribed distributions could be inverted successfully by the CI and CSI schemes
in Case 5—1 and Case 5-2. However, in Case 5-3 and Case 5-4, the curves inverted with
the CI scheme oscillated more violently than those with the CSI scheme, indicating that
the inversion accuracy of the CSI scheme was higher than that of the CI scheme. Combin-
ing these results with Figure 4 and Table 6, it could be found that the CSI scheme was
more advantageous, especially in Case 5-3 and Case 5-4. Moreover, the distortions of both
schemes began to increase significantly with increasing noise level.

<107 Case5-1 <107 Case5-2
207\ (a) 2\ (b)
w 10 1
5
5 0 0
S0 5 10 o 5 10
8 <1073 Case5-3 <1072 Case5-4
2 2N (o)
© 28 (d)
(]
1 1
0 0
0 5 10 0 5 10
—Given Cl —Csil
Time(days)

Figure 4. The prescribed and inverted distributions of WSDCs after adding 3%, 5%, 10%, and 15%

errors. Subfigures (a), (b), (c) and (d) represent the addition of 3%, 5%, 10% and 15% errors, respec-
tively.

Table 6. The correlation coefficients between the prescribed and inverted WSDCs with different
schemes in different cases.

Scheme CI CSsI

Case 5-1 0.9741 0.9935
Case 5-2 0.9801 0.9936
Case 5-3 0.9212 0.9402
Case 54 0.9152 0.9287

Additionally, it can be found in Figure 5 that the normalized cost functions decline
greatly with the iterations. Specifically, at most iterations, the cost functions of the CSI
scheme are smaller than those of the CI scheme, indicating that the current velocities sim-

ulated by the CSI scheme are closer to the observation. This further reveals the superiority
of the CSI scheme.
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o Case5-1 0 Case5-2
@ ¢ —csi (b) —c1 —csl
—0.5
-0.5

% -1
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~_E— 0 100 200 300 400 500 1} 100 200 300 400 500
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3 0 0
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—0.6 —0.6
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I
-
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100 200 300 400 500 (1} 100 200 300 400 500

Iterations

o

Figure 5. The variation curves of cost functions of the CI scheme and the CSI scheme in Group 2. (a—
d) correspond to Case 5-1-Case 5-4, respectively.

Additionally, the MAEs for the horizontal velocity are shown in Figure 6. It can be
seen that, after 200 iterations, the MAEs of the CSI scheme in Case 5-1 were notably
smaller than those of the CSI scheme, suggesting that the CSI scheme was more advanta-
geous than the CI scheme.

Case5-1 Case5-1
-1 1 N,
S
NG |
-1.5 -1.5 T~
Case5-2 Case5-2
-1 1 ~ §\\
— — \\
2 » g
§_ -1.5 é 1.5
5 Case5-3 > Case5-3
5 -0.8 S -08 \\\\
ﬁ -1 ﬁ -1 \ =
£ 12 3 * 2
e Case5-4 2 Case5-4
g g
- —9.8 a 08|\~
N~
-1 —1 ~ \\ ~ .
) T
100 200 300 400 500 100 200 300 400 500
—Cl ——cCsl ——-Cl ——-Csl
Iterations

Figure 6. The MAE:s of the horizontal velocity component (u, v) with the assimilation steps after
adding 3%, 5%, 10%, and 15% errors (the figure shows the result after taking logarithm loguo).

To sum up, the prescribed distributions of the WSDCs could still be well inverted by
the CSI scheme even there were moderate noises in the observations. With the increase in
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observation errors, the performance of the CSI scheme became worse. Still, the CSI scheme
showed a more stable tolerance of observation noise than the CI scheme.

4. Practical Experiments and Results

The twin experiments proved that WSDC can be inverted successfully by the adjoint
method and that the CSI scheme is an advantageous scheme compared with other two
schemes. However, its performance still needs to be testified with real observation data.
To that end, this section conducted practical experiments to invert the WSDCs with the
CSI scheme.

4.1. Data and Experimental Design

Current velocity and wind speed data were obtained from the ocean mooring station
(Papa, 50.1° N, 144.9° W) in the mooring system of the Ocean Climate Station Project (OCS)
of NOAA, which has been instrumented with upper ocean and surface sensors since June
2007. The current velocity data were measured by an acoustic Doppler current profiler at
5 m and 35 m below the sea surface. The wind speed at an altitude of 4 m measured by
the anemorumbometer located at the buoy tower of the sea surface was the average value
per hour.

The current velocity and wind speed data of 10 days from 0:00 on 3 July 2007 to 0:00
on 13 July 2007 were selected. As the wind speed was measured at 4 m above the sea
surface, it needed to be transformed to the value at 10 m (U for short) by a bulk formula
[36,37]. The time resolution was transformed from 1 h to 0.5 h by interpolation to meet the
demands of the model. The original wind speed (Us for short) and Ui are shown in Figure
7a. The time series of current velocity are given in Figure 7b,c.
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Figure 7. (a) The time series of the original wind speed Us and the standard wind speed Ui, and the
time series of total current velocity u and v for (b) 5 m, and (c) 35 m.

Considering the significant influence of the number of IPs on inversion results, the
IP numbers were set at 21, 41, and 97 (i.e., the intervals of 12 h, 6 h, and 2.5 h, respectively),
and the corresponding numerical experiments were named as Cases 6-8, respectively, as
shown in Table 7. The other parameters were set the same as in the twin experiments.
Although there was a gap between the zero initial conditions and the real scenarios, the
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model simulations were gradually adjusted towards the real scenarios by assimilating the
observations made.

Table 7. The experimental setting in the practical experiments.

IPs
Case 6 21
Case 7 41
Case 8 97

4.2. Results Analysis

The normalized cost function is shown in Figure 8. After assimilation, the cost func-
tion in Case 6 decreased by around 30%, and cost functions in Cases 7-8 decreased signif-
icantly by about 50%, which indicates that the CSI scheme is effective in reducing the dif-
ference between observed and modeled Ekman velocities. In addition, the parameter op-
timization effect could be improved by increasing the number of IPs, but not significantly
if the number of IPs is further increased.
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Figure 8. The cost functions of Cases 6-8.

The MAESs between the inverted and observed velocities could also demonstrate the
effectiveness of the CSI scheme, as shown in Figure 9. It could be found that the MAEs in
the three cases all showed a declining trend. The MAEs of U (V) in Cases 7-8 were de-
creased significantly, from 0.065 (0.07) m-s™ to about 0.05 (0.05) m-s™, indicating that the
distributions of the WSDCs could be inverted by the CSI scheme competently.
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Figure 9. The MAEs of the current velocity components (U and V) between inversion results and
observations. (a) is U direction, and (b) is V direction.
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The time-series of WSDCs and standard wind speed (Uo) are shown in Figure 10. It
was shown that the temporal variation of the WSDCs was closely related to the variations
of wind speed. This consistency becomes more obvious with the increasing IPs. The
WSDCs had a peak during 7-8 July 2007, which agreed well with the wind speed. After
11 July, the time-varying curve of wind speed had two relatively deep troughs and one
sharp peak, and there were similar variations in the distributions of the WSDCs. But there
was a certain phase difference between them. This may have been due to defects in the
dynamic process of the model and in the observation data, that was available only at 5 m
and 35 m depths.
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Date(Jul. 2007)

Figure 10. Practical experimental results; (a) is the time series distribution of wind speed U, and
(b) is the time series distributions of WSDCs of Case 6-8 using the CSI scheme, respectively.

We also compared the time series of observed and inverted current velocities at 5 m
and 35 m depth, as shown in Figure 11. For the inverted current velocity at 5 m depth,
both the amplitude and phase coincided with observations well, especially in Case 7 and
Case 8. However, there were some discrepancies between the modeled results and the
observations at 35 m depth. The comparison was also consistent with previous conclu-
sions that the model is more sensitive to upper current velocity.

— Observed current Caseb Case7 Case8
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20 20 |
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Figure 11. The time series of observed and inverted (left) eastward and (right) northward velocity at (a,b) 5 m depth; (c,d)

35 m depth in Cases 6-8.
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In summary, the above results had a significant downward trend, indicating that the
inverted results were stable. As the IP number increased, the temporal variation of in-
verted WSDC was more similar to that of wind speed Uo. This phenomenon is consistent
with physical oceanography in the light of there being a positive correlation between
WSDC and wind speed.

5. Conclusions

Based on the adjoint assimilation technique, the CSI scheme was used to invert the
time-varying WSDC in the Ekman model. Two groups of twin experiments and one group
of practical experiments were carried out. The effectiveness of the CSI scheme was suc-
cessfully verified by the above experiments. The main conclusions are as follows:

(1) The first group of experiments showed that the prescribed distributions of WSDCs
were successfully inverted by the CI scheme and the CSI scheme, even if only the
observations in the first and seventh layers were assimilated —while the prescribed
distributions were partially inverted by the DIM scheme. The CSI scheme was more
advantageous than the CI and the DIM schemes as the complexity of WSDC in-
creased.

(2) Inthesecond group, even if there was some noise in the observations, the CSI scheme
could invert the distribution of WSDCs successfully. With the observation error in-
creasing, the stability of the CSI scheme was higher than that of the CI scheme, and
the results of the CSI scheme were smoother.

(3) In the practical experiment, the temporal distribution of WSDC inverted by the CSI
scheme had a similar variation trend to that of wind speed U, and a more accurate
inverted result could be obtained by the CSI scheme with appropriate IPs.

Overall, this work extends our understanding of the Ekman model and provides an
effective method to estimate the time-series of WSDC. However, in the inversion process,
some influencing factors are simplified (e.g., the temporal eddy viscosity). Further work,
in which the time-varying WSDCs and eddy viscosity are simultaneously estimated, will
be the focus.
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Appendix A. Finite-Difference Scheme

Based on the Crank-Nicolson method (a = 0.5), the numerical model is built by using
the finite-difference discretization of spatial increment Az and time increment A¢. The
finite difference schemes corresponding to the governing Equation (1) are:

i+1 i+1 i
u —u]_fvj +V
At 2
i+l i+l i+l i+l
_ *(Aj+1+A/ uly—ul _AA/.+AA/._1 ul —ujtl)
- AZ 2 AZ (A1)
+(1-a)*( it A Wy, A+4 ”_/_”_/—1)
AZZ 2 AZZ 2
i+1 i i+1 i
A A AL 7
J /+ J J
At / 2
T vVl A A V=V Lo (A2
=a ( A22 - 2 A22 ) (l_ 9L9eeey’
A +A V., =V A+A_ V=V
Hl-or (o e (=12

With boundary conditions (3) and (4), the recursive relation was obtained to solve
the initial boundary value problem (1)—(4):

MW, +M W, _ +F =0. (A3)
where

o T
W= (u19u29"'9u2()9v19v29"'7v20) ’

F =Qa*q(i+1)+2b*q(i),0,--0;2a* q,,(i + 1)+ 2b * q,,(i),0,---0)",

A4
¢,(i) = C,Az\Ju’ (iAt) + V2 (iAt)u, (iAD), Ay
0,,(1) = C,Az\Ju2 IAD) + V2 (i1, (GAY).

where a = a0 At/(2Az%),  b=(1—a)eAt/(2AZ%).
The matrices M and M, are respectively
B C D C
M= R M, = . (A5)
-C B -C D

Similarly, the recursive relation was obtained to solve the initial boundary value
problem (10)—(13):

MW, + MjW, F'=0. (A6)

i+l

where
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W>\ = (>‘1a>\29 ooy >\209 Jhys s eoes Mzo) ’
. . "N . . T
F' = (g, ()95 )5 o005 G20 (D)5 G5, (0)5 G2 ()5 0005430 (D)) “
Q;‘l (Z) = Ath (u(la ]) - u(ia ]))9
q; () = AtK, (v(i, j) — V(i j))- (/=1..,20)
The matrices M“and M are respectively:
B -C D -C
M = ; M; = (A8)
C B C D
where
—l—a(4, +4,) a4, + 4,) 0 0
a(d+4)  —l—a(4+24,+4)  a(4,+4,)
B= 0 0 (A9)
a(Ag+4,) —1—a(ds+24,+ 4y) a4, + 4y)
0 0 a4,y + 4y) —1—a(4y+ 4,)
0.5fAt - 0
C= , (A10)
0 - 05fAL
1—b(4, + 4,) (A, + 4) 0 0
DA+ A)  1=b(A4+24,+4) b4+ 4)
D= 0 0 (A11)
b(Ali’_Alo) 1_b(Am+2A19+A20) h(A19+A20)
0 0 b(Aw+A20) l_b(A19+Azo)
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Appendix B. Inverted Schemes
1. The DIM scheme
Based on Equation (14), the WSDCs can be optimized as:
CH(@)=Ci+p os , (i=1,2,---481) (A12)
oC: (i)’ o

where p is step-lengths which are used to adjust the parameters preferably. e is the
number of iterations.
2. Cressman interpolation scheme

The scheme selects several IPs evenly in the time interval. The interpolation scheme
is as follows:

. ,C)

= anW’ (A13)

J

p=

where C! is WSDC at an unknown time point; C, represents WSDC at a given time

point, which can be calculated through the adjoint method; n is the number of known grid
points; and W, is a weighting function, whose general form is:

W= R? —rk2

== "l (<R (Al4)
J R2+”}(2

where R is the interpolation radius, and 7, is the distance from the unknown time
point to the known time point.
3. Computation of Cubic Spline Interpolation Weights

The cubic spline S(x) in the interval [xi, xi+1] between two IPs was constructed as:

S()= (Y (27 Ty T 2Ty
xl | x—xl | (A19)
+—— 0 TRy (e x)p + (Ti)z(x—x,-+1)l?,-+1-
where h =x,, —x, x, <x<x_,. i istheithIP.
S(x)=y, S(x =Y.
R R M) (Al6)
S (Xi) = pi’ S (xi+1) = pi+1'
Continuity of the second derivative of S(x) at point x; requires that:
S"xH=8"(x") (=1,2,---,n—1). (A17)

That is:
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h[ +2 + hifl —
Bk DT T e P T

(A18)

——  (y—ypy )+—= (v . — ).
(h_, +h)h_, 0i= ) (h_, +h)h O =)

In this paper, IPs are uniformly distributed, namely 4 =#h_, =h . Therefore, Equa-
tion (A17) can be simplified as:

1 1 3 .
Epi_l +2pi +§pi+1 :E(yi+1 _yi_1) (l = 25 35"'37’1_1)‘ (A19)

Natural boundary conditions are selected in this study, namely § "(xo) =S "(x”) =0
. That is:

1 3
Pot+—= D :_(yl _yo)a

2 2h (A20)
AP =20, =7,
an—l pn_2h yn yn—l'
We can get from Equations (A19) and (A20) that:
AP = iL (A21)
T
So, the matrix P is:
P= 3 A 'Ly (A22)
2h )
By substituting Equation (A21) into Equation (A15), it is concluded that:
S(x) = my, (A23)
where m is the weight coefficient.
1 05 0 0 0 0 0 0]
0.5 2 0.5 0 0 0 0
0 05 2 0.5 0 0 0 0
0 0 05 2 0 0 0 0
A=]| : : : R : : : , (A24)
0 0 0 0 2 05 0 0
0 0 0 0 0.5 2 05 0
0 0 0 0 0 05 2 0.5
| 0 0 0 o --- 0 0 05 1 L)
1
P= |:p0 pl T pn—l pn > (A25)
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_
y=[ye » - v nl> (A26)
-1 1 0 -~ 0 O]

-1 0 1 - 0 0

I 0 —‘1 SO : . (A27)
0 -1 0 1
L o 0 - 0 -l 1-nx(n+l)
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