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Abstract: Efficient vessel operation may reduce operational costs and increase profitability. This is
in line with the direction pursued by many marine industry stakeholders such as vessel operators,
regulatory authorities, and policymakers. It is also financially justifiable, as fuel oil consumption
(FOC) maintenance costs are reduced by forecasting the energy consumption of electric propulsion
vessels. Although recent technological advances demand technology for electric propulsion vessel
electric power load forecasting, related studies are scarce. Moreover, previous studies that forecasted
the loads excluded various factors related to electric propulsion vessels and failed to reflect the high
variability of loads. Therefore, this study aims to examine the efficiency of various multialgorithms
regarding methods of forecasting electric propulsion vessel energy consumption from various data
sampling frequencies. For this purpose, there are numerous machine learning algorithm sets based
on convolutional neural network (CNN) and long short-term memory (LSTM) combination methods.
The methodology developed in this study is expected to be utilized in training the optimal energy
consumption forecasting model, which will support tracking of degraded performance in vessels,
optimize transportation, reflect emissions accurately, and be applied ultimately as a basis for route
optimization purposes.

Keywords: smart ship; energy management; prediction of power; long short-term memory models;
bidirectional long short-term memory models

1. Introduction

The International Maritime Organization (IMO) 2020 rule strengthened the regulations
for preventing marine environmental pollution. Emission gas standard restrictions have
become more stringent, such as mandating 0.1% low sulfur oil fuel use in emission control
areas (ECAs) [1–3]. Thus, environmentally friendly vessels (typically electric propulsion
vessels) have been actively studied for replacing conventional vessels [4–6].

When designing an electric propulsion system, it is necessary to estimate the ship’s
power consumption, which is essential to determine the ship’s FOC, in order to plan the
ship’s route [7–10]. In general, the method proposed by the International Organization for
Standardization (ISO) is widely used to predict the power of a ship. However, it is known
that this method is not suitable for practical use when the weather conditions are good.
Therefore, there is a need for a method that can more accurately predict the power of a
ship [11–15].

Traditionally, numerical methods using model test results have been widely used to
predict ship power. However, it is difficult to predict the power of a vessel due to the
uncertainty of model testing [16–20].

In order to solve the uncertainty of the predictive model, on-board testing should
be performed. However, it requires considerable resources and time [21–25]. Therefore,
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it is difficult to predict the operational capability of a ship using numerical methods. In
several studies, ship power was predicted using data-driven models [26–28]. There are
two representative data-driven methods used to predict the power of a vessel: regression
analysis and deep learning methods. Regression analysis is a method of identifying
correlations between multiple variables. This method can quickly generate predictive
models for simple problems.

Deep learning, a type of machine learning based on artificial neural networks, is an
effective way to predict data patterns. With sufficient training data, deep learning can solve
complex problems more effectively than regression analysis. In addition, depending on the
complexity of the problem, deep learning models can be tuned. Therefore, the purpose of
this study is to investigate the efficiency of various multialgorithms based on deep learning
to predict electric propulsion energy consumption.

For this purpose, there are various deep learning algorithm sets depending on convo-
lutional neural network (CNN) and long short-term memory (LSTM) combination methods.
The remaining sections of this article are structured as follows: Section 2 illustrates the
research background as well as an outline of previous attempts on power forecasting.
Section 3 provides a detailed description of the data for the experiment and the proposed
methodology. In Section 4, the process and results for validating the proposed model are
presented and discussed. Finally, Section 5 provides a conclusion.

2. Methodology
2.1. Dataset Acquisition

The propulsion power consumes approximately 90% of the total power in an electric
propulsion vessel. Therefore, forecasting the propulsion power load is necessary to estimate
the total energy consumption [29,30]. The propulsion power load is related to the vessel
speed and hull resistance [31,32]. Frictional resistance and residual resistance components
of a ship’s total resistance play an important role because they account for the largest
portion of the total ship resistance of most merchant ships. The total resistance of the vessel
can be calculated by the following Equation (1) [33]:

RT = RF + RR (1)

where RT , RF, and RR are the total resistance, friction resistance, and residual resistance,
respectively. The resistor components above are calculated using the general form (2):

R =
1
2

ρCAV2 (2)

where C is the resistance coefficient, ρ [kg/m3] is the density of the medium, A [m2] is the
wetted surface area, and V [m/s] is the speed of the vessel.

Since the effective horsepower changes according to the above resistance, its value can
be known through Equation (3), below:

PE = RT × V (3)

where PE is effective power. Therefore, this study selected data related to the propulsion
power of electric vessels using Equations (1)–(3). The water depth, current speed, wind
direction, wind speed, and draft data directly determine vessel resistance and, indirectly,
the vessel direction, direction key angle, vessel speed, and main engine rotational speed [34].
The selected data types used in this study are compiled in Table 1.
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Table 1. List of selected data.

Item Unit Remark

Electric Load kW 800–40,000
Propulsion Load HP 0–65,536
Heading Angle Degree 0–360◦

Rudder Angle Degree −35–35◦

Water Depth M 0–836
Water Speed m/s −4–6
Wind Angle Degree 0–360◦

Wind Speed m/s 0–47
Vessel Speed knot 0–25

M/E RPM Rpm 0–76.3
Draft (after) m 0–15.4

Draft (forward) m 0–18.8
Draft (Port) m 0–15.6

Draft (Starboard) m 0–16.38

Because the electric load used varies depending on the mode of ship’s operation, it
is classified as shown in Table 2. Table 2 lists all of the ship’s loads, including propulsion
system loads, power generation system loads, cooling system loads, oil system loads, and
boiler system loads. Figure 1 depicts the target ship’s route.

Table 2. List of electrical loads.

Classification SEA Going Port in/out Cargo Unload

Continuous Load (kW) 2299.9 2660.4 1916
Reffer Container Load (kW) 7440 7440 7440

Intermittent Load (kW) 337.5 375.2 440.9
Group Diversity Factor (-) 0.4 0.4 0.4

Actual Intermittent Load (kW) 135 150.1 176.4
Deck Machinery Load (kW) 0 3,637.2 286
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2.2. Modeling Methodologies
2.2.1. CNN–LSTM (Direct)

The time-series data are entered into a one-dimensional (1D) CNN, and the time-series
data features extracted from the 1D CNN are entered into a three-class LSTM [35–37]. Then,
the following forecast value is printed out using the weight and activation function that
were learned in the LSTM [38]. Figure 2 presents the CNN–LSTM (direct)-based model
structure.
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2.2.2. CNN–LSTM (Parallel)

The time-series data are entered into a one-dimensional (1D) CNN, and the time-series
data features extracted from the 1D CNN are entered into a three-class LSTM. Then, the
following forecast value is printed out using the weight and activation function that were
learned in the LSTM. Figure 3 presents the CNN–LSTM (parallel)-based model structure.
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2.2.3. CNN–Bidirectional LSTM (Direct)

The time-series data are entered into a 1D CNN, and the corresponding features
extracted are entered into a three-class bidirectional LSTM [39]. In sequence, the following
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forecast value is printed out using the weight and activation function learned in the
bidirectional LSTM. Figure 4 presents the CNN–bidirectional LSTM (direct)-based model
structure.
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2.2.4. CNN–Bidirectional LSTM (Parallel)

The analysis results of the data features learned in the CNN and the time-series
forecasting data learned in the bidirectional LSTM are combined to enable time-series fore-
casting. The following forecast value is printed out using the weight and activation function
learned in the CNN and bidirectional LSTM. Figure 5 presents the CNN–bidirectional LSTM
(parallel)-based model structure.
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This structure can be described as follows: (1) extracting the features of the electric
propulsion vessel data that were entered into the CNN and (2) synthesizing data existing
in the previous time slot with the time-series data forecast value from the classified results,
the hidden layer performance improvement learned from the bidirectional LSTM, and a
time-series data forecasting (with no loss of previous time information regardless of the
data length and layer) to show its output.
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2.3. Experiment Procedures

The data recorded every 10 min from an operating container vessel was used as the
dataset, which was stored for approximately 205 days. Then, the data that affected the vessel
power load were selected and merged into 14 variables. In addition, data standardization
was applied to learning, training, and validation. Here, the training data refers to the data
to be used in model training, and test data is used in assessing training accuracy. The
validation data are used to solve overfitting and to improve the performance of a model
that utilizes training data for learning. Finally, this study selected the ratios for learning,
training, and validation data, which were obtained as a result of base model testing to solve
forecasting model overfitting. The learning-to-training data and training-to-validation
dataset ratios used were 7:3. Figure 6 shows the training and learning data ratios.
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Minibatch gradient descent was used to accelerate the training [40,41]. The batch size
was 512, the learning rate was 0.001, and the number of epochs was 500. Early stopping
was set to prevent overfitting during learning. Moreover, the patience of early stopping was
set to 100 to configure the model to learn the optimal value. Figure 7 shows the learning
procedure.
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The dataset was scaled for accurate data learning. The scaled data were entered into
each model presented in Section 2.2 to proceed with learning. The values forecasted by
models that completed learning were compared with actual values after inverse scaling [42].
The root-mean-square error (RMSE) value was used to assess the comparison with the
actual value, and the best-performing model was selected after comparing the actual value
of each model with the forecast value [43]. Time step, which is a numerical value that
represents the number of trials constituting the data forecast for configuring the forecasting
program, was selected to generate time-series data. The time step value size can be adjusted
depending on the variation in the previous time value that is intended for use. Generally, a
larger time step value leads to a vanishing gradient problem [44–46]. This study presented
data measured every 10 min; thus, setting the time step value to 1 indicates using one set
of data of 10 min ago to forecast the power load after 10 min. This study configured the
power load in the upcoming 10 min to be forecasted according to the data variation in the
previous 50 min. Therefore, the time step was set to five.

2.4. Design Implementation of Models

Forecasting models in various structures were used in this study to identify their
power load forecast accuracies. The previous AI model for power load forecasting was
used for forecasting a relatively narrow range (0–100 kW) of power values, and the power
load variability was low. However, the forecasting power load range is relatively wide
(0–40,000 kW) for electric propulsion vessels. Therefore, a model that could best forecast
within the power load range of electric propulsion vessels and its variability was required
in this study. For this purpose, various models were tested to select the one with the highest
load forecasting performance. Table 3 summarizes the application of the designed models.

Table 3. Summary of model structures.

Model Structure Combination
Method Detail

CNN–LSTM Direct CNN: (5 × 128) − (2 × 128) − (2 × 64) − (64)
LSTM: (1 × 512) − (1 × 256) − (128)

CNN–bidirectional LSTM Direct
CNN: (5 × 128) − (2 × 128) − (2 × 64) − (64)

bidirectional LSTM: (1 × 512) − (1 × 256)
− (128)

CNN–LSTM Parallel CNN: (5 × 128) − (2 × 128) − (2 × 64) − (64)
LSTM: (1 × 512) − (1 × 256) − (128)

CNN–bidirectional LSTM Parallel
CNN: (5 × 128) − (2 × 128) − (2 × 64) − (64)

bidirectional LSTM: (1 × 512) − (1 × 256)
− (128)

3. Validation of Generalization Capabilities of the Models

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

This study employed the RMSE method to assess model performances [47,48]. In
addition, the following assessment criteria were established:

1. All data used in learning and assessing were equal, and learning was repeated five
times.

2. All LSTM and CNN hyperparameters were tuned equally for every model combi-
nation, and RMSE was used. The stored RMSE data distribution was used when
comparing model performances.

3. Statistical analysis was performed using the RMSE value obtained from repeated
learning when comparing model performances.

• Average value: used as a value representing performance;
• Standard deviation: used as an indicator for assessing dispersion;
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• Minimum value: used for estimating standard deviation;
• Quartile: use range of learning results set;
• Maximum value: used for estimating standard deviation.

4. Evaluation functions such as precision or recall, which are used for classification,
were not considered numeric data and used for learning. The proximity between the
forecast and actual values was considered instead.

Figure 8 presents the forecast results from all models with the entire data. Five learning
cycles were conducted, and the learning result of the degrees that showed the lowest RMSE
from each model was used and expressed to evaluate the forecast results. Figure 8 presents
the results expressed in terms of representative times to identify detailed forecast results.
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Figure 8. Result of forecasts by each model.

By comparing the forecast results with the actual data in Figures 8 and 9, a tendency
according to data variations was identifiable from the LSTM model forecast results, but
an overall higher value was forecasted compared to the actual value. Additionally, high
accuracy was observed in forecasts for heavy loading use or operational mode change. A
tendency according to data variations was identifiable from the bidirectional LSTM model
forecasts results, but an overall lower value was forecasted compared to the actual value.
Additionally, forecasts between 10–15 MWh were unstable. The results of the CNN–LSTM
(direct) and CNN–bidirectional LSTM (direct) models forecasted the tendency according to
data variations and similar forecasted and actual values. However, their forecasts on the
short-term tendency were low. Moreover, the tendency according to rapid load variations
due to heavy loading could be forecasted, but the variation range was narrow to prepare
for variations in the actual value. The data tendency forecast performance was high from
the forecast results of the CNN–LSTM (parallel) and CNN–bidirectional LSTM (parallel),
and the difference between the actual and forecast values was low. Furthermore, high
performance was observed for the tendency according to rapid load variations due to heavy
loading and wide variation range. However, values obtained for the CNN–bidirectional
LSTM (parallel) model were lower than actual values for the 10–15 MWh forecasts.
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4. Results and Discussion

The RMSE scores were calculated for the learning results and are summarized in
Table 4. The RMSE statistics based on the five initial learning results are presented in
Table 5.

Table 4. RMSE results of each model experiment.

Model Combination
Method 1st 2nd 3rd 4th 5th

CNN–LSTM Direct 1752.0 1679.3 1869.2 1806.6 1523.6
CNN–

bidirectional
LSTM

Direct 1670.7 1534.4 1501.7 1536.3 1520.2

CNN–LSTM Parallel 1461.0 1552.0 1476.6 1512.9 1507.6
CNN–

bidirectional
LSTM

Parallel 1579.1 1514.4 1501.9 1509.1 1484.0

The CNN–LSTM (parallel) model displayed the highest performance at 1502. In
particular, the CNN–LSTM combination in parallel composition was identified to better
forecast the power load compared to the CNN–LSTM (direct). The error rate comparison
between models in Table 4 is presented in Figure 10.
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Table 5. Statistical information of RMSE of experiment results.

Model Combination
Method

Average Standard
Deviation Min Value

4-Quantiles
Max Value

25% 50% 75%

CNN–
LSTM Direct 1726.1 133.0 1523.6 1679 1752 1806 1869.2

CNN–
bidirectional

LSTM
Direct 1552.7 67.4 1501.7 1520 1534 1536 1670.7

CNN–
LSTM Parallel 1502.0 35.3 1461 1476 1507 1512 1552

CNN–
bidirectional

LSTM
Parallel 1517.7 36.2 1484 1501 1509 1514 1579.1
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Figure 10. Comparison of RMSE values for different models.

The following results were obtained by analyzing Figure 9. The RMSE scores largely
varied for each learning in the CNN–LSTM (direct) model. Large RMSE were generated in
the first and third tests in the CNN–bidirectional LSTM (direct) model. The model error was
the lowest for each learning in the CNN–LSTM (parallel) model. The error rate in the CNN–
bidirectional LSTM (parallel) model was lower than that of the CNN–bidirectional LSTM
(direct) model. However, when considering the RMSE comparison, the CNN–bidirectional
LSTM (parallel) model had relatively lower performance than the CNN–LSTM (parallel)
model. The analysis results showed that the LSTM or bidirectional LSTM and the CNN
combination models had higher power data forecasting performance than other models.
The following conclusions were obtained after analysis for identifying the model with the
highest performance: (1) the CNN–bidirectional LSTM (direct, parallel) models exhibited
good performances but generated outliers, and (2) the CNN–LSTM (parallel) model had
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lower error rate distribution compared to the CNN–bidirectional LSTM (parallel) model
but had no outliers and good performance.

5. Conclusions

The forecasting model for the electric propulsion vessel with high load variability was
analyzed using the previous study results and AI model analysis. In this study, data feature
extraction and time-series data forecasting were emphasized. The initial speculation of the
electric propulsion power load forecast model of the vessel, which utilized a combined
CNN model and the time-series data model, predicted that the CNN–LSTM (direct) model
would show high performance. In the CNN–LSTM (direct) model, the CNN model extracts
the data features, and the time-series forecasting is performed in the time-series data model
such as the LSTM using the extracted data. However, experimental results showed that the
CNN–LSTM (parallel) model performance was high. Additionally, it was identified that
when the time-series data forecasting and data feature extraction proceeded separately, the
model that synthesized the result values forecasted with high performance.

Various forecasting models were tested to compare their performances. First, a CNN
that can extract data features using various variables was used, and the CNN–LSTM and
CNN–bidirectional LSTM models were distinguished by their combination methods. The
model experiments were repeated five times for each model, and the RMSE scores were
used to analyze the performances of models by comparing their average RMSE and boxplot
normal distribution. The RMSE value for the LSTM, bidirectional LSTM, CNN–LSTM
(direct), CNN–bidirectional LSTM (direct), CNN–LSTM (parallel), and CNN–bidirectional
LSTM (parallel) models were 1747.7, 1704, 1726.1, 1522.7, 1502, and 1517.7, respectively,
and the best performance was observed for the CNN–LSTM (parallel) model. The boxplot
analysis results showed that the CNN–LSTM (parallel) structure was the most stable model,
as it did not show outliers. As a black box approach, this model does not require additional
domain knowledge to be derived. Therefore, this methodology can be essentially applied
to all vessels to track degraded performances, optimize transportation, and reflect vessel
emissions accurately and ultimately be used to create a model that supports its use as a
basis for route optimization purposes.
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