
Journal of

Marine Science
and Engineering

Article

An Improved Dueling Deep Double-Q Network Based on
Prioritized Experience Replay for Path Planning of Unmanned
Surface Vehicles

Zhengwei Zhu 1, Can Hu 1, Chenyang Zhu 2,* , Yanping Zhu 1 and Yu Sheng 1

����������
�������

Citation: Zhu, Z.; Hu, C.; Zhu, C.;

Zhu, Y.; Sheng, Y. An Improved

Dueling Deep Double-Q Network

Based on Prioritized Experience

Replay for Path Planning of

Unmanned Surface Vehicles. J. Mar.

Sci. Eng. 2021, 9, 1267. https://

doi.org/10.3390/jmse9111267

Academic Editors: Fausto Pedro

García Márquez, Mayorkinos

Papaelias and Simone Marini

Received: 9 October 2021

Accepted: 8 November 2021

Published: 13 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China;
zhuzw@cczu.edu.cn (Z.Z.); 20080902021@smail.cczu.edu.cn (C.H.); zhuyanping@cczu.edu.cn (Y.Z.);
20080902023@smail.cczu.edu.cn (Y.S.)

2 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
* Correspondence: zcy@cczu.edu.cn

Abstract: Unmanned Surface Vehicle (USV) has a broad application prospect and autonomous path
planning as its crucial technology has developed into a hot research direction in the field of USV
research. This paper proposes an Improved Dueling Deep Double-Q Network Based on Prioritized
Experience Replay (IPD3QN) to address the slow and unstable convergence of traditional Deep Q
Network (DQN) algorithms in autonomous path planning of USV. Firstly, we use the deep double
Q-Network to decouple the selection and calculation of the target Q value action to eliminate overes-
timation. The prioritized experience replay method is adopted to extract experience samples from
the experience replay unit, increase the utilization rate of actual samples, and accelerate the training
speed of the neural network. Then, the neural network is optimized by introducing a dueling network
structure. Finally, the soft update method is used to improve the stability of the algorithm, and the
dynamic ε-greedy method is used to find the optimal strategy. The experiments are first conducted
in the Open AI Gym test platform to pre-validate the algorithm for two classical control problems:
the Cart pole and Mountain Car problems. The impact of algorithm hyperparameters on the model
performance is analyzed in detail. The algorithm is then validated in the Maze environment. The
comparative analysis of simulation experiments shows that IPD3QN has a significant improvement
in learning performance regarding convergence speed and convergence stability compared with
DQN, D3QN, PD2QN, PDQN, PD3QN. Also, USV can plan the optimal path according to the actual
navigation environment with the IPD3QN algorithm.

Keywords: deep reinforcement learning; unmanned surface vehicle; path planning; algorithm
optimization; fusion and integration

1. Introduction

As the global population and economy continue to rise and the energy available on
land becomes less exploitable, countries around the world are turning their attention to the
oceans, which account for approximately two-thirds of the planet [1]. The rich resources of
the ocean and its indispensable importance in the transportation process have led to the
development of the ocean business to an unprecedented level, becoming one of the most
important strategic goals for countries to pay close attention to. Unmanned Surface Vehicle
(USV), as a kind of surface vessel with high autonomy, has great development prospects in
the field of civil, military, and marine environment exploration and development due to its
advantages such as high endurance and intelligence. Based on the practical information
provided by the navigation system, the guidance system of the USV continuously generates
and updates one or more smooth and feasible trajectory instructions, which are then fed
to the control system of the USV. The USV can then reach the target location safely under
various environmental constraints while completing the required tasks. The path planning

J. Mar. Sci. Eng. 2021, 9, 1267. https://doi.org/10.3390/jmse9111267 https://www.mdpi.com/journal/jmse

https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-2145-0559
https://doi.org/10.3390/jmse9111267
https://doi.org/10.3390/jmse9111267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmse9111267
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse9111267?type=check_update&version=3

J. Mar. Sci. Eng. 2021, 9, 1267 2 of 15

of USV faces many challenges, including an uncertain environment, insufficient power,
restricted steering angle, and perceptual uncertainty. The automatic generation of a feasible
path is the key to improve the autonomy of USV. Therefore, the automatic generation and
optimization of routes have long been a critical technology that experts worldwide are
constantly exploring for optimization.

In recent decades, the rapid development of artificial intelligence, especially reinforce-
ment learning, has opened up new possibilities for path planning problems. With the
continuous optimization of reinforcement learning theory and algorithms, the application
of reinforcement learning algorithms for path planning has gradually become a research
hotspot for solving path planning problems. Reinforcement learning does not require
prior knowledge of complex environment models, which helps achieve a high level of
human intelligence and becomes an attractive approach for path planning [2,3], unmanned
driving [4], video games [5], robot control [6] and USV path planning [7]. Although tra-
ditional Q-learning algorithms [8] have better results for path planning, they still have
slow convergence speed and cannot solve the real-world problems of large scale and high
complexity [9]. There have been work to optimize the traditional Q-learning algorithm to
improve the efficiency of path planning by using the prior knowledge. Chen et al. pro-
posed a Q-learning based path planning approach that normalizes distances, obstacles and
forbidden areas as rewards or penalties for efficient pathplanning [10]. Results show that
the proposed approach can drive a cargo ship without human input. Precup et al. discusses
aspects concerning the design of model-based fuzzy controllers for Networked Control
Systems (NCSs). The stability of fuzzy NCSs is guaranteed by computing the controller
tuning parameters as solutions to linear matrix inequalities [11]. Messinis et al. takes a
typical flexible manufacturing system as an example, and introduces the development of
an agent-based controller [12]. The Deep Q Networks (DQN) exploit the capability of deep
neural networks, avoids the large storage space of Q tables, and improves the stability of
the training process by using replay memory and target networks [5].

At present, there are still factors that limit the application of deep reinforcement learn-
ing in path planning: (1) The agent cannot generalize between different tasks and needs to
be retrained when facing a completely new task. (2) Model stability and convergence are
not guaranteed [13]. (3) To adapt to the environment, an intelligent body often needs to
interact with the environment a lot, and each interaction increases the time and cost and
brings risks.

To address poor stability and slow convergence of the DQN algorithm in path planning
problems, this paper proposes an Improved Dueling Double Deep Q-Network Based on
Prioritized Experience Replay (IPD3QN). Firstly, IPD3QN uses the Double DQN technique,
which uses different neural networks for selection and evaluation to reduce overesti-
mation and improve algorithm stability. Then Prioritized Replay mechanism is used to
prioritize the experience that is more helpful to the learning environment so that the intel-
ligence can adapt to the environment faster and reduce the training time. By combining
a competing network (dueling network) structure, it is easy to estimate state values and
state-independent action advantages separately, eliminating the need to evaluate the effect
of each action option for each state and further improves the learning performance when
using empirical replay. Lastly, IPD3QN uses soft update and dynamic ε-greedy method to
solve the exploration-exploitation dilemma so that the intelligent body can find the optimal
strategy. The experimental results show that IPD3QN improves the quality of training
samples and achieves a practical approximation of the value function. In the CartPole
and mountain car environments under Open AI Gym, IPD3QN has a faster convergence
speed than DQN, D3QN, PD2QN, PDQN, PD3QN. Among them, the standard deviation
is reduced by 87.3%, 80.1%, 92.5%, 67.8%, and 54.8% in the CartPole environment and
53.9%, 10.4%, 37.9%, 34.2%, and 15.8% in the mountain car environment, all of which show
better performance regarding convergence. In the Maze environment, IPD3QN also has a
faster convergence speed compared with DQN, D3QN, PD2QN, PDQN, PD3QN, and the
standard deviation is reduced by 59.6%, 53.1%, 54.3%, 61.1%, and 46.2% compared with

J. Mar. Sci. Eng. 2021, 9, 1267 3 of 15

DQN, D3QN, PD2QN, PDQN, PD3QN, and the performance is more stable. The IPD3QN
can solve the problems of convergence speed and convergence stability to a large extent.
Compared with other comparison algorithms, using the algorithm proposed in this article,
USV can plan the optimal path faster according to the actual navigation environment.

2. Related Work
2.1. Reinforcement Learning

The learning goal of reinforcement learning is to find the optimal strategy that maxi-
mizes the cumulative reward. By interacting with the environment, the agent autonomously
explores the environment, takes actions according to behavioral strategies to influence the
environment, and obtains rewards from the environment to obtain data samples for learn-
ing. It eventually learns continuously to obtain the optimal strategy. The learning process
of reinforcement learning is modeled using Markov Decision Process (MDP). The agent
interacts with the environment in discrete time steps t = 1, 2, 3, · · · at each time step t.
The agent obtains the representation of the environment state St ∈ S, where S is the set of
all states, and selects an action based on the current state At ∈ A(St), where A(St) is the
set of actions that can be taken by the state St.

After a time step, the agent gets a scalar reward Rt+1 ∈ R, and reaches a new state
St+1. This process continues until the agent transfers to the terminated state. The series of
state transitions of the agent from the initial state to the terminated state can be described
as a sequence of < S1, A1, S2, R1, · · · , St−1, At−1, St, Rt−1 >. Such a sequence is called an
episode in reinforcement learning. Starting at time t and ending at time T, Equation (1) is
the cumulative return of the agent in a episode.

Gt =
T

∑
t′=t

γt′−tRt′+1 (1)

Among them, 0 ≤ γ ≤ 1, is called the discount factor. The function of the discount
factor is to assign different weights to the rewards obtained at different time steps so
that the rewards further away from the current time step have less weight. The task
of reinforcement learning is to find a strategy that maximizes the value of Gt, whose
action-value function is defined as Equation (2).

q(s, a) = E[Gt | St = s, At = a, π] (2)

Equation (2) represents the cumulative expected return that can be obtained by the
agent in state s, adopting action a, and then executing policy π. The update equation of the
action value function is defined as Equation (3).

q(s, a)← q(s, a) + α

[
r + γ max

a′
q
(
s′, a′

)
− q(s, a)

]
(3)

Here q(s, a) is the expected return value of the agent choosing action a in state s. r is
the instant return value of choosing action a in state s. max

a′
q(s′, a′) represents the maximum

expected return value of various actions selected in the state s′. α is the learning rate. q(s, a)
will eventually converge to q∗(s, a), the optimal action value function [14], by iterating
with Equation (3). This approach of obtaining the optimal action value function through
iteration Equation (3) is called Q-learning. In order to make it have generalization ability
and expand its application range, deep neural network and Q-learning are combined to
form a deep Q-Network [5].

2.2. DEEP Q-Networks

The Q-learning algorithm uses the Q-tables to record the Q-values of each action in
each state and update them repeatedly. It is suitable for relatively small-scale problems.
However, the state space may be too large or even continuous to be saved in a table in

J. Mar. Sci. Eng. 2021, 9, 1267 4 of 15

practice. In this case, the value function can be used for approximation. The value function
can be a linear function or a non-linear function, such as a neural network called a Q-
network. How to learn from high-dimensional sensing data such as video and speech
is a long-standing challenge for reinforcement learning [5]. In the past, the performance
of systems based on reinforcement learning relied heavily on the quality of artificially
designed features, and deep learning offers the possibility of extracting high-level features
from raw sensing data. Therefore, it has become a trend to introduce deep learning
structures such as convolutional and recurrent neural networks in reinforcement learning.
Deep Q-learning takes r + γmax

a′
q(s′, a′) as the target Q-value, and defines the loss function

between the network output Q value and the target Q-value function shown in Equation (4).

L(w) = E

[(
r + γ max

a′
q
(
s′, a′

)
− q(s, a, ω)

)2
]

(4)

Here s′, a′ represents the next state and action after the state s takes action a. q(s, a, ω))
represents the output value of the Q-Network. Policy gradient descent is used to update
the weights of the deep Q-Network.

2.3. Double Deep Q-Networks

Combining neural networks and reinforcement learning techniques brings the problem
of overestimation, which causes errors between the valuation function and the actual
value function in two ways: the inflexibility of the function model and the noise of the
environment. The output of the function evaluation model of the neural network contains
an estimation error, so the estimated value of the function evaluation model does not truly
reflect the actual value, and there is always an error between them. At the same time, most
of the reinforcement learning algorithms use the max operator to select the optimal action
in the current state. When the error between the estimated value and the actual value
is uniformly distributed, the action chosen by the max operator may not be the optimal
action chosen by the intelligence in the current state. The model always tends to choose the
action corresponding to the amplified state-action value. Suppose the difference between
different state-action values for the same state is slight. In that case, the model may select
the non-optimal action for the current state, resulting in the model eventually failing to
learn an optimal policy and causing the performance of the intelligence to degrade.

Suppose that at time t, the estimated value of action a is selected in state s as
Qestimation(s, a), the target value is Qtarget(s, a), and the error between the estimated value
and the target value in state s as Bs, the evaluation error brought by the function evaluation
model is represented by Ya

s . Assuming that Ya
s is uniformly distributed on [−ε,ε] and ε is

the upper bound, we can obtain Equation (5) [15].

Qestimation (s, a) = Qtarget (s, a) + Ya
s (5)

So it is often the case that the estimated value is greater than the true value, i.e., there
is an overestimation problem.

The Double Deep Q-Network (DDQN) [16] addresses the problem of overestimation in
DQN by decoupling the selection and evaluation of actions. First, the action corresponding
to the largest Q-value is selected by the main network with parameter w, and then the target
value corresponding to this action is calculated using the target network with parameter w′

to calculate the target value corresponding to this action and evaluate the selected action.
The loss function L(w) is then calculated based on the evaluated value Q(s, a, w) and the
parameters w of the main network are updated using backward error transfer as shown in
Equations (6) and (7).

YDDQN = ra
s + γ×Q

(
s′, arg max

a′
Q
(
s′, a′, w

)
, w′
)

(6)

J. Mar. Sci. Eng. 2021, 9, 1267 5 of 15

L(w) = E
[(

YDDQN −Q(s, a, w)
)2
]

(7)

Here γ is the attenuation factor, ra
s is the reward value, and the loss function L(w)

is calculated according to the Mean Square Error (MSE) of the estimated value and the
target value.

2.4. Dueling Deep Q-Networks

In reinforcement learning, it is necessary to estimate the value of each state, but for
many states, it is not necessary to estimate the value of each action. Dueling Double Deep
Q-Network (D3QN) adds Dueling Network Architecture [17] to the main network and
target network based on DDQN. The dueling network structure separates the state value
and the state action to evaluate the Q-value more accurately.

The state-action value function Qπ(s, a) represents the expected return value when the
policy π selects action a in the state s, and the state value Vπ(s) represents the expected re-
turn generated by the policy π in the state s, then the difference between the two represents
the advantage of choosing action a in state s, which is defined as Aπ(s, a) in Equation (8).

Aπ(s, a) = Qπ(s, a)−Vπ(s) (8)

Therefore, there are two streams of data in the dueling network, one stream outputs
the state value V(s; θ, β), and the other stream outputs the action advantage A(s, a; θ, α),
where θ denotes the parameters of the network that perform feature processing on the
input layer; a and β are the parameters of the two streams, respectively. The output of the
deep Q-Network using the dueling network structure is Equation (9).

Q(s, a ; θ, α, β) = V(s; θ, β) + A(s, a ; θ, α) (9)

Since the network outputs Q-values directly, the state value V and the action A
cannot be known. To reflect this identifiability, the action A is centralized to ensure per-
formance while improving the stability of optimization, where a′ are all possible actions,
and avgA(s, a′; θ, α)) is the average value of the advantage function of all actions. The mod-
ified Q-values is expressed as Equation (10).

Q(s, a ; θ, α, β) = V(s; θ, β) + (A(s, a ; θ, α)−avgA
(
s, a′; θ, α

))
(10)

2.5. Prioritized Experience Replay Deep Q-Networks

The uniform random sampling used in DQN, DDQN, and Dueling DQN algorithms
is not optimal. In interacting with the environment, experience samples are continuously
stored in the experience replay unit for model training, such as successful attempts or failed
traces, which may be kept in the experience replay unit all the time. A frequent replay of
these experiences can make the agent aware of the consequences of correct or improper
behaviors and thus continuously correct its behaviors.

However, the importance of different experience samples is different. As the samples
in the experience playback unit are continuously updated, if a small number of samples
are taken from the experience playback unit as model input by uniform random sampling,
then some experience samples with higher importance cannot be fully utilized or even
directly overwritten, resulting in lower model training efficiency. To improve the training
efficiency of the model, this paper uses a prioritized experience replay [18] to draw samples
from the experience replay unit as a way to increase the probability that samples of higher
importance are drawn. It uses a proportion-based prioritization mechanism that defines
the priority of experience as Equation (11). Here ε is a small standard number, which
ensures that samples with TD-error almost equal to 0 also have a low probability of being
drawn.

pt = |δt|+ ε (11)

J. Mar. Sci. Eng. 2021, 9, 1267 6 of 15

Based on this, the probability of sampling experience t can be defined as Equation (12).
In the equation, n is the size of the replay experience unit. α ∈ [0, 1] controls the extentof
priority use. α = 0 means uniform sampling, and α = 1 means greedy strategy sampling.

Pt =
pα

t
∑n pα

n
(12)

The lack of diversity in experience due to frequent playback of experiences with
high timing errors and too frequent access to certain states makes the training of the
network prone to overfitting and can therefore be corrected by importance sampling
weights w [19] as Equation (13). Here pi represents the probability of sampling experience
i, pmin represents the minimum sampling probability, parameter β represents the extent of
correction.

wi = 1/
(

pi
pmin

)β

(13)

The loss function L(w) of the Q-Network is defined as Equation (14). In the equation,
yt represents the target Q-value at time t, Q(St−1, At−1; θ, α, β) represents the output Q-
value of the Q-Network.

L(w) = ∑ w(t)(yt −Q(St−1, At−1; θ, α, β))2 (14)

2.6. Convergence Rate and Convergence Stability

In this paper, we mainly evaluate the convergence rate and convergence stability of
the training process. So we borrow Definition 1 from work in [20,21] as the evaluation
matrix to evaluate the advantage of the IPD3QN model over other models. In the definition,
the training process for some OpenAI gym environments is defined to be convergent when
the average reward is greater than or equal to or the number of steps is less than or equal to
M after N consecutive episodes. HereM and N are different for different OpenAI gym
environments. Based on the convergence condition, the convergence rate and convergence
stability are defined in Definition 1.

Definition 1 (Convergence Rate and Convergence Stability [20,21]). Given the OpenAI gym
environment, the training process is defined to be convergent when the average reward is greater
than or equal to or the number of steps is less than or equal toM after N consecutive episodes.
The convergence rate is defined as the number of episodes required to reach the convergence condition
for the first time. The smaller the number required, the faster the convergence. The convergence
stability is defined as the standard deviation of the average reward or number of steps after the
convergence condition is reached for the first time.

3. IPD3QN
3.1. Soft Update of the Target Network

Traditional DQNs usually uses hard update, that is, the target network is updated once
within a stable C step. This paper proposes an alternative soft update idea to ensure that
the target network is updated in each iteration, which is equivalent to a network update
interval of 1. Soft update uses a convex combination of the current network parameters and
the target network parameters to update the network, i.e., the parameters w′i of the target
network will be updated using the current network parameter wi based on Equation (15).

w′i+1 = w′i + ε
(
wi − w′i

)
, Where 0 < ε� 1 (15)

In this way, the parameters of the target network do not change much, and the
calculated target label value y(r, s′) changes relatively smoothly. Then the algorithm can
maintain a certain degree of stability even if the target network is updated at each iteration.
The smaller the soft interval update coefficient ε, the more stable the algorithm will be.

J. Mar. Sci. Eng. 2021, 9, 1267 7 of 15

A suitable soft interval update coefficient ε can make DQN algorithm training both stable
and fast.

3.2. Dynamic ε-Greedy Index Decline Method

In this paper, the selection of corresponding actions in the IPD3QN algorithm does
not follow the traditional greedy strategy for selection, but uses a dynamic greedy strategy
for selection. In the training phase, traditional reinforcement learning algorithms randomly
select actions with a probability of ε, and select the optimal action with a probability of
1 − ε. The traditional reinforcement learning algorithm uses a fixed greedy coefficient ε.
If it is too small, the environment will not be fully explored in the early training phase,
resulting in over-exploitation and under-exploration. If it is too large, it will lead to a
significant probability of randomly choosing the action instead of choosing the optimal
action even though the agent has fully explored the environment in the late training period,
contrary to the principle of finding the optimal strategy. In this paper, we propose an expo-
nential descent dynamic ε greedy approach to solve this problem, shown in Equation (16).
In the equation, t denotes the number of training episodes, δ denotes the designed offset,
and x is a variable that changes according to the environment. This method solves the
exploration-exploitation dilemma faced by deep reinforcement learning by ensuring that
more exploration is needed at the beginning of training due to the uncertainty of the
environment and that a greater probability of exploitation is needed when the number of
training sessions is vast and the value function can already be well approximated.

ε =
(t + δ)3

x
e−
√

t+δ (16)

3.3. Algorithm Description

Algorithm 1 shows the algorithm for IPD3QN. When the agent knows nothing about
the environment in the early stage of learning, the DQN uses the most favorable action for
each iteration, such as the action with the largest value function. Then the agent will be
able to find a suboptimal strategy in a short time and has high learning efficiency, but there
is an overestimation problem. DQN decouples the two steps of selecting the target Q-
value action and calculating the target Q-value to eliminate the problem of overestimation.
In this paper, the corresponding actions in the DDQN algorithm are not selected precisely
according to the optimal policy. Instead, a dynamic greedy policy based on Equation (16)
is used to solve the exploration-exploitation dilemma faced by deep reinforcement learn-
ing. For the sample importance selection problem, the prior experience replay method is
adopted to draw empirical samples from the empirical replay unit to increase the utiliza-
tion of essential samples and accelerate the training speed of the neural network. Then
Equation (15) is used as a soft update to guarantee that the target network is updated in
each iteration, making the DQN algorithm training both stable and fast.

We also use deep neural networks to approximate Q-functions instead of traditional
table-valued records, allowing the IPD3QN algorithm to solve large-scale reinforcement
learning problems with complex environmental states. The loss function of the deep neural
network is shown in Equation (14). The gradient back-propagation of the neural network
updates all parameters θ of the Q-network. Finally, a competitive network structure is
introduced to optimize the neural network and thus the algorithm, which is shown in
Algorithm 1.

J. Mar. Sci. Eng. 2021, 9, 1267 8 of 15

Algorithm 1 Improved Dueling Double Deep Q-Network Based on Prioritized Experi-
ence Replay.

1. Input:minibatch m, action advantage parameter α, state value parameter β, budget T ,
update factor ε

2. Initialize replay memory M , p1=1, Q-Network parameters θ
3. For t = 1 to T:

(a) Observe St, and choose At ∼ πθ(St) with dynamic ε− greedy
(b) Store transition <St , At , Rt , St+1 , done> in M with maximal priority pt =

maxi<t pi
(c) update state St = St+1

if M mod m == 0
(d) For j = 1 to m:

i. Sample transition j ∼ P(j) = pα
j / ∑i pα

i

ii. Compute importance-sampling weight wj = (N · P(j))−β/ maxi wi

iii. Calculate the current target Q-value yj = R̂j
+ γQtarget

(
Sj, arg maxa Q

(
Sj, a; θ, α, β

)
; θ, α, β

)
iv. Use the mean square error loss function to backpropagate to update

the Q-Network parameters
v. Recalculate TD-error δj = ŷj −Q

(
Sj−1, Aj−1; θ, α, β

)
vi. Update transition priority pj ←

∣∣δj
∣∣

(e) Soft update target network θ′t+1 = θ′t + ε(θt − θ′t)

4. Environment Design and Result Analysis
4.1. Environment Describe

In this paper, we firstly use the OpenAI Gym [22] as the experimental environment to
pre-validate the effectiveness of the IPD3QN algorithm. The experiment was carried out
with TensorFlow 2.4 and Python 3.6 under Ubuntu 18.04 operating system. Moreover, we
use two classical control problems in OpenAI Gym as the experiment scenarios, namely
the CartPole-v0 and MountainCar-v0 experimental environments [23].

CartPole-v0 problem aims to keep the inverted pendulum in a vertical state by moving
the bottom plate of the inverted pendulum from left to right. The state of the environment
is composed of the horizontal position x of the inverted pendulum and the offset angle θ.
The action of the system has +1 and −1 horizontal thrust, the inverted pendulum starts
in the vertical state. The system gives a +1 bonus for maintaining the vertical state for
each round, the end of the round is marked by |x| > 2.4 or |θ| > 0.2. |x| > 2.4 indicates
that the horizontal movement of the bottom plate of the inverted pendulum has exceeded
the maximum horizontal boundary of the system. According to the equation of motion of
the system, the transfer function of the angle of the pendulum rod and the external force
applied to the system can be deduced. Through the analysis of the transfer function, it is
found that when the angle of the inverted pendulum deflection in the vertical direction is
greater than 0.2, even if the system applies a force of size 1 in the horizontal direction at the
next moment, the inverted pendulum cannot return to the original vertical position [24,25].

The experiment allows the balance bar to interact with the environment 5 times
every 20 iterations, and calculates the average reward for the 5 times, iterate a total of
2000 episodes;meanwhile, a threshold value ∆ = 300 is set for the number of rounds,
and the task will automatically end if the inverted pendulum is kept for 300 rounds
continuously without falling. In order to make the reward function more reasonable and
effective, the reward function is set as:

Reward =

{
−1, mission f ailed

0.1, other

J. Mar. Sci. Eng. 2021, 9, 1267 9 of 15

To compare the convergence performance of the proposed IPD3QN algorithm with
other typical algorithms such as DQN, D3QN, PD2QN, PDQN, and PD3QN, we use the
convergence condition, convergence rate, and convergence stability in Definition 1. In the
CartPole environment, we useM = 195 and N = 100 as the convergence condition. All
the models have three-layer neural network architecture. Also, the number of neurons
in the input layer is the environmental state dimension. The number of neurons in the
hidden layer is set to 20. The number of neurons in the output layer is set to the environ-
mental action dimension for all the models. ReLU (Rectified Linear Unit) is used as the
activation function, and the RMSProp algorithm is selected for gradient descent optimiza-
tion. In order for the experiment to be comparative, the comparison algorithm and the
algorithm in this paper use the same hyperparameters, the hyperparameter settings of the
reinforcement learning algorithm are shown in Table 1. The dynamic ε-greedy Equation is
as Equation (17).

ε =
(t/1.5 + 25)3

180
e−
√

t/2+25 (17)

Table 1. Algorithm Hyperparameter Settings In Cartpole Environment.

Hyperparameter Value Remark

Minibatch 32 Participate in the training data set
Replay memory size 10,000 The capacity of the experience replay pool

Discount factor 0.9
Learning rate 0.0001 Adam gradient descent algorithm learning rate

ε 0.005 Update factor
α 0.5 Control the degree of priority use
β 0.6 Importance sampling correction degree

The Mountain Car problem is described as a one-dimensional track of a car between
two “mountains”, i.e., the bottom of a valley with a slope, and the goal is to drive the car
up the mountain to the right. However, the car cannot pass the mountain in one go due
to insufficient power, so the car has to pass the top of the mountain with the inertia of
back and forth acceleration. The state of the Mountain Car experiment is two-dimensional,
with one dimension representing position and the other dimension representing velocity.
Among them, the position range of the trolley is [−1.2,0.6], and the range of speed is
[−0.07,0.07]. There are three discrete actions in the action space representing leftward,
rightward, and no action. At the beginning of the episode, the car is given a random
position and speed, and then it is learned in a simulated environment.

The experiment iterated a total of 400 episodes.A threshold value of ∆ = 2000 was set
for the number of rounds. If the car did not reach the target position within 2000 rounds,
the task was automatically ended, and a new episode was started. In order to make the
reward function more reasonable and practical, the reward function was set as follows:

Reward = abs(position−(−0.5))

Similar to the Cartpole environment, we useM = 320 andN = 45 as the convergence
condition in the Mountain Car environment. Also, we use the same settings as the Cartpole
environment for the six models, except that we set the number of neurons in the hidden
layer as 50, because the mountaincar scene is relatively complicated. In order for the
experiment to be comparative, the comparison algorithm and the algorithm in this paper
use the same hyperparameters, the hyperparameter settings of the reinforcement learning
algorithm are shown in Table 2. The dynamic ε-greedy Equation is as Equation (18).

ε =
(t + 25)3

120
e−
√

t+25 (18)

J. Mar. Sci. Eng. 2021, 9, 1267 10 of 15

Table 2. Algorithm Hyperparameter Settings In Mountaincar Environment.

Hyperparameter Value Remark

Minibatch 32 Participate in the training data set
Replay memory size 3000 The capacity of the experience replay pool

Discount factor 0.99
Learning rate 0.01 Adam gradient descent algorithm learning rate

ε 0.05 Update factor
α 0.3 Control the degree of priority use
β 0.1 Importance sampling correction degree

In this work, we use the Maze model to verify the effectiveness of the IPD3QN
algorithm for USV path planning. The experimental environment is Python 3.6, Tensorflow
2.4, Ubuntu 18.0, Tkinter, and Maze model (as shown in Figure 1). The environment feature
model is represented using the raster method, which divides the environment map into
a number of equally sized rasters, with black rasters for obstacles, white rasters for free
space, and yellow rasters for target space, each representing a state, so that the complex
map environment is divided into feasible and infeasible spaces. The sea environment in
which the USV is located is assumed to be a two-dimensional environment [26]. The two-
dimensional space is discretized into a grid of 8× 8 raster lengths. Then the specific element
information of the environment is arranged according to the actual sea environment records.
The area of the obstacle edge less than one grid area is set according to one grid, and finally,
the grid serial number is recorded for the simulated set grid.

The experiment sets up four movements, namely up, down, left, and right, for the
USV to explore according to the environmental state space. The environmental model and
the moving process should be reasonably specified as follows. (1) To reduce the complexity
of the experiment, the USV is regarded as a mass point. The movement of the USV can
be treated as the process of pointing into a line, which ensures the implementation ability
of the algorithm. (2) The effect on the ocean information factor is neglected. (3) Based on
the physical point of view, the obstacles and the USV are mutual references during the
navigation, so all obstacles such as reefs in the sea are processed in parallel.

Figure 1. Maze Environmental Diagram.

In the experiments, we calculate the average reward every ten episodes for a total of
1000 episodes. The threshold of the termination episode is set to ∆ = 250. In this case,

J. Mar. Sci. Eng. 2021, 9, 1267 11 of 15

the task automatically terminates if the USV cannot reach the target point after 250 episodes
or encountering obstacles within 250 episodes. Moreover, the reward function is set as:

Reward =

100, reach the target point

−10, reach the obstacle point

0, other

Similar to the Cartpole environment, we useM = 70 and N = 50 as the convergence
condition in the Maze environment. Also, we use the same settings as the Cartpole
environment for the six models, except that we set the number of neurons in the hidden
layer as 20. The hyperparameter settings of the reinforcement learning algorithm are shown
in Table 3. The dynamic ε-greedy Equation is as Equation (19).

ε =
(t/1.8 + 25)3

180
e−
√

t/2+25 (19)

Table 3. Algorithm Hyperparameter Settings In Maze Environment.

Hyperparameter Value Remark

Minibatch 32 Participate in the training data set
Replay memory size 10,000 The capacity of the experience replay pool

Discount factor 0.9
Learning rate 0.0001 Adam gradient descent algorithm learning rate

ε 0.005 Update factor
α 0.5 Control the degree of priority use
β 0.6 Importance sampling correction degree

4.2. Result Analysis

The six algorithms DQN, D3QN, PD2QN, PDQN, PD3QN, and IPD3QN, are compared
in the Cartpole and MountainCar scenarios. The experimental results are shown in Figure 2,
Tables 4 and 5. It can be concluded from the data in Table 4 that IPD3QN converges faster
than the rest. It can be concluded from the data in Table 5 that the average reward of
IPD3QN is greater than the other algorithms in the Cartpole environment. The standard
deviation is reduced by 87.3%, 80.1%, 92.5%, 67.8%, 54.8% compared with DQN, D3QN,
PD2QN, PDQN, PD3QN, respectively. In the Mountain Car environment, the convergence
rate of IPD3QN is lower than the other algorithms, and the standard deviation is reduced by
53.9%, 10.4%, 37.9%, 34.2%, 15.8% compared with DQN, D3QN, PD2QN, PDQN, PD3QN,
respectively. To conclude, the proposed IPD3QN algorithm has significantly improved the
convergence speed and stability compared with other algorithms.

(a) CartPole (b) mountaincar

Figure 2. Comparison Of Different Algorithms In Two Environments.

J. Mar. Sci. Eng. 2021, 9, 1267 12 of 15

Table 4. Comparison Of Convergence Speed In Two Environments.

Cartpole Mountaincar

Nature DQN 900 187
Double + Dueling DQN 1040 242

Double + Prioritized Replay DQN 500 185
Prioritized Replay + Dueling DQN 1160 216

Double + Dueling +
Prioritized Replay DQN 440 184

IPD3QN 220 163

Table 5. Comparison Of Convergence Stability In Two Environments.

Cartpole Mountaincar

Nature DQN (197.75636, 5.82318) (182.10329, 74.3346)
Double + Dueling DQN (199.0625, 3.88483) (174.60759, 38.2677)

Double + Prioritized Replay DQN (197.14933, 9.86685) (176.34419, 55.17239)
Prioritized Replay + Dueling DQN (199.3667, 2.29406) (168.19022, 52.08878)

Double + Dueling +
Prioritized Replay DQN (199.52436, 1.63458) (165.2222, 40.68757)

IPD3QN (199.7827, 0.7394) (152.37131, 34.27435)

The effects of different learning rates on the convergence rate and convergence stability
are given in Figure 3a,b. It can be seen that in the Cartpole and Mountain Car environments,
the learning process is more stable when the learning rate is low. When the learning rate is
large, although the learning can be accelerated in the early stage, it is persistently oscillating
and challenging to converge in the later stage.

Figure 3c,d reflect the effect of the discount factor γ on the convergence speed and
convergence stability. It can be seen that when γ is larger, the greater the influence of future
returns on the current expected return value, the higher the proportion of future returns
predicted in it when the intelligence calculates the expected return, which is beneficial to
the learning environment and uses less training time. So γ needs to be set large when the
environment has a strong temporal correlation.

The effects of different interval update coefficients on the convergence speed and con-
vergence stability are given in Figure 3e,f. It can be seen that in the Cartpole and Mountain
Car environments, the learning process is more stable when the interval coefficient is small.
When the interval coefficient is large, although it can be explored faster in the early stage,
it is persistently oscillating and challenging to converge in the later stage.

Through pre-verification in CartPole and mountaincar environments, experiments
prove that IPD3QN can improve stability and convergence. Compare the six algorithms of
DQN, D3QN, PD2QN, PDQN, PD3QN, and IPD3QN in the Maze scenario. The experimen-
tal results are shown in Figure 4, Tables 6 and 7. The data in Table 6 shows that IPD3QN
converges faster than the rest; the data in Table 7 shows that in the maze environment,
the average reward of IPD3QN is greater than Other algorithms, and the standard deviation
compared with DQN, D3QN, PD2QN, PDQN, PD3QN reduced by 59.6%, 53.1%, 54.3%,
61.1%, 46.2%, performance is more stable.

To sum up, compared with other algorithms, the IPD3QN algorithm in this article has
significantly improved convergence speed and convergence stability.

J. Mar. Sci. Eng. 2021, 9, 1267 13 of 15

(a) learning rate (b) learning rate

(c) discount factor (d) discount factor

(e) update factor (f) update factor

Figure 3. In Two Environments, The Impact Of Different Parameters On IPD3QN.

Figure 4. Comparison Of Different Algorithms In Maze Environments.

J. Mar. Sci. Eng. 2021, 9, 1267 14 of 15

Table 6. Comparison Of Convergence Speed In Maze Environments.

Maze

Nature DQN 650
Double + Dueling DQN 670

Double + Prioritized Replay DQN 470
Prioritized Replay + Dueling DQN 520

Double + Dueling +
Prioritized Replay DQN 450

IPD3QN 220

Table 7. Comparison Of Convergence Stability In Maze Environments.

Maze

Nature DQN (84.4571, 37.3110)
Double + Dueling DQN (89.6666, 32.1406)

Double + Prioritized Replay DQN (89, 33.0312)
Prioritized Replay + Dueling DQN (84, 38.7681)

Double + Dueling +
Prioritized Replay DQN (92.0545, 28.0508)

IPD3QN (97.8205, 15.0862)

5. Conclusions and Future Work

This paper proposes an Improved Dueling Deep Double-Q Network Based on Pri-
oritized Experience Replay (IPD3QN) to address the slow and unstable convergence of
traditional Deep Q Network (DQN) algorithms in autonomous path planning of USV. First,
we use the deep double Q-Network to decouple the selection and calculation of the target
Q value action to eliminate overestimation. The prioritized experience replay method
is adopted to extract experience samples from the experience replay unit, increase the
utilization rate of actual samples, and accelerate the training speed of the neural network.
Then, the neural network is optimized by introducing a dueling network structure. Finally,
the soft update method is used to improve the stability of the algorithm, and the dynamic
ε-greedy method is used to find the optimal strategy. The experiments are first conducted
in the Open AI Gym test platform to pre-validate the algorithm for two classical control
problems: the Cart pole and Mountain Car problems. The impact of algorithm hyperpa-
rameters on the model performance is analyzed in detail. The algorithm is then validated
in the Maze environment. The comparative analysis of simulation experiments shows that
IPD3QN has a significant improvement in learning performance regarding convergence
speed and convergence stability compared with DQN, D3QN, PD2QN, PDQN, PD3QN.
Also, USV can plan the optimal path according to the actual navigation environment with
the IPD3QN algorithm. However, the IPD3QN algorithm proposed in this paper uses
USV as a mass point and can only be simulated in discrete action scenarios. Constructing
the USV’s motion model in the complex sea area and solving the problems of the conver-
gence speed and convergence stability of the USV in the path planning under the complex
continuous action scene are the focus of the next step of this paper.

Author Contributions: Conceptualization, C.H.; methodology, C.H.; software, C.H.; validation, C.H.,
Z.Z. and C.Z.; formal analysis, C.H.; investigation, Y.Z.; resources, C.H.; data curation, Y.S.; writing
original draft preparation, C.H. and C.Z.; writing review and editing, C.H. and C.Z.; visualization,
C.H.; supervision, Z.Z.; project administration, Z.Z.; funding acquisition, Z.Z. and C.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Changzhou Key Research and Development Program (Ap-
plied Basic Research) of grant number CJ20210123.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

J. Mar. Sci. Eng. 2021, 9, 1267 15 of 15

Data Availability Statement: The code for this article is downloaded from the following website:
https://github.com/skyknights/-test (accessed on 5 November 2021).

Acknowledgments: This work was supported by Changzhou Key Research and Development
Program (Applied Basic Research) of grant number CJ20210123. The authors’ deepest gratitude goes
to the anonymous reviewers for their careful work and thoughtful suggestions that have helped
improve this paper substantially.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuh, J.; Marani, G.; Blidberg, D.R. Applications of marine robotic vehicles. Intell. Serv. Robot. 2011, 4, 221–231. [CrossRef]
2. Bae, H.; Kim, G.; Kim, J.; Qian, D.; Lee, S. Multi-robot path planning method using reinforcement learning. Appl. Sci. 2019, 9, 3057.

[CrossRef]
3. Qu, C.; Gai, W.; Zhong, M.; Zhang, J. A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial

vehicles (UAVs) path planning. Appl. Soft Comput. 2020, 89, 106099. [CrossRef]
4. Holen, M.; Saha, R.; Goodwin, M.; Omlin, C.W.; Sandsmark, K.E. Road detection for reinforcement learning based autonomous

car. In Proceedings of the 2020 the 3rd International Conference on Information Science and System, Cambridge, UK, 19–22
March 2020; pp. 67–71.

5. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

6. Xu, J.; Tian, Y.; Ma, P.; Rus, D.; Sueda, S.; Matusik, W. Prediction-guided multi-objective reinforcement learning for continuous
robot control. In Proceedings of the International Conference on Machine Learning, PMLR, New York, USA, 13–18 July 2020;
pp. 10607–10616.

7. Glimcher, P. Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis. Proc. Natl.
Acad. Sci. USA 2011, 108, 15647–15654. [CrossRef] [PubMed]

8. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
9. Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
10. Chen, C.; Chen, X.Q.; Ma, F.; Zeng, X.J.; Wang, J. A knowledge-free path planning approach for smart ships based on reinforcement

learning. Ocean Eng. 2019, 189, 106299. [CrossRef]
11. Precup, R.E.; Preitl, S.; Petriu, E.; Bojan-Dragos, C.A.; Szedlak-Stinean, A.I.; Roman, R.C.; Hedrea, E.L. Model-based fuzzy control

results for networked control systems. Rep. Mech. Eng. 2020, 1, 10–25. [CrossRef]
12. Messinis, S.; Vosniakos, G.C. An agent-based flexible manufacturing system controller with Petri-net enabled algebraic deadlock

avoidance. Rep. Mech. Eng. 2020, 1, 77–92. [CrossRef]
13. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function

approximation. NIPs Citeseer 1999, 99, 1057–1063.
14. Sutton, R.S. Learning to predict by the methods of temporal differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]
15. Thrun, S.; Schwartz, A. Issues in using function approximation for reinforcement learning. In Proceedings of the Fourth

Connectionist Models Summer School, Hillsdale, NJ, USA, 13 December 1993; pp. 255–263.
16. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 2094–2100.
17. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24 June 2016; pp.
1995–2003.

18. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
19. Hou, Y.; Liu, L.; Wei, Q.; Xu, X.; Chen, C. A novel DDPG method with prioritized experience replay. In Proceedings of the 2017

IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 316–321.
20. OpenAi-Gym. CartPole-v0. Available online: https://github.com/openai/gym/wiki/CartPole-v0. (accessed on 19 August

2021).
21. Xu, Z. Research on deep reinforcement learning algorithm based on dynamic fusion target. Comput. Eng. Appl. 2019, 55, 162–166.
22. Zamora, I.; Lopez, N.G.; Vilches, V.M.; Cordero, A.H. Extending the openai gym for robotics: A toolkit for reinforcement learning

using ros and gazebo. arXiv 2016, arXiv:1608.05742.
23. Malla, N.; Ni, Z. A new history experience replay design for model-free adaptive dynamic programming. Neurocomputing 2017,

266, 141–149. [CrossRef]
24. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE

Trans. Syst. Man Cybern. 1983, SMC-13, 834–846. [CrossRef]
25. Cannon, R.H. Dynamics of Physical Systems; Courier Corporation: North Chelmsford, MA, USA, 2003.
26. Etemad, M.; Zare, N.; Sarvmaili, M.; Soares, A.; Machado, B.B.; Matwin, S. Using deep reinforcement learning methods for

autonomous vessels in 2d environments. arXiv 2020, arXiv:2003.10249.

https://github.com/skyknights/-test
https://github.com/skyknights/-test
http://doi.org/10.1007/s11370-011-0096-5
http://dx.doi.org/10.3390/app9153057
http://dx.doi.org/10.1016/j.asoc.2020.106099
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1073/pnas.1014269108
http://www.ncbi.nlm.nih.gov/pubmed/21389268
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1016/j.oceaneng.2019.106299
http://dx.doi.org/10.31181/rme200101010p
http://dx.doi.org/10.31181/rme200101077m
http://dx.doi.org/10.1007/BF00115009
https://github.com/openai/gym/wiki/CartPole-v0
http://dx.doi.org/10.1016/j.neucom.2017.04.069
http://dx.doi.org/10.1109/TSMC.1983.6313077

	Introduction
	Related Work
	Reinforcement Learning
	DEEP Q-Networks
	Double Deep Q-Networks
	Dueling Deep Q-Networks
	Prioritized Experience Replay Deep Q-Networks
	Convergence Rate and Convergence Stability

	IPD3QN
	Soft Update of the Target Network
	Dynamic -Greedy Index Decline Method
	Algorithm Description

	Environment Design and Result Analysis
	Environment Describe
	Result Analysis

	Conclusions and Future Work
	References

