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Abstract: The problem of spectral description of the nonlinear capillary waves on the fluid surface is
discussed. Usually, three-wave nonlinear interactions are considered as a major factor determined
by the energy spectrum of these waves in the kinetic wave turbulent regime. We demonstrate that
four-wave interactions should be taken into account. In this case, there are two possible scenarios for
the transfer of energy over the wave spectrum: kinetic and dynamic. The first is described by the
averaged stochastic interaction of waves using the kinetic equation, while the second is described by
dynamic equations written for discrete modes. In this article, we compare the time scales, spectral
shapes, and other properties of both energy cascades, allowing them to be identified in an experiment.
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1. Introduction

It is a well-known fact that internal waves in the ocean manifest on the sea surface via
their interaction with short gravity and capillary waves, e.g., [1–3]. The description of the
wind ripple is a very difficult task due to its strong nonlinearity, breaking effects and wind
interaction. Moreover, even if capillary waves are not bounded and have small amplitudes,
their dynamics are not completely understood, and a lot of laboratory experiments have
been recently conducted aiming to gain more insight, for instance [4–7] and many others.
Two recent reviews should be mentioned in this context. In the first of them [8], the
existing methods for the experimental study of capillary waves are considered, and a novel
technical device is proposed that provides high measurement accuracy and allows the
study of elasticity, surface tension and wavelength. The theoretical approach in this review
is limited to linear waves. The second review [9] is devoted to nonlinear gravitational-
capillary waves, in which the effects of nonlinearity, dissipation, and the finite size of the
wave system are studied experimentally and theoretically. Both surveys are provided with
an extensive bibliography.

Due to the new possibilities of experimental studies of capillary waves, the need
for more detailed theoretical studies has also increased, which would allow a deeper
understanding of the newly available measurement data. Capillary waves that appear on
the surface of a liquid are found both in large natural reservoirs and in various technical
systems, such as electrolytic solutions, oil films, trapping bubbles, rupture of a gas thread,
etc., which determines their particular importance and necessity of deep theoretical study.
In this work, we restrict ourselves to the study of nonlinear capillary waves.

Theoretically, the first analysis of nonlinear interaction of capillary waves was con-
ducted in pioneer work by Zakharov and Filonenko [10]. In this paper, the kinetic equation
for three-wave interactions of capillary waves is first written out, and its stationary solution
is found in the form of the power energy spectrum. The kinetic wave turbulence theory is
based on a number of assumptions, the main of them being as follows: (I) weak nonlinearity
(nonlinearity is small but non-zero and defined by a small parameter ε << 1; (II) random-
ness of phases (all waves interact with each other stochastically); (III) infinite-box limit
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L/λ→∞, where L is the size of the system and λ is characteristic wavelength; (IV) existence
of an inertial interval in the wavenumber space (k0, k1), where energy input and dissipation
are balanced; (V) locality of interactions in k-space (only waves with wavelengths of the
same order do interact; (VI) interactions are locally isotropic (no dependence on direction);
(VII) at initial moment energy is distributed among an infinite number of modes. Under
these and other assumptions, wave kinetic equations have stationary solutions in the form
of energy power spectra Ek~k−ν, ν > 0 [11], with k being the length of the wave vector k.
These spectra are called kinetic spectra or K-spectra.

In the case when the dispersion function depends only on one dimensional parameter,
say the gravity constant g for water surface gravity waves or surface tension σ for capillary
waves, one can compute ν using dimensional analysis, without solving the corresponding
kinetic equation. For example, for a direct cascade we have:

ν = 2α + d − 6 + (5 − 3α − d)/(N − 1) (1)

where α is defined by the form of dispersion function ω ∼ kα, d is the space dimension
of the system and N is the minimal number of waves constituting a resonance interaction.

As it was mentioned above, for kinetic wave turbulence theory to occur, a number of
assumptions must hold, some of which are not easily verified in a laboratory. However,
the advantage, in this case, is that the knowledge of dispersion function in a wave system
immediately yields the explicit form of energy distribution over the scales.

On the other hand, if we abandon any one of these assumptions, the form of en-
ergy distribution will be changed drastically. For instance, in the realistic laboratory set
up, narrow frequency band excitation is used. In this case, not a statistically described
K-cascade is observed but a D-cascade formed by a set of distinct modes first introduced
in [12]; this process is described by dynamic equations [13]. The spectrum of the D-cascade
can be computed deterministically by the increment chain equation method; its form
depends on the excitation parameters [14]. During the formation of a D-cascade spec-
trum, broadening occurs in such a way that after 10 steps of the D-cascade, more than
1000 non-cascading modes become excited, thus forming a distributed energy state and
later possibly a K-cascade.

In this paper, we analyze the spectra formed in K- and D-cascades of the capillary
waves and give some clues for understanding whether a K-cascade or a D-cascade is
observed in an experiment.

2. Three-Wave Interactions of Capillary Waves

As was mentioned above, kinetic wave turbulence theory is developed for initially
distributed systems and is based on a number of assumptions. One of the main steps while
developing a corresponding wave kinetic equation is to determine the minimal possible
resonance in the wave system under consideration. Capillary waves are usually regarded
as a three-wave system, while three-wave resonance conditions for capillary water waves
have infinitely many solutions. However, there are important properties of the resonance
solutions that should be checked before deciding whether a wave system may be regarded
as a three-wave system or also four-wave interactions should be taken into account. These
properties (I)–(VII) have been listed in the Introduction. Below, in this section, we study the
properties for three-wave resonant interactions of capillary water waves aiming to check
the properties (I)–(VII).

2.1. Space Dimension and Wavevector’s Coordinates

Three-wave resonance conditions for capillary water waves with dispersion function
ω = σk3/2 read

k3/2
1 + k3/2

2 = k3/2
3 , k1 + k2 = k3 (2)

and characteristic behavior of the ensemble of waves depends on whether the characteristic
lengths of the wave vectors are comparable with the size of the interaction domain or
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not. In the first case, the interaction should be regarded in the bounded domain and
correspondingly, the wavevector coordinates should be integers. Otherwise, the interaction
domain is infinite, and coordinates are described by real numbers. Another important
characteristic of the ensemble evolution is the dimensions of the wavevector. Accordingly,
there are following cases to study.

Case 1. Wavevectors k j ∈
→
Z

d
have integer coordinates (1, 2, 3, e.g., wave interactions

in a bounded domain are regarded) and d is arbitrary. In this case, Equation (2) has no
solution for arbitrary dimension d of the wave vectors [15].

Case 2. Wavevectors kj ∈ R1 have real coordinates and d = 1. In this case,

k3/2
1 + k3/2

2 = (k1 + k2)
3/2 ⇒ k1 = 0 or k2 = 0, (3)

and one can see immediately that for all positive kj, the right-hand side of Equation (3) is
always greater than its left-hand side if both kj 6= 0. If k1 = k, k2 = ck, with some constant
1 ≤ c ≤ 10 (cf. V), absolute resonance width

∆A = |ω1 +ω2 −ω3| =
∣∣∣k3/2 + c3/2k3/2 − [(c + 1)k]3/2

∣∣∣→ (4)

∆A = k3/2
∣∣∣1 + c3/2 − (c + 1)3/2

∣∣∣ > 3
√

c
2

k3/2 (5)

is rapidly growing function of k when k j → ∞ (cf. III). In particular, if k1 = k2 = k,
∆A ≈ 0.82 k3/2.

Case 3. Wavevectors kj ∈ R2 have real coordinates, d = 2, and all three wavevectors
are collinear. This case can obviously be reduced to the previous one by an appropriate
rotation of coordinate axes.

Case 4. Wavevectors kj ∈ R2 are real valued and non-collinear. One might argue that if
in this case, a great amount of almost collinear wavevectors form approximate triads with
small resonance width, we still can expect manifestation of a three-wave kinetic regime in
laboratory experiments in the form of power energy spectrum Ek,3 ∼ k−7/2. This case
has been studied numerically, and the results are as follows.

2.2. Resonance Width

Absolute resonance width ∆A explicitly depends on k1, and considering if it is “small”
or “large”, the value of k1 should, of course, be taken into account. It is intuitively clear that
for larger vectors, larger resonance width is tolerable, and vice versa. Relative resonance
width ∆R, allowing to distinguish between various wave turbulent regimes, might be
introduced in a number of ways, e.g., [16,17] and others; the problems with introducing a
general cumulative function ∆R are discussed in [12], Chapter 6.

To perform a numerical study of solutions of Equation (2), for a pair of two-dimensional
wave vectors k1 = (m1, n1), k2 = (m2, n2), we define relative resonance width as ab-
solute resonance of a proportional pair with norm 1, understanding by the norm of a
pair of two-dimensional vectors that of the corresponding vector in R4: ‖(k1, k2)‖ =√

m2
1 + n2

1 + m2
2 + n2

2 so that

∆R =

∣∣∣∣((m̃2
1 + ñ2

1

)3/4
+
(

m̃2
2 + ñ2

2

)3/4
−
(
(m̃1 + m̃2)

2 + (ñ1 + ñ2)
2
)3/4

) ∣∣∣∣ (6)

where m̃j = mj/‖(k1, k2)‖ and ñj = nj/‖(k1, k2)‖ with j = 1,2.

2.3. Wavenumbers and Angles

Our first series of numerical simulations served to cast a first glance at distribution of
wavevectors satisfying Equation (2) in the k-space, primarily, if they are distributed evenly
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over the computation domain or concentrated in some restricted subdomains. Calculations
were performed on Zd grid fragments −50 < m1, n1, m2, n2 < 50 or 0 < m1, n1, m2, n2 < 100.

Exact resonances (with ∆R = 0) are achieved for pairs (k1, 0) and (0, k2) only (cf. Case 1),
while for all other pairs (k1, k2), approximate interactions may take place. In Figure 1, left
panel, all wavevectors k1, k2 with non-negative coordinates taking part in approximate
interactions are shown, and their distribution appears to be fairly even. However, if one
of the wavevectors, say k1, has non-negative coordinates, all k2 interacting with such
(Figure 1b) are distributed in k-space quite irregularly, leaving the third quadrant and the
most part of the first quadrant completely empty. Irregularity becomes even more striking if
we consider interacting pairs where both k1, k2 have non-negative coordinates (Figure 1c).
The most part of the domain consists of wavevectors not participating in interactions, while
interacting vectors are contained in narrow triangles along the axes. Moreover, a simple
check shows that wavevectors from the lower triangle only interact with vectors from the
upper triangle and vice versa; this is shown in the Figure 1a.
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Figure 1. Two-dimensional wavevectors k1, k2 satisfying Equation (2). The X- and Y-coordinate axes denote the coordinates
of the wave vector m and n, respectively, so each vector is represented by a point on the plane (m, n). (a) Wavevectors with
non-negative coordinates that interact with vectors with arbitrary (positive or negative) coordinates. Computation domain
−50 < m1, n1 < 50; (b) All wavevectors interacting with those shown in the previous panel; same computation domain;
(c) Both wavevectors have non-negative coordinates. Computation domain 0 < m1, n1 < 100. Wavevectors from the lower
triangle interact only with vectors from the upper triangle and vice versa.

2.4. Norms of Wavevectors

To characterize the ratios of norms of interacting vectors and angles between them,
for each solution, we computed the ratio of the vector norms k1/ k2 and the corresponding
angle (k1 ∧ k2) (see Figure 2).

It can be seen immediately that the solution set is highly anisotropic—angles be-
tween interacting wavevectors all belong to the narrow band between 75◦ and 87◦, i.e.,
interacting wavevectors are almost perpendicular. Norms of the interacting wavevectors
can differ by more than 2 orders (Figure 2a)—the maximal ratio found in our solution set is
k1/k2 = 101.8. For more than 10% of all the solutions, k1/k2 > 10. Restricting our attention
to interactions of wavevectors with norms of the same order makes angle anisotropy even
more pronounced (Figure 2b); all angles now lie between 75◦ and 81◦, i.e., the bandwidth
becomes twice smaller. Standard averaging by angles spectra [15] obviously cannot give
any reliable information in this case.
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Figure 2. Dependence of the ratio of interacting vectors’ norms (longer to shorter) on the an-
gle between vectors. (a) Complete data in computation domain 0 ≤ mj, nj ≤ 100 are presented;
(b) Zoomed presentation of the initial interval (ratio ≤ 10) of the left panel (a). Axes X and Y denote
angles (in grad) and ratios correspondingly.

2.5. Resonance Curves

The solution distribution irregularities demonstrated above have an elegant expla-
nation. Indeed, let us notice two simple properties of the resonance set of wavevectors
satisfying Equation (2). If a pair (k1, k2) is a solution, then every (ck1, ck2) is also a solution
for any c ∈ R, and every rotated pair is also a solution. Therefore, it is enough to compute
all vectors k2 producing resonant interactions with some given k1, say k1 = (0, 1), to ob-
tain a clear view of the whole resonant interaction set. Indeed, all resonance partners of
k1 = (0, 1) constitute a smooth curve, as shown in Figure 3. This curve, as a function n(m),
starts with a flat region n ∼ m3/2 (Figure 3a), then becomes steeper and for m→ ∞ has
asymptotic n ∼ m1/2 (Figure 3b).
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Figure 3. Resonance curve of vector (0, 1) in k-space for dispersion function ω ∼ k3/2.
(a) The initial segment of the curve: m << 1⇒ n ∼ m3/2; (b) The overall view of the curve for
m >> 1⇒ n ∼ m1/2. The X- and Y-coordinate axes denote the coordinates of the wave vector m
and n, respectively, so each vector is represented by a point on the plane (m, n).

Notice that the two asymptotic regions lie a few magnitudes of 10 apart and cannot
be illustratively presented in one figure, so we proceed with a schematic representation
(Figure 4).
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Figure 4. Resonance curves in k-space (schematic representation). (a) For the vector k1 = (0, 1),
all vectors k2 lie on the interaction curve shown; (b) Two interacting vectors lie on each other’s
resonance curves reciprocally. The resonance curve of the rotated vector is shown by the dashed line.

The tangent to the curve drawn from (0, 0) gives k2 with the minimal angle to k1 ~ 74.9.
We also see that the unit vector can interact both with vectors of arbitrarily small and
arbitrarily large norms k2. Notice that both for k2 → 0 and k2 → ∞ , the angle between k1
and k2 → π/2 . Now, any vector k ∈ R can be produced by stretch and rotation of our unit
vector, and its resonance curve is obtained by stretching the curve of the unit vector (with
the same coefficient) and rotation (by the same angle). If two vectors interact resonantly,
then each of them lies on the resonance curve of another (Figure 4b). We may conclude with
confidence that conditions for a three-wave kinetic regime to occur are decidedly violated.

A K-spectrum relies on the broad excitation, and in a usual laboratory experiment
or numerical simulation, we have to deal with narrow frequency band excitation. The
standard assumption of the kinetic theory is that starting with one excited frequency,
a necessary Gaussian distribution will be established. The transition from one-mode
excitation to the broad excitation is described by dynamic energy cascade formed by
the set of distinct modes and can be computed by the increment chain equation method
(ICEM) [13]. How to apply it for the case of capillary waves is shown in the next section.

3. Dynamic Energy Cascade of Capillary Waves

The model of the dynamic energy cascade—D-cascade—generation was first proposed
in [12]; the physical mechanism underlying the formation of a D-cascade is modulation
instability. The phenomenon of modulation instability has been encountered in various
fields and is known under different names, such as parametric instability in classical
mechanics, Suhl instability of spin waves, Oraevsky–Sagdeev decay instability of plasma
waves, modulation instability in nonlinear optics, Benjamin–Feir instability in deep water
waves, etc.

Modulation instability is the physical phenomenon that can be described as the decay
of a carrier wave ω0 into two side-bands ω1, ω2:

ω1 + ω2 = 2ω0, k1 + k2 = 2k0 + θ, (7)

ω1 = ω0 + ∆ω, ω2 = ω0 − ∆ω, 0 < ∆ω << 1. (8)

A wave train with initial real amplitude A, wavenumber k =

∣∣∣∣→k ∣∣∣∣ and frequency ω is

modulationally unstable if
0 ≤ ∆ω/Akω ≤

√
2. (9)

Equation (9) described the so-called instability interval for the wave systems with a
small nonlinearity of the order of ε~0.1 to 0.2, as first obtained in [17]. It is also established
for gravity surface waves that the most unstable modes in this interval satisfy the condition

∆ω/Akω = 1. (10)
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The essence of the increment chain equation method is the use of Condition (10) for
computing the frequencies of the cascading modes. In the first step of the D-cascade, an
excited wave with frequency ω0 is regarded as the carrier mode. The distance to the
next cascading mode ∆ω = |ω0 −ω1| with frequency ω0 is chosen in such a way that
Condition (10) is satisfied; it is called the maximum increment condition.

In the next step of the D-cascade, the mode with frequency ω1 is regarded as a carrier
mode for the next step of the D-cascade, and so on. This procedure can easily be written
out as a recursive relation between neighboring cascading modes:

√
pn An = A(ωn ±ωn Ankn) (11)

Here, the notation pn is chosen for the fraction of energy transported from the cascading
mode An to the cascading mode An+1, i.e., An+1 =

√
pn An. Equation (11) describes two

chain equations: one chain equation with “+” for a direct D-cascade with ωn < ωn+1
and another chain equation with “-” for an inverse D-cascade with ωn > ωn+1. All
computations below are given for a direct D-cascade. Computations for the inverse cascade
are quite similar; they are omitted.

Theoretically, pn = pn(A0,ω0, n) is a function of the excitation parameters A0,
ω0 and the step n. However, as in a lot of experiments, it is established that pn depends
only on the excitation parameters and does not depend on the step n. All the formulae
below are given for this case. Accordingly, the notation p is used instead of the notation
pn. This means that An+1 =

√
pAn = pn/2 A0, and as energy En ∼ A2

n, it follows
En ∼ pn A2

0, i.e., the energy spectrum of the D-cascade has an exponential form as in
experimental data for capillary waves, e.g., [6,7].

Taking the Taylor expansion of the RHS of the chain equation and regarding only
the two first terms of the resulting infinite series, one can derive a very simple ordinary
differential equation describing stationary amplitudes of the cascading modes satisfying
Condition (10):

√
pAn ≈ An + A′nωn Ankn ⇒ A′n =

√
p− 1
ωnkn

⇒ (12)

A(ωn) = (
√

p− 1)
∫ dωn

ωnkn
+ C(ω0, A0) (13)

where ω0, A0 are excitation parameters.
The maximum increment condition for the weakly nonlinear capillary waves with

ε ~ 0.1–0.2 differs from Equation (10) by the constant coefficient 1/24:

(∆ω)/
(

1
24
ωAk

)
= 1 (14)

as was first shown in [17]. As for capillary waves ω(k) ∼ k3/2, one obtains easily, e.g., for
direct D-cascade that

(
√

p− 1) ≈ 1
24

A′nω5/3
n ⇒ (15)

E(ωn)
(Dir) ∼

[
(1−√p)

16
ω−2/3

n + C(Dir)
]2

(16)

where C(Dir) = A0 −
1−√p

16 ω−2/3
0 .

4. Discussion

We have demonstrated above that for describing K-spectrum of the system of capillary
waves with distributed initial state, we have to take into account four-wave resonances, i.e.,
take N = 4 in Equation (1). As energy spectra depend on a number of parameters, it would
be interesting to see how different their shapes are. For comparing energy spectra Ek and
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En, it is convenient to rewrite En as En = b−nE0 with b = 1/p, b > 1. Thus, we have to
compare functions γ1 · b−x and γ2 · x−a, where the magnitudes of parameters a, b, γ1, γ2
are defined by the specific wave system. As for a, b > 1

lim
x→∞

(xa/bx) = 0, (17)

Ek > En in the long run. However, for some combinations of parameters and in some
finite domains in k-space, the opposite relation can take place, Ek < En. The spectra Ek
and En might be quite close and even coincide for some k (see Figure 5, left panel).
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As the formation of the D-cascade is accompanied by the spectrum broadening,
at some moment of time, the phases become stochastic, s-wave resonant interactions
may appear and the kinetic regime may be developed (shown schematically in Figure 5,
right panel).

Our conclusions concerning four-wave interactions and spectrum broadening by gen-
erating discrete harmonics. the formation of a D-cascade is supported by the experimental
data in [4,6], where experiments were performed in cylindrical containers with distilled
water that were shaken vertically at different frequencies. Diameters of containers varied
from 10 to 20 cm, monochromatic excitation in the range of 0.5 to 3500 Hz was used and
the surface perturbations are detected using the reflection of laser beam of 5 mm diameter
off the water surface.

Indeed, the evidence of strong four-wave coupling in nonlinear capillary waves has
been identified in [4] by computing tricoherence as

τ2 =
∣∣〈F1F2F3F∗1+2−3

〉∣∣2/
〈
|F1F2F3|2

〉〈
|F1+2−3|2

〉
,

where Fj is the Fourier component of the surface elevation at the frequency ωj. In general,
tricoherence τ2 can change from 0 (no phase coupling) to 1 (coherent phases); in experi-
ments reported in [4], the level of tricoherence τ2 > 0.5 has been observed for a wide range
on the initial data, while bicoherence drops below < 0.2 under the spectrum broadening.

It was also observed in these experiments that the total energy of Etot of the system is
contained in a zero-frequency band and a set of discrete modes forming the D-cascade at
lower forcing. The kinetic cascade occurs first at frequencies about 220 Hz, and its energy
grows (with an increase in the forcing frequency) from 0.01Etot to 0.23Etot, while energy
contained in the dynamic cascade decreases from 0.82Etot to 0.46Etot.

There is another fact that is easily checked in an experiment. As it follows from the
difference in the magnitudes of the small parameters for two cascades, a dynamical cascade
is formed much faster compared to a kinetic one. In particular, for capillary water waves
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with the dispersion function ω2 = σk3/p, the density ρ = 103kg/m3 and the coefficient
of surface tension σ = 72.75 · 10−3kg ·m/s2, it is easy to compute the corresponding
characteristic times. Indeed, say for wavelength 1 mm, we have: wave period is 0.0022 s;
time scale for the D-cascade formation is 0.22 s and time scale for four-wave K-cascade is
2200 s, which is approximately 37 min. An experiment reported in [4,6] lasted no more
than 15–20 min each (personal communication, Michael Shats).

The main characteristics that allow distinguishing between kinetic and dynamic
cascades that can be easily observed in experimental data are summarized in Table 1 below.

Table 1. Main characteristics of K-cascade and D-cascade.

Property Ek En

Coherent phases no yes
Dependence on the excitation parameters no yes

Local interactions yes no
Existence of inertial interval yes not important

Small parameter ∼ 10−2 ∼ 10−1

The understanding of differences between dynamic and kinetic cascades is of the
utmost importance for the correct interpretation of the experimental observations. Thus,
in [5], weak turbulence of capillary waves in Helium has been studied, and the formation of
a local maximum of the wave-spectrum near a viscous cut-off was observed (under periodic
driving force) and correctly attributed to the discrete regime (interactions are non-local).

On the other hand, the authors conclude that “n the inertial range, the dependence of
the peak amplitudes on frequency is described well by a power law function Iω ∼ ω−m

with the index m ≈ 3.7. This is in agreement with the weak turbulence theory, which gives
the value m = 21/6” [5] (p.032001-3). As 21/6 = 3.5, the observed and predicted indexes
differ by about 6%. It would be worth checking phase coherence in these data in order to
understand whether this discrepancy is due to the available accuracy of measurements or
a dynamic cascade is observed and not a kinetic one.

As the form of a D-cascade and a K-cascade might be pretty similar for some parame-
ters of initial excitation, the main characteristic that should checked while estimating the
measured data are time scales for the cascade formation, as explained in detail in [18].

5. Conclusions

In the system of weakly nonlinear capillary waves, two types of energy cascades are
theoretically predicted: K-cascade, formed by three-wave resonances in a system with a
distributed initial state, and D-cascade, formed by four-wave resonances of a special form,
in the systems with narrow frequency band excitation. As we have shown above,

(1) A K-cascade among capillary waves cannot be formed by three-wave resonant inter-
actions; four-wave resonant interactions should be regarded instead. Accordingly,
a K-cascade of capillary waves is formed at the time scale 1/ε4 with ε ∼ 10−2.

(2) A D-cascade is always formed at the time scale 1/ε2 with ε ∼ 10−1, i.e., it develops
much faster than a K-cascade; known laboratory experiments with capillary waves
confirm the time scale of the D-cascade, e.g., [4,6,7].

(3) The absence of three-wave resonances of capillary waves has also been noticed in
numerical simulations [19,20] and was coined by the term “frozen turbulence”. This
has been attributed to the interplay of two facts: the discretization of the numerical
scheme and the absence of exact three-wave resonances among capillary waves with
integer wave numbers, as first proven in [14]. It was observed that capillary waves
demonstrate “fluxless modes, there is virtually no energy absorption associated with
high-wavenumbers damping in this case” ([20], p. 107).
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(4) Speaking very generally, if dispersion function ω(k) has a decay type, this only means
that three-wave resonance conditions

ω(k1) +ω(k2) = ω(k3), k1 + k2 = k3 (18)

may have solutions with real k j, even an infinite number of solutions. However, this
does not necessarily mean that these solutions possess the properties necessary for
the deduction of the wave kinetic equation. In particular, if ω(k) ∼ kγ, γ > 1, then
both properties formulated in Section 2 hold and the geometry of resonances can be
outlined in terms of resonance curves similar to those shown in Figure 4.

The results presented in this paper are obtained for an ensemble of free nonlin-
ear capillary waves formed from initial monochromatic disturbance. The next step will
be an analysis of the ensemble of capillary waves in present of current induced by the
internal waves.
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