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Abstract: Recently, the application of machine learning has been explored to assess the main damage
consequences without employing flooding sensors. This method can be the base of a new generation
of onboard decision support systems to help the master during the progressive flooding of the ship.
In particular, the application of random forests has been found suitable to assess the final fate of the
ship and the damaged compartments’ set and estimate the time-to-flood. Random forests have to
be trained using a database of precalculated progressive flooding simulations. In the present work,
multiple options for database generation were tested and compared: three based on Monte Carlo (MC)
sampling based on different probability distributions of the damage parameters and a parametric
one. The methods were tested on a barge geometry to highlight the main effects on the damage
consequences’ assessment in order to ease the further development of flooding-sensor-agnostic
decision support systems for flooding emergencies.

Keywords: damaged ship; progressive flooding; random forests; database generation; decision
support system

1. Introduction

In previous decades, the lack of decision support during the progressive flooding of a
damaged passenger ship has been highlighted by many accidents. Large passenger vessels
have a complex non-watertight subdivision, limited stability reserve, and limited freeboard
at the bulkhead deck, leading to a difficult prediction of the flooding consequences without
the aid of a computer system. Therefore, after a collision or grounding, the master needs to
have at his/her disposal a Decision Support System (DSS) to make his/her decisions on a
rational basis instead of heuristics or his/her experience.

The information given to the master required by the international rules was proven
to be inadequate especially during the sinking of Costa Concordia. After the grounding,
it was not easy to even identify the breached compartments [1]. Besides, the mandatory
onboard documentation regarding damage stability/control requires much time for consul-
tation. Recently, some efforts have been made toward the digitalization of these documents.
Nevertheless, most of them relate to a standard loading condition that is not likely met
during navigation or to Safe Return to Port (SRtP) recovery actions and damage control in
the final stage of flooding [2,3]. Besides, all modern ships are equipped with loading com-
puters capable of carrying out damage stability calculations by applying the lost buoyancy
method [4]. These tools might be capable of assessing the ship’s survivability; however,
they cannot consider physically consistent intermediate stages of flooding, which might
lead to excessive heeling angles or to the ship capsizing. Moreover, they usually require
the manual input of damaged compartments. The last problem has been overcome by the
introduction of a mandatory flooding detection system on passenger vessels laid down
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after 1 July 2010 [5]. Furthermore, the installation of flooding sensors capable of measur-
ing floodwater levels enabled the direct application of quasi-static progressive flooding
simulation codes within onboard DSSs [6–8]. The flooding sensors shall be fit in each
ship’s internal space to permit the assessment of the damage dimension and location [9].
These data are then the input for the progressive flooding simulation, which allows the
forecast of the damage consequences. The so improved situational awareness after dam-
age occurrence can reduce the reaction time for damage control or ship abandonment, if
required. However, up to now, most of the existing passenger ships are not equipped with
flooding sensors and, thus, can suffer from the lack of emergency decision support. Besides,
the flooding detection system retrofit required for the installation of the most advanced
solutions available on the market is costly, discouraging the ship owners from adopting
emergency DSSs based on time-domain simulations. A viable solution to overcome such
a problem is the introduction of systems requiring a more basic set of sensors to make
available the essential information during a flooding emergency. In this context, the time
evolution of the damaged ship’s floating position can be exploited instead of the floodwater
levels [10], requiring only the measurement of the ship heel angle, trim angle, and draft
during the progressive flooding of the ship. The required set of instruments is limited to
inclinometers (usually fit on all the vessels) and one or more level radar(s) fit in still-pipes
or below bridge wings to measure ship draught. Then, Machine Learning (ML) can be used
to correlate the recorded floating position with the main flooding consequences [11].

In this context, Random Forests (RFs) have provided promising results [12]. RFs are
trained using a database of progressive flooding simulations in the time domain. The
training database is built according to a damage case generator that can be based on
different mathematical formulations. Up to now, an extensive discussion of the effect
of damage case generation on the classification and regression accuracy is lacking. To
fill such a gap, the present work explores the effect of different damage-case-generation
algorithms on the prediction of the progressive flooding consequences provided by RFs.
In particular, four solutions were tested: a Parametric (P) one and three based on Monte
Carlo (MC) sampling (according to probability distributions for damage dimensions used
in the convention for Safety of Life at Sea (SOLAS), assuming a uniform distribution of the
damage dimension or a uniform distribution of the damage area inverse). After a short
overview of the progressive flooding consequences’ prediction, the database generation
algorithms are presented. The proposed methodology is, then, applied to a box-shaped
barge using a large SOLAS-based database for validation purposes.

2. Prediction of Damage Consequences

When the hull integrity is compromised leading to the progressive flooding of the ship,
a few pieces of information are essential to support the master’s decision [11]. The most
important one is the final fate of the ship, namely whether the ship will survive the damage
scenario, reaching a new safe equilibrium position, or will sink, capsize, or shift towards
an unsafe condition, e.g., excessive equilibrium heeling angle. Besides, the set of flooded
watertight compartments should be known by the crew to promptly carry out the damage
control procedures and prevent further spreading of floodwater towards intact watertight
compartments. Finally, in a nonsurvival damage case requiring ship abandonment, it is
vital to know the time-to-flood t f , i.e., the time to reach the ship capsizing, sinking, or an
unsafe condition, to manage the ship evacuation process. A viable method to assess this
information from the floating position of the damaged ship employs ML. The process is
sketched in Figure 1. More details about the applied methodology can be found in [11].

During the progressive flooding, the loading condition of the ship changes due to the
embarked floodwater, leading to a variation of the floating position as well. The floodwater
pouring among connected internal rooms is governed by the hydraulic laws, and thus, it
can be predicted by applying progressive flooding simulation codes. Using RF, a link can be
searched between the time records of sinkage s, heel φ and trim θ angles, i.e., the predictors,
and the above-mentioned damage consequences, i.e., the responses [11]. Considering a
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time instant t∗ during the progressive flooding, the past time evolution of the floating
position is known. Therefore, φ, θ, and s can be sampled with a constant time step dt up
to t∗, defining the predictor at t∗. The predictors are used within three specific learners
that are trained to predict the main progressive damage consequences (final fate, flooded
compartments, and time-to-flood). As time goes by, the predictor set’s size increases, since new
information about the floating position is available. Hence, specifically trained learners are
produced at each time instant t∗ by exploiting all the available information.

Among the ML algorithms present in the literature, RFs have shown good perfor-
mances in addressing the classification problems (for final fate and flooded compartments) and
the regression one (for the time-to-flood). This is why they were employed in the present
work. The learners used in the DSS were trained during a preliminary preparation phase
with a database of progressive flooding simulations defined according to a damage case
generator. Moreover, to validate the trained learners, another independently generated
database was utilized. To this end, the progressive flooding simulations included in the
validation database provided the predictors’ values up to the instant t∗, allowing statis-
tically testing the accuracy of the responses. To ensure a reliable accuracy evaluation,
the validation database shall be as much as possible representative of a real probability
distribution of damage scenarios.

Figure 1. Flowchart of the classification process.

2.1. Random Forests

RFs are supervised ML algorithms belonging to the decision trees family. They can be
employed in both classification and regression problems, where they provide a piecewise
approximation of the response function. All the decision trees are based on binary decisions
made according to the value of one predictor xi at each node. Therefore, the process is
shaped as a tree, starting from a root and reaching one leaf, i.e., the response, moving
decision by decision (Figure 2). A single decision tree is trained with a database capable
of describing the relationship between the predictors’ values and a response [13]. RFs
have been introduced to improve the accuracy of the prediction provided by standard
decision trees [14]. As for bootstrap aggregation, the problem is decomposed into a set
of “weak” trees trained with a partition of the original database instead of a single tree
trained with the complete database. The response of the overall model is selected according
to the vote of the multiple trees for classification problems and as the average of the
responses for the regression one. In the present work, 30 weak learners were employed. In
addition to the application of multiple learners, RFs also utilize a random selection of a
predictors’ subset at each split in a single tree to decorrelate the trees in the ensemble [15].
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These features make RFs more resilient to noise/missing data and more capable of dealing
with higher-dimensional data compared to standard decision trees and other ensemble
methods. Hence, the choice of such an ML technique was initially considered for the
studied problems, involving a large number of predictors for higher t∗ and progressive
flooding being affected by several uncertainties [16,17].

x1

x2

x3 x1

x4

A B

C BA

C

x  ≥ a1x  < a1

x  ≥ b2x  < b2

x  < c3 x  ≥ c3

x  < e4 x  ≥ e4

x  < d1 x  ≥ d1

Figure 2. Structure of a decision tree.

2.2. Accuracy Estimation

The accuracy of trained learners can be estimated using a validation database indepen-
dent of the training one. Considering a classification problem, the accuracy rate is usually
defined as the capability of assigning a specific scenario from the validation database to
the correct response class. Namely, given a time instant t∗, the accuracy of the related
classifiers is defined as:

Acc(%) = 100
Nc

N
(1)

where Nc is the number of correctly classified damage scenarios and N the total number of
scenarios induced in the validation database.

Aiming to predict the outcomes of the damage scenario, the so-called “ongoing”
damage scenarios, i.e., the scenarios having t f > t∗, are more interesting. Thus, the
ongoing accuracy can also be defined as:

Acc∗(%) = 100
N∗c
N∗

(2)

where N∗c is the number of correctly classified ongoing damage scenarios and N∗ the total
number of ongoing scenarios induced in the validation database.

Regarding the regression problems, the accuracy can be checked by means of a proper
statistical indicator. Here, the coefficient of determination R2 was used:

R2 = 1− SSE
SStot

(3a)

SSE =
N

∑
i=1

(yi − y∗i )
2 (3b)

SStot =
N

∑
i=1

(yi − y)2 (3c)
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where yi are the known responses, y is their mean value, and y∗i are the responses predicted
by the model. Once again, an R2∗ ongoing coefficient of determination was also defined
based only on the N∗ ongoing damage scenarios.

3. Database-Generation Methods

As mentioned, to assess the damage consequences by applying ML, a training dataset
is needed, composed of progressive flooding simulations. The simulations are driven by a
damage case generation algorithm. In the present section, several options are proposed to
generate the training database according to a different characterization of the damages. All
the progressive flooding simulations were carried out using a quasi-static technique based
on the solution of a linearized differential-algebraic equation system [18,19]. The method
represents a good compromise between accuracy and computational effort [20]; hence,
it was considered adequate for the generation of large databases of progressive flooding
simulations.

Usually, the damage is modeled as a parallelepiped box intersecting the hull [21–23].
With such an assumption, the surface of the hull shell enclosed in the damage box is
removed to define the damage. Considering a collision case, the box-shaped damage is
always crossing the waterline and can be completely defined by five parameters (Figure 3):

• Damage length Ld;
• Longitudinal position of the damage center Xd;
• Transversal damage penetration Bd measured from the shell side (B/2);
• Vertical height Zmax of the highest tip of the damage above the Baseline (BL);
• Vertical height Zmin of the lowest tip of the damage above the BL.

In the present work, the damage penetration was neglected since all the internal
structures were considered intact.

Zmax

Zmin

Ld
Xd

Bd

BL T

LS B

Zd

Hd

Figure 3. Bow-shaped damage parameters.

Here, two families of methods for the database generation of side damage cases in
calm water were tested, one based on MC generation and the other based on a parametric
generation aimed to cover all the possible damage scenarios involving multiple neigh-
boring rooms. Applying MC sampling, the damage cases can be generated following
the probability distribution of their parameters [24]. Here, three different options were
explored. The first was based on the probability distributions embedded in SOLAS and the
other two on two types of uniform distributions.

3.1. Monte Carlo with SOLAS Probability Distributions

The SOLAS probabilistic rule framework for ship damage stability is based on the
statistical analysis of a database of side collision accidents [25]. In the SOLAS, the probabil-
ity distributions are used to define a so-called zonal approach, so they are not explicitly
defined. However, recent studies explored the so-called nonzonal approach, which directly
applies the probability distributions on the damage parameters [26]. With this approach,
the following damage parameter probability distributions can be taken from SOLAS: Ld,
Xd, Bd, which lead to the definition of the p-factor, and Zmax, which is considered in the
v-factor. The Zmin is not defined, since SOLAS adopts a worst-case approach in s-factor
determination to consider horizontal subdivision below the waterline. However, the
Zmin probability distribution can be taken from the statistical analysis of collision damage
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data available in the literature [22]. The adopted probability distributions for the SOLAS
database generation are defined as follows:

Damage length was modeled with a bilinear probability density function, leading to
the following cumulative distribution:

cd f (Ld) =



0 if J ≤ 0
b11

2
J2 + b12 J if 0 ≤ J ≤ Jk

b11 − b21

2
J2
k + (b12 − b22)Jk +

b21

2
J2 + b22 J if Jk < J ≤ Jm

1 if J > Jm

(4)

where J = Ld/LS, and all the other parameters are defined as in SOLAS Ch.II-1 Part B-1
Regulation 7-1 [27].

The longitudinal position of the damage center is uniformly distributed along the ship
subdivision length LS:

cd f (Xd) =


0 if Xd ≤ 0
Xd
LS

if 0 < Xd < LS

1 if Xd ≥ LS

(5)

The vertical height Zmax was modeled with a bilinear cumulative density function:

cd f (Zmax) =



0 if Zmax − T ≤ 0 m

0.8
Zmax − T

7.8
if 0 m ≤ Zmax − T ≤ 7.8 m

0.8 + 0.2
Zmax − T − 7.8

4.7
if 7.8 m < Zmax − T ≤ 12.5 m

1 if Zmax − T > 12.5 m

(6)

The vertical height Zmin was modeled with a linear probability density function,
leading to the following cumulative distribution:

cd f (Zmin) =


0 if Zmin ≤ 0

1.4
Zmin

T
− 0.4

(
Zmin

T

)2
if 0 < Zmin < T

1 if Zmin ≥ T

(7)

3.2. Monte Carlo with a Uniform Distribution of the Damage Dimensions

In this database-generation algorithm, the maximum damage dimensions were still
taken from SOLAS. However, a uniform distribution was assumed for the damage length
and height. The applied cumulative density functions are, then, defined as follows:

Damage length was assumed as uniformly distributed between zero and the maximum
admissible nondimensional length according to SOLAS:

cd f (Ld) =


0 if Xd ≤ 0

Ld
JmLS

if 0 < Xd < JmLS

1 if Xd ≥ JmLS

(8)

The longitudinal position of the damage center is already uniformly distributed in
SOLAS. Hence, Equation (5) can still be applied.

The damage height Hd = Zmax − Zmin is uniformly distributed between zero and
T + 12.5 m, i.e., the maximum value according to SOLAS:
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cd f (Zmax) =


0 if Hd ≤ 0

Hd
T + 12.5 m

if 0 < Hd < T + 12.5 m

1 if Hd ≥ T + 12.5 m

(9)

As the damage height is defined, the vertical position of the damage center Zd is
defined ensuring that the damage is crossing the waterline in compliance with SOLAS.
Hence, Zd was assumed as uniformly distributed in the interval:[

max
(

Hd
2

, T − Hd
2

)
, T + min

(
12.5 (m)− Hd

2
, T +

Hd
2

)]
(10)

3.3. Monte Carlo with a Uniform Distribution of the Damage Area Inverse

In this damage-case-generation algorithm, a uniform distribution of the inverse of the
damage area Ad = Ld(Zmax − Zmin) was applied. The main objective of such a method is
to generate a more uniform distribution of the time-to-flood, compared to the SOLAS one.
SOLAS’s probability distributions lead to many large-area damages having, consequently,
a short time-to-flood. Such damages are not very interesting for decision support purposes
since the events evolve too fast to gain any advantage from a DSS response. Moreover,
a too-small number of long damage scenarios might affect the forecast accuracy of the
learners due to the lack of training data.

The following cumulative probability function was applied to draw the damage areas:

cd f
(

1
Ad

)
=



0 if
1
A
≤ 1

Amax
1
A
− 1

Amax
1

Amin
− 1

Amax

if
1

Amax
<

1
A

<
1

Amin

1 if
1
A
≥ 1

Amin

(11)

where Amin and Amax are the minimum and maximum damage areas that can be defined for
each different ship. In a real application, floodwater inflow due to very small damages can
be controlled by the bilge system. Hence, it can be assessed considering the bilge pumps’
capacity. The maximum area can be defined as the maximum damage area according to
SOLAS: Amax = (T + 12.5) Jm LS.

Given the damage area, the other parameters were defined. The longitudinal position
of the damage center was here assessed as for SOLAS according to Equation (5). Two
alternative procedures were then applied to half of the generated damage cases:

• The heights Zmax and Zmin were drawn following the SOLAS cd f provided in
Equations (6) and (7), respectively. Then, defining the damage height Hd = Zmax − Zmin,
the damage length was determined as Ld = Ad/Hd;

• The damage length was drawn following the SOLAS cd f provided in Equation (4),
and damage height Hd was determined as Hd = Ad/Ld. Then, the vertical position of
damage center Zd was randomly drawn within the range defined in Equation (10) to
have the damage crossing the waterline.

Damages having a height or length outside the ship boundaries were discarded and
randomly generated again.

3.4. Parametric Method

The parametric generation of the damage cases was divided into two phases. In the
first, the box-shaped damages were generated considering every single room laying on the
hull shell. In the latter, the single-room damage cases were parametrically combined to
define additional damage cases involving neighboring rooms.
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In a previous study [17], it was observed that the longitudinal position of the damage
center has only a limited impact on progressive flooding, whereas its vertical position
has a relevant effect. Hence, all the single-room damages were applied at half of the
room longitudinal extension assuming an Ld equal to the room longitudinal extension.
On the other hand, at least three different vertical positions of damage center Zd were
considered for each room: the room’s bottom, half-height, and top. If a room extends
over multiple decks, additional intermediate positions were considered corresponding to
the main decks’ heights from the baseline. The damage center height was corrected for
top and bottom damages, considering the applied damage area as shown in Figure 4, to
avoid damages extending outside the room boundaries. For each possible damage location
(Xd, Zd), multiple damage sizes were considered. The area of the i-th damage in the j-th
room, considering the k-th center, is evaluated as:

1
Aijk

=
1

Amaxjk

+
k

nd

(
1

Amaxjk

− 1
Aminjk

)
(12)

with k = [1, 2, ..., nd], where nd is the so-called number of divisions, which is the main
parameter governing the database size. Besides, Amin and Amax were defined for each
room and each position of the damage center. The minimum area was defined as the
one corresponding to an initial inflow equal to the bilge pumps’ capacity. To define the
maximum area, note that very large damages result in the almost instantaneous filling
of the damaged room. Hence, the maximum damage area was defined as the area that
causes the room filling in 15 s. Furthermore, every single room was assumed as lost at
the beginning of progressive flooding (instantaneous flooding), defining an additional
single-room damage case. After the definition of the single-room damage cases, they
were combined with the ones related to the neighboring rooms. Namely, all the possible
combinations of the damage areas of damages having the same center height (bottom,
half-height, top) and sharing a boundary (watertight bulkhead, deck) were considered. For
instance, at the intersection of a deck and a transverse bulkhead, the combinations were
defined considering up to four rooms. Here, only one or two compartments’ damages were
generated. Nevertheless, the parametric generation technique can be easily extended to a
higher number of contiguous compartments if required.

Correction

Original centre of
the room's top damage

Corrected centre of
the room's top damage

Hd

Ld

Considered
Room

Figure 4. Correction of the vertical position of the damage center according to the damage area for a
top damage.

4. Test Case

The multiple generation algorithms were tested on a simple test geometry to study
their effect on damage consequences’ assessment. In the present section, the test arrange-
ment is described. Then, the tested training and validation databases are described.



J. Mar. Sci. Eng. 2021, 9, 1303 9 of 18

4.1. Test Arrangement

The test arrangement was a box-shaped barge having the general arrangement shown
in Figure 5, and the main particulars are provided in Table 1. The test barge had three
decks: DK1 located near the water plane (at 5 m above the BL), DK2 (located at 10 m
above the BL), and the bulkhead deck DK3 (located 15 m above the baseline). Beneath
the bulkhead deck, the barge was divided into five main compartments. In first and third
compartments, the lowest rooms extended from the barge bottom to DK2. In the lowest
room within Compartments 1 and 3, longitudinal bulkheads were fit on the centerline. In
addition, another longitudinal bulkhead was fit in Compartment 5 between DK2 and DK3
to create a long flooding chain when the lowest room was damaged.

R11S

R21S R41 R51

A

A

A-A

R22 R42 R52

R23 R33 R43 R53SR13

R31
R22

R21P R21S

R23

RA4RA4

DK1

DK2

DK3

DK0

DK3

DK2

DK1

DK0

R21S

R21P

R31

R31

R11S

R41 R51

R11P

R11S

R11P

R22 R42 R52

R23 R33 R43

R53P

R13

R53S

RA4

R21S-R21P

R21P-R22
R41-R42 R51-R52

R11P-R13

R11S-R13

R13-RA4 R23-RA4 R33-RA4 R43-RA4
R53P-RA4

R21S-R21P

R53S-R53P

R53S-R53PR22-R23 R31-R33 R42-R43

R52-R53S

Figure 5. General arrangement of the test geometry.
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Table 1. Main particulars of the test geometry.

Description Symbol Value

Length overall LOA 75 m
Breadth B 20 m
Draught T 6 m
Depth D 17.5 m

Displacing volume ∇ 7500 m3

Metacentric height GM 2.685 m

All the rooms were considered fully vented, had unitary permeability and were in-
terconnected by a set of openings, as shown in Figure 5. The openings’ size and position
are provided in Table 2. To apply a hydrostatic code based on pressure integration tech-
nique [28], both the rooms and the openings were modeled with nonstructured triangular
meshes having a maximum panel area of 3.125 m2 and 0.25 m2, respectively. A sketch of
the 3D model of the test geometry is shown in Figure 6.

Table 2. Main characteristics of the test geometry openings. C = (XC, YC, ZC) is the center of
the opening in the ship-fixed reference system.

ID Type h (m) w (m) XC (m) YC (m) ZC (m)

R11S-R13 Horizontal 1.5 1.5 10 −2 10
R11P-R13 Horizontal 1.5 1.5 10 2 10
R13-RA4 Horizontal 1.5 1.5 10 0 15
R21P-R22 Horizontal 1.5 1.5 25 2 5
R22-R23 Horizontal 1.5 1.5 25 0 10
R23-RA4 Horizontal 1.5 1.5 25 0 15
R31-R33 Horizontal 1.5 1.5 40 0 10
R33-RA4 Horizontal 1.5 1.5 40 0 15
R41-R42 Horizontal 1.5 1.5 55 0 5
R42-R43 Horizontal 1.5 1.5 55 0 10
R43-RA4 Horizontal 1.5 1.5 55 0 15
R51-R52 Horizontal 1.5 1.5 65 0 5

R52-R53S Horizontal 1.5 1.5 65 −2 10
R53P-RA4 Horizontal 1.5 1.5 65 2 15
R21S-R21P Longitudinal 1.9 0.8 20 0 0.95
R53S-R53P Longitudinal 1.9 0.8 65 0 10.95

Figure 6. Mesh of the internal rooms of the test geometry.
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4.2. Tested Databases

The different database-generation techniques defined in the previous section were
applied to create five different training databases related to the test arrangement:

• MC20: based on the SOLAS probability distributions and being composed of 20,000
damage cases (3082 nonsurvival cases);

• MCD20: based on a uniform distribution of damage dimensions and being composed
of 20,000 damage cases (8898 nonsurvival cases);

• MCA20: based on a uniform distribution of the damage area inverse and being
composed of 20,000 damage cases (2318 nonsurvival cases);

• P8: a parametric database having nd = 8 and being composed of 18,854 damage cases
(15,388 nonsurvival cases).

The number of damage cases N = 20,000 was chosen to ensure a proper convergence
of the accuracy [11]. For the same reason, 20,000 damage cases were included in the
MCD20 and MCA20 databases, whereas nd = 8 was chosen for the P8 database to have a
similar number of damage cases and ensure a fair comparison of the methods. Figure 7
shows the resulting cumulative density functions of the damage dimensions, location, and
time-to-flood of the damage cases in the four databases.

The MC-based methods provided a continuous distribution of all the parameters,
whereas the parametric one led to scattered distributions except for t f . As expected, an
almost uniform distribution of t f was associated with the MCA20 database. This means
that many small damages were generated located near the free surface, while the number
of nonsurvival scenarios was lower than that of MC20. On the contrary, both, the MCD20
and P8 databases contained a significantly higher percentage of nonsurvival scenarios
compared to MC20. It is worth noticing that MC20 and MCD20 drive toward a comparable
cumulative distribution of t f , although driven by different probability distributions of
damage parameters.

Besides the training databases, a single validation database was defined:

• MC50b: based on the SOLAS probability distributions and being composed of 50,000
damage cases (8059 nonsurvival cases).

The SOLAS probability distributions were chosen for the validation database since
they were considered the most representative of the collision damages that might occur
in an operative environment. Hence, aiming at the definition of a methodology to be
employed during a real flooding emergency, such a choice was deemed appropriate.

For all the databases, the maximum simulation time was set to 2250 s.
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Figure 7. Cumulative density functions of damage dimensions, location, and time-to-flood related to
the tested database-generation methods.

5. Results

In Figure 8, the overall performances obtained applying the different training databases
are provided. It is worth noticing that the MC20 database employing the SOLAS probability
distributions was not always associated with the best performances despite a SOLAS-based
dataset always being employed for validation.
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Figure 8. Comparison of the performances of the tested database-generation methods. Validation:
MC50b; method: RFs.

Namely, the MCD20 database provided similar results for the final fate and flooded
compartments classification problems compared to the MC20 one. Besides, the MCD20
dataset was more accurate in the prediction of t f than MC20. The MCA20 database showed
a lower accuracy than MC20 and MCD20 for all the studied problems. However, MCA20
showed a larger region of stable t f forecast, although a lower maximum of R2 and R2∗ was
reached. R2∗ decayed under a null value at about t = 1215 s (corresponding to 0.5% of
the ongoing damage scenarios in the validation database) instead of t = 735, which was
related to the MCD20 database. The parametric generation method always led to lower
accuracy compared to all the methods based on MC generation. Moreover, the P8 training
database led to strong accuracy instability in both classification problems.

6. Discussion

Considering the final fate classification problem, the adoption of the MCD20 training
database had a very limited effect on the overall and ongoing accuracy. In detail, a less
skewed training dataset was obtained by the larger number of nonsurvival damage cases
in MCD20. This reduced by about 0.05% the type I error (i.e., when a nonsurvival scenario
was classified as a survival one by the learner), while increasing by about 0.15% the type
II one (i.e., when a survival scenario was classified as a nonsurvival one by the learner).
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The adoption of the MCA20 training database decreased the accuracy by about 2% in
forecasting the final fate compared to MC20/MCD20. Furthermore, a strong decay of the
ongoing accuracy for long damage scenarios was also observed. The main reason can be
found in the larger number of damage scenarios exceeding the maximum simulation time
compared to the other databases: in MCA20, 30% of damage scenarios had t f > 2250 s.
The adoption of the P8 training database led to a similar behavior, although the accuracy
reached an almost stable value later (at about 500 s). Analyzing the results provided by the
parametric generation, note that damage cases affected one or two adjoining compartments.
On the other hand, the validation database (MC50b) was based on the SOLAS probability
distributions. According to SOLAS, the maximum damage length for the test barge is
22.72 m, which exceeds the length of each watertight compartment (15 m). Hence, 7.4% of
the damage scenarios in the validation database affected three adjoining compartments.
The accuracy gap between MC20 and P8 for the final fate classification problem in the stable
region was between 1% and 3%, being lower than 7.4%. This means that many of the
three-compartment damage scenarios were still correctly classified by RFs trained with the
P8 database.

On the contrary, the classification of flooded compartments led to an accuracy gap of
about 9–10%, which was larger than the percentage of the three-compartment damage
scenarios included in the validation database. For flooded compartments classification, the
MCD20 and MCA20 databases had an overall accuracy 1% and 2% lower than the MC20
one, respectively. On the other end, the ongoing accuracy of MCD20 was comparable to the
MC20 one, whereas the MCA20 one was again 2% worse and showed a greater instability
for large t∗ values.

The t f regression related to nonsurvival scenarios based on the different techniques
for training database generation led to more interesting results. In Figures 9–12, the
predicted–observed plots evaluated at t∗ = 500 s and t∗ = 1000 s are provided.

As mentioned, the SOLAS-based training database was not always the best option.
The MCD20 training database led to better results since it contained more than double the
nonsurvival scenarios compared to MC20, while the two databases had almost the same
distribution of the time-to-flood. Due to the increased density of the training database, the
RFs better forecast the t f up to t∗ = 1700 s. Nevertheless, at larger t∗ values, the ongoing
accuracy still decayed. In such a region, better results could be reached by employing
the MCA20 training database, which allowed a good forecast of the time-to-flood up to
t∗ = 2000 s. The main reason was the lower dimension of the generated damages, which
led to a higher density of the training data in the most critical region. However, note
that the model tended to overestimate t f , highlighted by the clusters in the lower part in
Figure 10.

Another criticality associated with the MCA20 training database was the poor capacity
to deal with large damages having short t f . This was mainly due to the limited number
of nonsurvival damage scenarios. Bulky errors can be observed in the lower t f region,
leading to poor values of the overall R2 (never greater than 0.55). Regarding the parametric
generation method, it was not capable of ensuring good results for the t f regression
problem for the test geometry.



J. Mar. Sci. Eng. 2021, 9, 1303 15 of 18

Figure 9. Predicted over observed values of t f computed at t∗ = 500 s and t∗ = 1000 s. Training:
MC20; validation: MC50b; method: RFs.

Figure 10. Predicted over observed values of the time-to-flood computed at t∗ = 500 s and t∗ = 1000 s.
Training: MCA20; validation: MC50b; method: RFs.

Figure 11. Predicted over observed values of the time-to-flood computed at t∗ = 500 s and t∗ = 1000 s.
Training: MCD20; validation: MC50b; method: RFs.
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Figure 12. Predicted over observed values of the time-to-flood computed at t∗ = 500 s and t∗ = 1000 s.
Training: P8; validation: MC50b; method: RFs.

7. Conclusions

The paper explored multiple options for training database generation on damage
consequences’ assessment. Four generation algorithms were tested on a box-shaped barge,
demonstrating that the accuracy of prediction can be heavily affected by the database-
generation method. An interesting result was that the training database generation based
on the SOLAS probability distributions was not always the best option for the test geometry.
Although the validation database was also based on the SOLAS probability distributions,
different distributions applied to the damage parameters driving the MC sampling led to
equal or better results.

Among the studied problems, the t f regression problem was the most affected by
the training database. Namely, the application of the uniform probability distribution
of the damage dimensions or inverse area significantly improved the performances for
short and large t∗ values, respectively. For the two classification problems, the uniform
probability distribution of the damage dimensions led to slightly better results compared
to the SOLAS one.

The parametric generation method showed always poorer performances compared
to the other tested options. However, this gap was mainly due to the assumption of a
maximum of two adjoining compartments involved in a damage scenario valid for the
parametrically generated database. Moreover, the parametric method showed quite good
resilience in the final fate classification problem and led to a large percentage of long
nonsurvival damage cases, thus to a less skewed training database. Hence, it can be
concluded that the parametric generation is worthy of further investigation to assess its
real effectiveness.

Future research should also focus on more complex geometries (such as a full-scale
passenger vessel), the effect of the ship loading condition, waves, and internal openings’
type and status (open/closed). All these issues shall be properly considered during the
training database generation to move towards a real application of flooding-sensor-agnostic
DSS in an operative environment. Nevertheless, the outcomes of the present study can help
naval architects in addressing the issues that might affect the result of a flooding-sensor-
agnostic DSS due to the adopted database-generation technique.
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