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Abstract: This paper investigates the course keeping control problem for an unmanned surface vehicle
(USV) in the presence of unknown disturbances and system uncertainties. The simulation study
combines two different types of sliding mode surface based control approaches due to its precise
tracking and robustness against disturbances and uncertainty. Firstly, an adaptive linear sliding mode
surface algorithm is applied, to keep the yaw error within the desired boundaries and then an adaptive
integral non-linear sliding mode surface is explored to keep an account of the sliding mode condition.
Additionally, a method to reconfigure the input parameters in order to keep settling time, yaw rate
restriction and desired precision within boundary conditions is presented. The main strengths of
proposed approach is simplicity, robustness with respect to external disturbances and high adaptability
to static and dynamics reference courses without the need of parameter reconfiguration.

Keywords: unmanned surface vehicle; Guidance, Navigation and Control; course keeping; adaptive
sliding mode

1. Introduction

With the growing advancement in the sensor technology and navigation aids, USVs
are becoming a popular tool in maritime domain for several applications ranging from
environmental monitoring, military surveillance to scientific surveying, and data collection.
Mission oriented approach of USVs subject them to several types of maritime environment
comprising of wind, wave, and sea surface currents leading to requirement of designing
and developing several autonomy levels for successful operation. Henceforth, design
and development of approaches for Guidance, Navigation, and Control (GNC) of a USV
is an important research area for constructing operational and tactical approaches for
seven different operational autonomy level of USVs as described by International Maritime
Organisation (IMO).

Guidance and control of USV plays an important role in motion control system to
manipulate the forces to enable a USV to follow a desired path whilst maintaining the
stability. Three approaches, namely, waypoint control, path following control and trajectory
tracking are generally considered in the domain of marine robotics to enable a USV to
follow a designated path [1,2]:

• Waypoint control: In this strategy, Line of Sight (LOS) based approach is adopted to
follow a certain waypoints, generated heuristically, in the required maritime environ-
ment.

• Path following control: In this strategy, a path generated through path planning
algorithms is used as a reference, to be followed with no temporal constraints. Here,
USV should converge and follow the desired path without any time constraints and
simultaneously satisfies its assigned velocity profile.

• Trajectory tracking: In this strategy, temporal constraints are enforced upon the path
generated using path planners. This is predominantly used with fully actuated marine
vehicles reasoned with better maneuvering capabilities.
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Sailing conditions and unpredictability of environmental disturbances can have a
significant impact on the ship’s dynamics. It is therefore necessary to develop a nonlinear
controller that overcomes unknown disturbances and ensures robustness. As long as
parameter uncertainties and unknown bounded disturbances remain, the adaptive method
is likely to remain a superior approach. It is intended that vessel steering autopilots will
force the ship to follow a predetermined course with a fixed speed by controlling the rudder
angle, creating a course keeping problem that the current study is attempting to resolve.

1.1. State of the Art

The problem of course keeping control is highly non-linear in nature and has been
studied from a perspective of observed disturbance control using sliding mode control (SMC)
approach. The SMC problem for USVs, subjected to, higher order non linear operational distur-
bances, have been studied with varying control approaches like sliding mode [3–6]; fuzzy slid-
ing mode [7]; proportional derivative fuzzy [8]; backstepping [9–12]; backstepping with adap-
tive radial basis function neural network [13]; sine function-based non-linear feedback [14];
hyperbolic tangent based nonlinear control [15]; sigmoid based nonlinear control [16]; func-
tion adaptive neural path following control [17]; model predictive control [18,19]; event-
triggered control approach [20] and non-linear feedback power functions [21].

In order to make control robust to disturbances and uncertainties, several approaches
has been proposed in the SMC literature, see [22–32]. Some proposals of advanced sliding
manifolds include recursive nonlinear sliding manifolds [33–35], adaptive integral sliding
mode approach [36–38], non linear full order dynamics [39,40], sliding surfaces with
adaptive damping parameters [41–43] and, in the last years, a vast collection of homogeneity
based works, see [44] for instance. Applications of the properties of homogeneous systems
is an important field of study in the current development of analysis and design of nonlinear
controllers and observers. Homogeneity simplifies analysis and design of nonlinear control
systems since the homogeneous vector fields have many properties similar to linear one
and provides solutions with finite-time and fixed-time stability.

The dynamics generated by an homogeneous controller can be seen as a lineal dy-
namic system with an adaptive gain that grows to ∞ as |x(t)| → 0, generating the well
know singularity at the origin which is undesired for real applications. Nevertheless,
as commented in [45], the practical implementation of homogeneous dynamics system
designed in the continuous time domain prevents the use of explicit Euler discretization
scheme to achieve a mere copy of the continuous time approach due to its simplicity. This
type of discretization is considered inappropriate, especially when set-valued functions
has to be considering, causing numerical chattering and sensitivity to the gains. As a result,
without addressing the discretization issue, any comparison between homogeneous based
solutions and other types of proposals may potentially lead to unfair conclusions.

Based on the aforementioned results, in order to keep the discretization process simple,
an adaptive lineal sliding mode surface law, that includes a nested integral sliding surface
is introduced in this work. In this case, the dynamics flows with adaptive and finite damper
gain, avoiding the effects of the peaking transient response inherent to linear systems
and allowing fast responses at steady state, approximating the behaviour obtained with
homogeneous solutions.

1.2. Major Contributions

The paper makes following contributions to the current state of existing approaches to
SMC techniques for USVs:

• A number of simulation studies in the manuscript demonstrate that the proposed
adaptive control approach can be reconfigured for various input trajectories and
marine environmental disturbances, without requiring parametric adjustment.

• The cut-off frequency of the system response is an indication of the bound to be assigned
to the disturbance derivative in the algorithm. This relationship is based on low-pass
filtering properties associated with the second order adaptive linear dynamics generated
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at the sliding variable. As a result, frequencies over ωc do not affect the sliding variable
response. In practice, this feature offers some advantages when estimating the maximum
value of the disturbance derivative is a challenging task.

• The proposed adaptive profile generates low/high gains based on the absolute error.
As a result, the control input is not saturated when there is a large error (gain is small)
and the response at steady state becomes fast disturbance compensation (gain is large).

• Based on the adaptive placement of two poles relating to a second order dynamical
system with critical damping, we can generate an overdamped response that avoids
the occurrence of considerable overshoots.

• By avoiding the need of the derivative of the fractional power terms with respect to
time, the singularity problem associated with terminal sliding mode solutions can be
avoided. Thus, the high sensitive performance around the equilibrium point generated
by set value or fractional order functions can be reduced.

This paper has been structured as follows. First, in Section 2 we present the nonlinear
dynamic model of the course keeping problem, the desired objectives to be achieved and
a theoretical stability tool that is used in the posterior analysis of the control algorithm.
Then, Section 3 describes the proposed adaptive integral sliding mode (AISM) algorithm.
Results from numerical simulations are then presented and discussed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Problem Statement

The motion of the USV is shown in Figure 1, where a six degrees of freedom (DOF)
model is presented. The earth fixed Oo is an inertial reference frame fixed to the earth’s
surface and the body fixed with origin O is a moving coordinate frame that it is fixed to
the craft as in given in [1]. It is assumed an homogeneous mass distributed and xz-plane
symmetrical, such that origin of the body fixed reference frame is chosen to be coincident
with the center of gravity.

x

z

y

oo

o

o

o

z

y

o

Pitch x

z

Roll

Yaw

Surge (u)

Heave

Sway (v)

Rudder angle (δ)

Figure 1. 6 DOF motion representation with North-East-Down coordinate system (green) and body
fixed reference frame (black).

If we consider the course keeping problem the dynamics of heave, roll, and pitch can
be neglected, so that the reduced model dynamics are given as

m(u̇− vr− xcr2) = X (1)

m(v̇ + ur + xc ṙ) = Y (2)

Iz ṙ + mxc(v̇ + ur) = N (3)

where m is the mass, u is the surge velocity, v is the sway velocity, r is the yaw rate, Iz is
the rotational inertia with respect to z axis, xc is the x coordinate of the vehicle center in
the fixed body reference frame and X, Y and N are the external forces and moments with
respect to the surge, sway, and yaw, respectively.



J. Mar. Sci. Eng. 2022, 10, 68 4 of 20

Assumption of constant forward speed and using the ship’s Norrbin nonlinear mathe-
matical model, see [46], implies that the steering equations of motion can be obtained as

ψ̇(t) = r(t)

ṙ(t) = f (r) + gδ(t) + d(t) (4)

where, ψ(t) is the yaw (orientation) angle, r(t) is the yaw rate, δ(t) is the rudder angle
(the control variable to be designed) and d(t) is an unknown term to be compensated that
includes parametric uncertainty and external disturbances (wind, waves, mobile loads).
The dynamics functions are given as

g = −K
T

f (r) = −K
T

H(r)

H(r) = a1r + a2r3 (5)

where (K, T) are hydrodynamic coefficients and (a1, a2) are Norrbin coefficients.
In the course keeping problem it is required that the yaw angle ψ follows a refer-

ence angle ψr by means of the design of the rudder control signal δ(t). The following
assumptions are taking account in this work.

Assumption 1. d(t) in (4) satisfies the following restriction

|d(t)| ≤ D

with D > 0 a positive unknown real number.

Assumption 2. d(t) in (4) satisfies the following restriction

|ḋ(t)| ≤ ∆

with ∆ > 0 a positive known real number.

Assumption 3. Henceforth, it is assumed that a reference yaw establish the desired input to be
tracked, which can be obtained by means of path planning algorithms, that account for different
environment constraints as in [47–50]. A dynamic reference model is used, in this work, to generate
the desired course (ψr(t), ψ̇r(t), ψ̈r(t)).

The objective is to design a control law that creates overdamped responses with
minimal overshooting (undershooting) and robustness properties for response of the yaw
error, which is defined as

e(t) = ψ(t)− ψr(t) (6)

In order to check the control performance of the proposed controller for the course keep-
ing problem, we consider the following performance analysis indices mentioned in [10,12].

MAE =
1

t∞ − t0

∫ ∞

t0

|e(t)|dt (7)

MIA =
1

t∞ − t0

∫ ∞

t0

|δ(t)|dt (8)

MTV =
1

t∞ − t0

∫ ∞

t0

|δ(t)− δ(t− τ)|dt (9)

where τ is the sampling time used in the simulation.
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Furthermore, to check out the robustness properties of the solution, we compare the
results with the algorithms proposed in [10,12] applying the following conditions:

• As in [10,12], we test two problems that uses two different types of reference input
signals: step and sinusoidal.

• The tests includes results without disturbances (d(t) = 0) and with disturbances
(d(t) 6= 0).

• The algorithm parameters are configured in the case of the step input reference without
disturbances, such that all solutions provide the same value of the MIA index at the
end of the test time.

• After that, the algorithms parameters are fixed and tested in the case of step with
disturbances and in the case of the sinusoidal input reference. In this way we check
the robustness of the solutions with respect to its capacity of adaptation to different
scenarios from a specific parameter configuration.

The following theorem is introduced in order to analyse the stability properties of the
AISM proposed solution.

Theorem 1. Consider the following cascade system

ż1 = f1(t, z1) + g1(t, z1, z2)z2 (10)

ż2 = f2(t, z2) (11)

where z1 ∈ Rn, z2 ∈ Rm, f1(t, z1) is continuously differentiable in (t, z1), and f2(t, z1) and
g1(t, z1, z2) are continuous and locally Lipschitz in z2 and (z1, z2), respectively.

The dynamics of (10) when z2 = 0 are

ż1 = f1(t, z1) (12)

If systems (12) and (11) are globally uniformly asymptotically stable (GUAS) and we know
a C1 Lyapunov function V(t, z1), two class-K∞ functions φ1 and φ2, a class-K φ3 function and a
positive semidefinite function W(z1) such that

φ1(||z1||) ≤ V(t, z1) ≤ φ2(||z1||) (13)
∂V
∂t

+
∂V
∂z1

f1(t, z1) ≤ −W(z1) (14)

|| ∂V
∂z1
|| ≤ φ3 (15)

Besides, for each fixed z2 there exists a continuous function ζ : R+ → R+ such that

lim
s→∞

ζ(s) = 0 (16)

|| ∂V
∂z1

g1(t, z1, z2)|| ≤ ζ(||z1||)W(z1) (17)

Then we can conclude that the cascade system (10) and (11) is GUAS.

Proof. See [51].

3. Adaptive Integral Sliding Mode Surface Control Design

Derivation of e(t) in (6) leads to

ė(t) = r(t)− ψ̇r(t) (18)

An adaptive sliding surface s(t) variable is defined as

s(t) = ė(t) + λ(e)e(t) (19)
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with λ(e) a real positive time varying parameter.
Consider the integral term s̄(t)

s̄(t) =
∫ t

0
s(t)dt (20)

Let us choose the control law as

δ(t) =
1
g
(− f (r) + ψ̈r(t)− λ(e)ė(t)− λ̇(e)e(t)− α(s, s̄)s(t)− γ(e)s̄(t)) (21)

with λ(e) defined as

λ(e) = max(λmin, λmax − (
λmax − λmin
|e(0)| )|e(t)|), (22)

the variable z(t), related a new sliding surface, defined as

z(t) = s(t) +
α

2
s̄(t) (23)

and the parameters α(s, s̄), γ(α) given as

α̇(s, s̄) =
{

κ|z|ζ sign(z) sign(s) if |z| > µ ∧ αmin < α < αmax
0 otherwise

(24)

γ(α) =
α2

4
(25)

with ζ(e) defined as

ζ(e) = (
ζmax − ζmin
|e(0)| )|e(t)|+ ζmin (26)

and µ

µ =
ζ+1

√
∆
κ

(27)

Derivation of γ(α) and λ(e) are given as

γ̇(α) =
α

2
α̇ (28)

λ̇(e) =

{
−( λmax−λmin

|e(0)| )sign(e(t))ė(t) if λ > λmin

0 if λ ≤ λmin
(29)

The control algorithm is designed by an appropriate selection of the parameters αmax,
αmin, λmax, λmin, α(0), κ, ζmax and ζmin, as it will be introduced in the numerical simulations
section. Figure 2 show the control loop and the detail of the block diagram structure of the
course keeping algorithm.

Theorem 2. Consider the ship course dynamics described in (4) that complies with assumption 2.
The application of the control law (21) to dynamic system (4) implies that the closed compact set Ωe
defined as

Ωe = {(e(t), ė(t)) ∈ R2 : |e(t)| < µ

| cos(θ)|| sin(ϑ)| ∧ |ė(t)| <
µ

| cos(θ)|| cos(ϑ)| } (30)



J. Mar. Sci. Eng. 2022, 10, 68 7 of 20

is GUAS with µ, θ and ϑ given as

θ = atan(λ) (31)

ϑ = atan(
λ

2
) (32)

Proof. Application of control law (21) to dynamic system (4) creates the following cas-
cade system.

ė(t) = −λe(t) + s(t) (33)

ṡ(t) = −αs(t)− γs̄(t) + d(t) (34)

Heading 
Controller

Yaw
Dynamics+

-

Ψr Ψr
.

Ψr
..

[ ] Ψ r[ ]δ

d(t)

Heading Controller Structure

Ψr
..

e

e
.

Adaptive 
Parameters

Sliding
Mode

λ

λ
.

ζ
γ

δ

λ
.

e

λe
.

1/ss
s
s-

Adaptive 
Parameters

α γ

α

λ
.
δλ

Control
Law

Figure 2. Course keeping control system and detail of heading control law block diagram.

The dynamics of ė(t) when s(t) = 0 (dynamics of the yaw error at the sliding condi-
tion) are

ė(t) = −λe(t) (35)

with λ > 0. Therefore system (35) is GUAS, with exponential convergence.
Derivation of ṡ(t) leads to

s̈(t) + αṡ(t) + γs(t) + α̇s(t) + γ̇s̄(t) + ḋ(t) = 0

From (25), (28) and (23) it is obtained

s̈(t) + αṡ(t) +
α2

4
s(t) + α̇z(t) + ḋ(t) = 0

• Case 1: |z| ≤ µ ∧ α = αmin ∧ α = αmax
Assuming the worst case scenario, that is, when z > µ ∧ α = αmin, substitution of
α̇ = 0 implies that the second order dynamics related to s(t) are

s̈(t) + αmin ṡ(t) +
α2

min
4

s(t) + ḋ(t) = 0 (36)

Let’s define a sliding vector state η(t) as

η(t) =
[
s(t) ṡ(t)

]T (37)
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Dynamics of η(t) are given by

η̇(t) = Aη(t) + F(t) (38)

with

A =

(
0 1

−αmin − α2
min
4

)
(39)

and

F(t) =
(

0
ḋ(t)

)
(40)

Lets’ define

p1 =
αmin

8
+

2(αmin + 1)
α2

min
(41)

p2 =
0.5

αmin
(42)

p3 =
2(αmin + 1)

α3
min

(43)

and P a symmetric positive definite matrix

P =

(
p1 p2
p2 p3

)
(44)

with determinant

|P| = λ4 + 16λ2 + 32λ + 16
4λ5 > 0 (45)

It can be shown that

PA + AT P = −Q (46)

where Q is the identity matrix of size 2 × 2. Therefore, the selection of a Lyapunov
candidate function

V(η) =
1
2

ηT Pη (47)

leads to

V̇(η) = −ηTQη + FT Pη (48)

= −ηTQη − ḋ(t)(p2s(t) + p3 ṡ(t)) (49)

Let’s define

p∗ =
√

2 max(p2, p3) (50)

Therefore

|ḋ(t)(p2s(t) + p3 ṡ(t))| ≤ p∗∆||η|| (51)

Applying (51) and assumption 2 it is obtained

V̇(η) < −γmin
Q ||η||2 + p∗∆||η|| (52)
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Note that γmin
Q = 1, thus the closed set Ωη , which includes the origin, defined as

Ωη = {η(t) ∈ R2 : ||η|| ≤ p∗∆} (53)

is GUAS with exponential convergence (see [52]). The values of p∗ and ∆ determines
the size of the stable closed set, so that this condition limits how the algorithm may be
applied. Inside Ωη there are two possible cases

– sign(sṡ) < 0: implies that |s(t)| → 0, that is, the dynamics is stable an converges
to the origin, with a value of α adjusted to keep this condition.

– sign(sṡ) ≥ 0: implies that |s(t)| grows inside Ωη , that is, with an upper bound, or
its value is stationary. According to (23) and (1), there exist an instant where the
condition sign(z) sign(s) > 0 is met, which implies that α grows, that is, condition
α̇ 6= 0 is achieved. Therefore, α grows only when it is needed to keep the sliding
mode condition at steady state, which is related to the performance given by the
value of λmax.

• Case 2: |z| > µ ∧ αmin < α < αmax
Substitution of α̇ 6= 0 from (24) implies that the second order dynamics equation
related to s(t) is

s̈(t) + αṡ(t) +
α2

4
s(t) + κ|z|ζ+1 sign(s) + ḋ(t) = 0 (54)

Applying assumption 2 and condition |z| > µ implies that

κ|z|ζ+1 sign(s) + ḋ = ρz(t)s (55)

with ρz(t) > 0. Accordingly, because of assumption 2, the characteristic polynomial
of (54) is Hurwitz for all z(t) 6∈ Ωz where

Ωz = {z(t) ∈ R : |z(t)| < µ} (56)

with µ defined in (27). This implies that (34) is GUAS with respect to the closed set
Ωz. Note that dynamics in (54) can be viewed as a second order linear dynamics with
adaptive critical damping (exponential convergence related to the fastest response
with no overshooting), being perturbed by the overestimation ρzs caused by the
compensation of the unknown term. The roots of the perturbed solution of (54) are
given by

s∗1,2 =
α

2
± j
√

ρz(t) (57)

A condition of the following form can be used to avoid chattering (high frequency
oscillations caused by a large imaginary value in the pole position as a result of
overestimation) at the steady-state response.

|κ|z|ζ+1 sign(s) + ḋ(t)| ≤ κ|z|ζ+1 + ∆ < ρmax
z (58)

This provides an upper bound of the perturbation generated at the dynamics with
respect to the solution with κ = 0 and d(t) = 0. In order to estimate the correlation
between the sampling time τ and the natural frequency

√
ρmax

z (in rad
s ), we must verify

that the frequency given by the Nyquist-Shannon sampling theorem (the maximum
operating frequency for a system with sampling time τ) does not create a change in
sign in s(t) at the limit condition |z(t)| = µ, that is√

ρmax
z ≤ π

τ
µ (59)
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Applying condition (58) an upper bound for κ as a function of ∆, τ and the absolute
value of z(t) is obtained as

κ ≤
(πµ

τ )2 − ∆
|z|ζ+1 (60)

This constraint provides a limit on the application of the method that employs the
bound ∆ of the disturbance derivative, the sampling time τ and, taking into consider-
ation relation (27), the required precision µ.
Inside Ωz we have that

|s(t) + α

2
s̄(t)| < µ

which geometrically entails:

|s̄(t)| < µ

| sin(ϑ)| (61)

|s(t)| < µ

| cos(ϑ)| (62)

with ϑ defined in (32). Inside Ωs we have that

|ė(t) + λe(t)| < µ

| cos(ϑ)|

Following the previous approach implies that:

|e(t)| < µ

| cos(ϑ)|| sin(θ)| (63)

|ė(t)| < µ

| cos(ϑ)|| cos(θ)| (64)

with θ defined in (31).

Applying Theorem 1 with

φ1(||e||) = k1e2

φ2(||e||) = k2e2

φ3(||e||) = k3|e|
W(e) = k4e2

V(e) =
1
2

e2

ζ(e) =
k5

k4|e|

where k1 < 0.5, k2 > 0.5, k3 > 1.0, k4 < λ and k5 > 1.0, entails that cascade system given
in (33) and (34) is GUAS with respect to the closed compact sets Ωe and Ωs, respectively.

4. Numerical Simulations

In this section we introduce numerical simulations of the course keeping problem
with parameters given in Table 1 and being executed under the following assumption.

Assumption 4. The numerical simulations are executed using the explicit Euler method with fixed
sampling time τ = 0.1 s.
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Table 1. Model parameters.

Parameter Value

K 0.21
T 107.76
a1 13.17
a2 16,323.46

4.1. Constant Yaw Reference

This test is presented in [12] with a required a change in the yaw orientation angle
from zero initial condition up to 50 degrees assuming that d(t) = 0. Table 2 show the
parameters used in [12].

Table 2. Nonlinear concise backstepping controller parameters.

Parameter Value

k1 0.0017
ω 0.6000

Based on this results the parameter a2 of the synergetic controller presented in [10] is
changed to achieve the same MIA at the end of the simulation. Table 3 show the parameters
used with this algorithm.

Table 3. Synergetic controller parameters.

Parameter Value

a1 0.090
a2 1.891
T1 28.000

The parameters of the AISM algorithm are obtained as follows

• Consider a settling time ts = 150s, a maximum desired yaw rate rmax = 0.70π
180 degrees

per second and a required precision µ = 1.0× 10−6.
• The value of α(0) is obtained assuming an exponential convergence of the error from

initial condition e(0) to desired precision µ with a desired settling time ts

α(0) = −1.25
log( µ

|e(0)| )

ts
= 0.0756 (65)

The values of αmin and αmax are selected as

αmin = α(0) (66)

αmax = 5(αmin + ∆) (67)

• The value of λmin is related to the initial conditions of the problem and the maximum
desired yaw rate as

λmin =
rmax

|e(0)| = 0.014 (68)

and λmax is calculated as

λmax = 2.0λmin = 0.028 (69)
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• The value of κ must be higher than ∆ in order to obtain a small value for µ. Due ti the
low-pass filtering properties of (54), the value of ∆ can be further refined by estimating
the cut-off frequency ωc(t) of the second order system related to s(t)

ωc(t) =
α(t)

2
(70)

Therefore κ is calculated as an adaptive gain that takes account of ωc and the desired
precision

κ(t) =
α(t)

2µ
1

ζ+1
(71)

• Simulations are used to set the values of ζmin and ζmax such that the value of the per-
formance index MIA is equal to the value achieved with benchmark chosen controllers
at the conclusion of the test period.

ζmin = 0.800

ζmax = 1.685

This condition generates an adequate adaption of the value of ζ that allows to obtain
the desired power factor profile with respect to the absolute value of e(t).

Figure 3 shows the states and control effort, and it can be seen that all of the solutions
have a comparable setting time. The yaw error evolves similarly in all circumstances,
however AISM can achieve the same high accuracy in steady state than Synergetic control
with less control effort and a lower maximum yaw rate.

Figure 4 depicts the progression of performance indices over time, with a detailed
view of the MIA performance index at the end of the test and final numerical values in
Table 4. The evolution of the adaptive parameters employed in the proposed AISM method
is detailed in Figure 5. In the case of d(t) = 0, the value of the performance parameter λ
is adjusted to match the intended low/high gain profile, while the value of gain α grows
until it reaches the sliding condition, then falls to its lower bound.

0 200 400 600 800 1000 1200
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20

40

60

Desired and obtained yaw angle (º)

1100 1150 1200

49.99999999995

50

0 200 400 600 800 1000 1200
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0.4

0.6

Desired and obtained yaw rate (º/s)

0 200 400 600 800 1000 1200

0

20

40

0 20 40 60 80 100

0

20

40

Figure 3. Constant yaw reference test with d(t) = 0. States and control. Cyan line: Reference; Red line:
Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line: Adaptive
sliding mode (González-Prieto et al.).
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Table 4. Constant yaw reference test with d(t) = 0. Performance indices.

Algorithm MAE MIA MTV

Concise Backstepping [12] 0.042227 0.011348 3.6396× 10−5

Synergetic [10] 0.035641 0.011348 6.4436× 10−5

AISM 0.038468 0.011348 4.0722× 10−5

0 200 400 600 800 1000 1200

0

0.02

0.04

0 200 400 600 800 1000 1200

0

0.005

0.01

1180 1185 1190 1195 1200

0.011348

0.011349

0 200 400 600 800 1000 1200

0

2

4

6

10
-5

Figure 4. Constant yaw reference test with d(t) = 0. Performance indices evolution. Cyan line:
Reference; Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.);
Black line: Adaptive sliding mode (González-Prieto et al.).

Next, in order to test the robustness of the algorithms, the following disturbance is
considered in (4)

d(t) = D[cos(ωdt) + 0.83 sin(3.29ωdt− 0.14)

+ 1.23 cos(8.12ωdt + 0.26)

+ 0.65 sin(1.37ωdt + 0.36)ecos(2.21ωdt+0.13)] (72)

with

D = 0.0025

ωd = 0.0703
rad

s

Figure 6 shows the states and control effort, and it is obvious that the suggested AISM
negates the influence of the external disturbance, maintaining the intended performance at
steady-state, and creating a rudder angle control that enables quick reaction attenuation
without causing overshooting. The evolution of the sliding variable s(t) and the external
disturbance d(t), introduced to evaluate the resilience qualities of the compared algorithms,
is depicted in Figure 7.
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Figure 5. Constant yaw reference test with d(t) = 0. Adaptive parameters evolution.
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Figure 6. Constant yaw reference test with d(t) 6= 0. States and control. Cyan line: Reference; Red line:
Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line: Adaptive
sliding mode (González-Prieto et al.).

The evolution of the adaptive gains is seen in Figure 8. It is evident that the influence of
the unknown disturbance is passed to α and κ in order to maintain steady-state performance,
but it has no effect on lambda or the adaptive power factor delta. As a result, the reaction
achieves a quick response to external disturbances in order to maintain a constant target
performance related to the sliding condition s(t) ≈ 0.



J. Mar. Sci. Eng. 2022, 10, 68 15 of 20

0 200 400 600 800 1000 1200

-15

-10

-5

0

5
10

-3

0 200 400 600 800 1000 1200

-1.5

-1

-0.5

0

0.5

1
10

-3

Figure 7. Constant yaw reference test with d(t) 6= 0. Sliding mode variable s(t) and external distur-
bance d(t).
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Figure 8. Constant yaw reference test with d(t) 6= 0. Adaptive parameters evolution.

4.2. Sinusoidal Yaw Reference

In this case, as in [12], the yaw reference to follow is a sinusoidal signal defined as

ωd =
50π

180.0
sin(

2π

600.0
) (73)

where the initial yaw angle is

ψ(0) =
10π

180.0
(74)

States and control effort are provided in Figure 9 where it is clear that AISM is capable
to follow the yaw reference with no appreciable delay keeping the desired settling time,



J. Mar. Sci. Eng. 2022, 10, 68 16 of 20

and Figure 10 depicts the adaptive parameter’s change over time in the unperturbed case
with sinusoidal reference.

As in the previous test, results with sinusoidal reference are tested introducing distur-
bance (72). Figure 11 shows the states and control effort obtained in this case, where, as
in the constant reference test, the steady-state performance and the settling time obtained
with AISM are preserved despite the presence of the external unknown disturbance.
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0

0.5

Desired and obtained yaw rate (º/s)
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0

20

40

Figure 9. Sinusoidal yaw reference test with d(t) = 0. States and control. Cyan line: Reference; Red
line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line: Adaptive
sliding mode (González-Prieto et al.).
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Figure 10. Sinusoidal yaw reference test with d(t) = 0. Adaptive parameters evolution.
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Figure 12 shows the evolution of the sliding variable and the external disturbance
input d(t). The time evolution of adaptive parameters in Figure 13 mirrors the behavior in
the case of constant yaw reference in case of d(t) = 0. This characteristic, like in constant
yaw reference scenario, generates quick reactions to external disturbances, maintaining a
desired fixed performance and avoiding a delayed response.
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Figure 11. Sinusoidal yaw reference test with d(t) 6= 0. States and control. Cyan line: Reference;
Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line:
Adaptive sliding mode (González-Prieto et al.).
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Figure 12. Sinusoidal yaw reference test with d(t) 6= 0. Sliding mode variable s(t) and external
disturbance d(t).
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Figure 13. Sinusoidal yaw reference test with d(t) 6= 0. Adaptive parameters evolution.

5. Conclusions

We present an approach to developing an adaptive integral sliding mode procedure to
design a nonlinear controller for the course keeping of surface vehicles. A solution has been
proposed that is based on the application of adaptive gains that change the sliding surface’s
dumping properties, resulting in a low/high gain profile so that it can overcome the need
for large control inputs at initial conditions while achieving a higher gain at steady state.

Results obtained in numerical simulations demonstrate that the proposed AISM
algorithm achieves the desired performance with fixed and time-varying references that
cancel out external disturbances. A fixed parameter configuration is used to evaluate the
performance based on the settling time, maximum allowable yaw rate, and steady state
precision. Due to its robustness, the algorithm achieves the desired response without
requiring the development of a new parameter configuration for each type of test.

An advantage of the method is its robustness with respect to an overestimation of ∆: the
performance is not highly degraded if this bound is not accurately known. However, choosing
an overly large value might cause oscillations in the response of the estimation error.

In order to integrate an optimal point of view in the design of the adaptive parame-
ters, a deepest study of the function that can determine the adaptive values of λ(e) and
ζ(e) is an interesting open problem that can be discussed from the standpoint of model
predictive control.

The extension of this procedure with the assumption of partial state feedback will be
addressed in future researches by means of the application of an adaptive integral sliding
mode observers.
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