
����������
�������

Citation: Xu, T.; Zhang, Q. Ship

Traffic Flow Prediction in Wind

Farms Water Area Based on

Spatiotemporal Dependence. J. Mar.

Sci. Eng. 2022, 10, 295. https://

doi.org/10.3390/jmse10020295

Academic Editor: Claudio Ferrari

Received: 7 January 2022

Accepted: 15 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Ship Traffic Flow Prediction in Wind Farms Water Area Based
on Spatiotemporal Dependence
Tian Xu * and Qingnian Zhang

School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China;
258553@whut.edu.cn
* Correspondence: yingying1520@whut.edu.cn

Abstract: To analyze the changing characteristics of ship traffic flow in wind farms water area, and to
improve the accuracy of ship traffic flow prediction, a Gated Recurrent Unit (GRU) of a Recurrent
Neural Network (RNN) was established to analyze multiple traffic flow sections in complex waters
based on their traffic flow structure. Herein, we construct a spatiotemporal dependence feature
matrix to predict ship traffic flow instead of the traditional ship traffic flow time series as the input of
the neural network. The model was used to predict the ship traffic flow in the water area of wind
farms in Yancheng city, Jiangsu Province. Autoregressive Integrated Moving Average (ARIMA),
Support-Vector Machine (SVM) and Long Short-Term Memory (LSTM) were chosen as the control
tests. The GRU method based on the spatiotemporal dependence is more accurate than the current
mainstream ship traffic flow prediction methods. The results verify the reliability and validity of the
GRU method.

Keywords: complex waters; ship traffic flow; spatiotemporal dependence; gate recurrent unit

1. Introduction

Marine wind energy is a green renewable resource that has the advantages of clean-
liness, low development cost, and abundant reserves [1,2]. The development of marine
wind energy under the background of encouraging sustainable economic development is
conducive to alleviating the energy crisis and preventing climate change. With the develop-
ment of offshore wind power technology, offshore wind farm construction has gradually
become a key development field [3]. However, the offshore wind farm needs to occupy a
large area of water in the process of construction, and some ship traffic inevitably flows
through the wind farm. With the increasing frequency of offshore wind power construction,
the risk assessment of ship navigation in wind farms water area has also attracted the
attention of scholars at home and abroad [4].

In the water area of the wind farm, ships need to be in close contact with the wind
turbine, and the working frequency is very high. Compared with ships in other water areas,
the collision probability of ships in the water area of a wind farm is greater [5,6]. Especially
in severe weather—such as strong winds, large waves, and dense fog—the maneuverability
of the ship is limited, the visibility in the water area is reduced, and the risk of collision
between the ships and the wind turbines is further exacerbated [7]. With the increase in
offshore wind power construction, the safety of ship navigation in the waters of offshore
wind farms has gradually attracted the extensive attention of relevant scholars. At present,
the research on ship navigation safety in the water area of wind farms mainly focuses on
exploring the variation law of collision risk between ships and offshore wind turbines [8,9].

However, the impact of wind farm characteristics and ship traffic flow characteristics
is not fully considered, and the established collision risk model often cannot reflect the
actual situation of ship/wind turbine collisions. Therefore, it is necessary to analyze
the ship traffic flow in the wind farms water area as the basis of ship navigation risk
assessment [10,11]. By analyzing the variation in characteristics of ship traffic flow, mining
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the potential regularity of traffic flow data, and predicting the traffic flow state in the future,
we can provide a theoretical basis for the formulation of traffic control measures in the
wind farms water area.

Therefore, we propose a method to predict the traffic volume in wind farm areas based
on spatiotemporal dependence. A feature matrix is constructed to represent the spatial
relationship of traffic flow based on Pearson’s Correlation Coefficient (PCC), and then GRU
is established to predict the ship traffic flow. The construction in this paper has two folders:
Firstly, the spatial effects of traffic flow on different routes are considered. Secondly, the
matrix is used as the input of the neural network instead of a single value. The method
proposed in this paper can support the construction of safety supervision in wind farms
water area.

The remainder of this paper is organized as follows: Section 2 reviews research
related to the research and safety of wind farm water and traffic flow prediction. Section 3
elaborates on the framework construction and methodological development, followed
by case studies in Section 4. Finally, Section 5 discusses the major findings and potential
research improvements, and conclusions are summarized in Section 5

2. Literature Review

Traffic flow prediction is an important topic in maritime traffic research. Recently,
the study of ship traffic flow prediction can be divided into statistical methods and
data-driven methods.

Several statistical models have been applied extensively in traffic flow prediction,
including linear regression, ARIMA, Kalman filtering, Bayesian networks, Markov mod-
els, etc. Sun et al. (2003) introduced local linear regression into traffic flow prediction
research [12]. Williams and Hoel (2003) adopted the seasonal ARIMA process to forecast ve-
hicular traffic flow [13]. Getahun (2021) modeled a time series of road traffic accidents based
on ARIMA [14]. Guo et al. (2014) developed an adaptive Kalman filter method for stochas-
tic traffic flow rate prediction [15], while Xie et al. (2007) researched traffic flow prediction
using a Kalman filter with discrete wavelet decomposition [16]. Saeedmanesh et al. (2021)
developed an extended Kalman filter approach for real-time state estimation in multiregion
MFD urban networks [17]. Smith et al. (1997, 2002) proposed a nonparametric method
for traffic flow forecasting, and compared parametric and nonparametric models [18,19].
Zheng and Su (2014) researched traffic flow forecasting using a constrained linearly sewing
principal component algorithm [20]. Wang et al. (2021) proposed a non-parametric model
with an optimized training strategy for vehicle traffic flow prediction [21]. Castillo et al.
(2008) introduced a Bayesian network for traffic flow prediction [22]. Wang et al. (2014)
designed an architecture for traffic flow prediction using a new Bayesian combination
method [23]. Afrin et al. (2021) estimated traffic congestion based on a Bayesian net-
work [24]. Qi and Ishak (2014) developed a hidden Markov model for the prediction of
traffic flow on freeways [25]. Rajawat et al. (2021) developed a comprehensive framework
for the prediction of human mobility patterns based on a hidden Markov model [26].

In recent years, data-driven methods have been widely used in traffic flow prediction.
The advantage of these methods is their ability to predict future traffic flow directly from
the given big data without modeling the traffic flow phenomenon. Many researchers have
applied SVM regression models to traffic flow prediction and achieved good results [27–29].
Some improved SVM methods are also widely used [30,31]. Yao et al. (2014) developed
a framework in multistep-ahead prediction for rock displacement surrounding a tunnel,
using an improved SVM [32]. Toan et al. (2021) applied an SVM for short-term traffic flow
prediction [33].

Another widely used method is the K-nearest neighbor model, which is easy to
implement because the processes of training data and estimating parameters are simple.
Hong et al. (2015) developed a hybrid multimetric K-nearest neighbor regression model for
traffic flow prediction [34]. Akbari et al. (2011) applied the K-nearest neighbor algorithm
for daily inflow forecasting [35]. Yu et al. (2016) designed a prediction model for multiple-
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timestep prediction of traffic conditions [36]. Another very important method is machine
learning. Many kinds of research for traffic prediction based on machine learning have
been published [37–42]. Li (2016) applied dynamic fuzzy neural networks for traffic flow
prediction [43]. Huang et al. (2014) proposed a Deep Belief Network (DBN) for traffic
flow prediction, which is a deep architecture [44]. Yang et al. (2016) designed a type
of unsupervised learning architecture of the neural network approach for traffic flow
prediction using the Taguchi method [45]. Lu et al. (2021) proposed a combined method
for short-term traffic flow prediction based on a recurrent neural network [46].

In summary, many researchers have made great progress in the research of traffic flow
prediction, but the assumption that the model parameterization performs relatively badly
in variable traffic conditions affects the majority of statistical models. On the other hand,
data-driven models such as deep learning techniques are often used to make predictions.
Although the accuracy of the deep learning method is higher than that of other algorithms,
the training time is much longer than that of other algorithms. The GRU has fewer param-
eters than other models, reducing the risk of overfitting, and has a shorter training time.
Additionally, the GRU can simultaneously consider the influence of features and historical
time series. At present, GRU networks are mainly used in classification, regression, and
time-series prediction problems. Therefore, a GRU was established to predict the ship
traffic flow in this research.

Several studies have emerged over recent years covering many aspects of wind farms,
such as site selection [47,48], operation and maintenance [49–51], and wildlife impact [52,53],
among others. However, research on traffic flow prediction in the water area of wind farms
is rare at present, and most such studies take a single port or channel section as their research
object, not considering the spatiotemporal dependence of ship traffic flow. Therefore, taking
the supervision of maritime traffic safety in complex waters as the starting point, the water
area of Yancheng wind farms was selected as the research object to predict ship traffic flow
in different routes in the water area of the wind farms.

3. Methodology

The logical framework for the prediction of ship traffic flow in wind farm waters is
depicted in Figure 1; it consists of three components: data preparation, spatial relationship
analysis, and time-series prediction model.
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3.1. Data Preparation

As of December 2004, the International Maritime Organization (IMO) required all
vessels over 299 GT to install an Automatic Identification System (AIS) transponder on
board [54]. The increasing number of ships equipped with AISs provides a lot of basic data
for traffic flow prediction research. AIS data are received as a series of messages following
a nonstandard pattern of irregular time intervals. Since there is a lot of noise in the raw AIS
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data, it is necessary to preprocess the data. Firstly, the data of ship position abnormality,
speed abnormality, and course abnormality in the experimental dataset are removed based
on the algorithm proposed by [55]. Then, the linear interpolation method should be used
to interpolate the ship’s AIS data per 10 s.

3.2. Analysis of Spatial Dependence of Ship Traffic Flow

For complex waters, such as wind farms water areas, the ship traffic flow may be
affected by the traffic conditions of adjacent routes. Therefore, considering the spatial
ship traffic flow dependence, Pearson’s Correlation Coefficient (PCC) method was used to
calculate the correlation coefficient between the traffic flows of adjacent routes [56,57]. PCC
is the covariance of the two variables divided by the product of their standard deviations.

Adding the route information with high correlation to the prediction model improves
the accuracy of the marine traffic flow prediction model. If the traffic flow sequence of
section x and section y is as follows:

qx = (qx,1, qx,2, · · · qx,T), (1)

qy =
(
qy,1, qy,2, · · · qy,T

)
, (2)

then the correlation coefficient of the two sections is given by:

ρx,y =
∑T

i=1 (qx,i − qx)(qy,i − qy)√
∑T

i=1 (qy,i − qy)
2
√

∑T
i=1 (qy,i − qy)

2
, (3)

where ρx,y is the degree of correction between x and y, referred to as the correlation coeffi-
cient, while T represents the length of the time series. The closer ρx,y is to 1, the greater the
correlation between the target section and the adjacent section. When ρx,y = 0, there is no
correlation between the target section and adjacent sections. When 0 < ρx,y < 0.5, this indi-
cates that the correlation between the target section and adjacent sections is low. To ensure
the prediction accuracy of the model, 0.5 ≤ ρx,y < 1 was set as the spatial threshold range.

3.3. Time-Series Prediction Model Based on an Improved Recurrent Neural Network

A GRU can be used to mine the time characteristics of traffic flow and capture the
time dependence of ship traffic flow [58–60]. Cho et al. introduced a GRU as a gating
mechanism in recurrent neural networks [61]. The GRU’s functions are similar to those of a
Long Short-Term Memory (LSTM) network with a forget gate, but with fewer parameters.
The GRU outperformed LSTM on certain tasks, such as polyphonic music modeling, speech
signal modeling, and natural language processing. The GRU also uses only two parameters,
which can help to reduce the risk of overfitting. The basic structure of the GRU is shown in
Figure 2.
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x(t) represents the input signal vector of the current node; h(t − 1) represents the hidden
state vector passed down from the previous node, h(t) is the output vector, and h′(t) is
candidate activation vector; r(t) is the reset gate vector, z(t) is the update gate vector, while σ
represents the original function, and is a sigmoid function. The GRU uses x(t) and h(t − 1) to
obtain two gating states; the functions of the reset gate and update gate are as follows:

r(t) = Sigmoid_1(Wr(h(t−1), x(t))), (4)

z(t) = Sigmoid_2(Wz(h(t−1), x(t))), (5)

where Wr is the weight matrix of reset gate, while Wz is the weight matrix of the update
gate. After obtaining the gating signal, use h′(t−1) = r(t) � h(t−1) to reset the data, then
splice h′(t−1) and x(t). The activation function tanh is used to standardize the data to obtain
h′(t); the calculation formula is as follows:

h′(t) = tan h
(

Wh′
(

h(t−1) � r(t), x(t)
))

, (6)

where the operator� denotes the Hadamard product, Wh′ is the weight matrix of candidate
activation in the GRU, and h′(t) mainly contains the current input x(t), which adds h′(t) to
the current hidden state and effectively remembers the current state.

In the last memory update stage, forgetting and memorizing steps are both used, as is
the previously obtained update gate z; the update expression is as follows:

h(t) = z(t) � h(t−1) + (1− z(t))� h′(t), (7)

where h(t) represents the output of the network at the moment t and z(t) ∈ (0, 1). The input
of each layer of the GRU considers the output of the previous layer of the GRU, so as to
capture the timing relationship of ship traffic flow. After constructing a GRU, it is used as
the basic unit from sequence to sequence as a model to generate the final prediction result.

The ship traffic flow in an area is related not only to the actual traffic flow in the given
moments, but also to the spatially related route. Therefore, compared with the traditional
ship traffic flow prediction method, a PCC algorithm can be introduced to calculate the
correlation of traffic flow between different routes. This method can screen the areas with
high correlation and reconstruct the spatiotemporal dependence matrix, in order to improve
the input of the GRU model and to predict the ship traffic flow in complex waters more
accurately. The algorithm flow is as follows:

(1) According to the characteristics of traffic flow structure in complex waters, the
temporal and spatial characteristic matrix of multiple observation sections is defined as Q.

Q =


q1
q2
...

qm

 =


q1,1 q1,2 · · · q1,T
q2,1 q2,2 · · · q2,T

...
... · · ·

...
qm,1 qm,2 · · · qm,T

, (8)

where qm is the time series of the observation section, and qm,T is the traffic volume of
observation section m at the moment T;

(2) Calculate the correlation coefficient between the traffic flow at the observation
section of two routes, constructing a spatial correlation matrix as follows:

ρxy =


ρ1,1 ρ1,2 · · · ρ1,m
ρ2,1 ρ2,2 · · · ρ2,m

...
... · · ·

...
ρm,1 ρm,2 · · · ρm,m

; (9)
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(3) Rank traffic flow correlation between sections. Select the sections to be predicted
and sort the other sections by correlation;

(4) Set the correlation threshold δ. The sections with a correlation greater than δ are
reconstructed into a new spatiotemporally dependent characteristic matrix;

(5) Build the GRU model. The input of the GRU model is improved by using the
reconstructed spatiotemporal dependence characteristic matrix, and the improved GRU is
used to predict ship traffic flow;

(6) Calculate the Mean Absolute Percentage Error (MAPE); taking the minimum MAPE
as the final optimization goal of the model, the optimal spatial threshold is determined;

(7) Results and analysis: To quantitatively analyze the prediction results and the
performance of the model, the Mean Absolute Error (MAE), Root-Mean-Square Error
(RMSE), Mean Absolute Percentage Error (MAPE), and R2 are used as prediction and
evaluation indicators. The calculation method is as follows:

MAE =
1
n∑n

1 |pi − xi|, (10)

RMSE =

√
1
n∑n

1 (pi − xi)
2, (11)

MAPE =
1
n∑n

1
|pi − xi|

xi
× 100, (12)

R2 = 1− ∑n
1 (pi − xi)

2

∑n
1 (xi − xi)

2 , (13)

where pi is the predicted value obtained by PCC–GRU and by SVM, LSTM, and ARIMA
in the control experiment; xi is the actual value; xi is the average of the actual flow
section values.

4. Case Study
4.1. Research Area and Data

Due to the influence of meteorological and hydrological conditions, construction con-
ditions, and water area location, the water area traffic environment of wind farms presents
complex temporal and spatial characteristics. Based on AIS data, real-time prediction of
ship traffic flow changes in different stages of wind farm groups can provide an effec-
tive means for daily maintenance of wind farms and safety monitoring in the process
of construction.

To verify the effectiveness and feasibility of the model, the wind farm water area in
Jiangsu Province was selected as the research object, as shown in Figure 3. The cross-section
flow statistics of complex routes in the region were evaluated. The routes observed in this
research were routes recommended in nautical charts, and the observation section was set
in these routes. If a ship passes through the observation section, the traffic volume increases
by 1.
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The cross-sectional diagram is shown in Figure 3. The location information of the
section is shown in Table 1. The traffic flow time series from 1 to 29 March 2021 was selected
as the training data, and the traffic flow data on 30 March were used as the verification
set. The ship traffic flow data of sections H1–H11 were collected in hours, and the ship
traffic flow data for one day were obtained, as shown in Table 2. q1–q11 represent the traffic
volume through sections H1–H11, respectively. Traffic volume is measured as the number
of ships in the section during the given time.

Taking section H5 as an example, the model proposed in this paper was used to
predict ship traffic flow. Spatial state variables and temporal state variables were the
two input parameters of the model. The spatial state variable is a matrix formed by the
correlation coefficients between sections, while the time state variable refers to the time
interval adopted by the spatial matrix. When the neural network model was built, the
recurrent neural network of each layer of encoder and decoder had several GRUs. The
number of GRUs is always a multiple of 2—generally between 16 and 128; if it is too large,
it will increase the computational complexity and make the training time too long; if it
is too small, it will also affect the performance of the model. Figure 4 provides the MEA
and RMSE of the experiments using different numbers of GRUs. The GRU number of 64
obtained the lowest error. Therefore, we set the number of GRUs to 64 in our experiments.
The validation set loss of the experiment using different batch sizes is shown in Figure 5.
The batch size of 8 yielded the lowest error. As a result, the batch size of our model was set
to 8. When a complete dataset passes through the neural network and returns, the process
is called an epoch; we set the number of epochs to 100. Table 3 shows the hyperparameters
used by PCC–GRU in the experiment. All experiments were conducted in Keras on a laptop
with an NVIDIA 2080ti GPU, an Intel Core i9-9900KF CPU (3.6 GHz), 16 GB RAM, and the
Windows 10 operating system.
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Table 1. Coordinates of the observation section.

Sections P1 P2

H1 120.06495◦ E 34.75165◦ N 120.13086◦ E 34.96235◦ N
H2 120.02375◦ E 34.69723◦ N 119.96195◦ E 34.42275◦ N
H3 120.35502◦ E 34.76512◦ N 120.27413◦ E 34.64402◦ N
H4 120.26468◦ E 34.49281◦ N 120.20728◦ E 34.42028◦ N
H5 120.57021◦ E 34.48273◦ N 120.47371◦ E 34.43313◦ N
H6 120.47302◦ E 34.35673◦ N 120.57023◦ E 34.30368◦ N
H7 121.30618◦ E 34.65731◦ N 121.08612◦ E 34.45872◦ N
H8 121.04723◦ E 34.20372◦ N 120.93305◦ E 34.15846◦ N
H9 120.88817◦ E 34.13275◦ N 120.77619◦ E 34.08367◦ N
H10 120.72357◦ E 34.06888◦ N 120.78652◦ E 33.81706◦ N
H11 121.32603◦ E 33.78164◦ N 121.21804◦ E 33.26723◦ N

Table 2. Ship traffic flow per hour on 30 March 2021.

Time q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

0:00 2 2 3 3 2 2 5 5 1 3 5
1:00 2 1 2 4 6 3 4 3 3 3 10
2:00 5 3 4 3 4 4 3 2 2 3 6
3:00 2 3 6 4 5 3 4 5 6 3 6
4:00 4 4 8 4 7 6 6 2 7 6 9
5:00 4 5 5 2 6 3 2 4 4 3 6
6:00 5 2 6 5 9 4 3 6 2 5 11
7:00 5 3 3 2 3 5 4 5 3 2 4
8:00 7 4 4 4 4 5 2 5 3 5 5
9:00 5 2 3 3 4 4 5 7 8 6 2

10:00 4 5 3 4 6 3 3 5 2 5 9
11:00 6 4 2 3 7 4 5 4 4 3 13
12:00 7 2 7 5 2 2 1 7 6 4 6
13:00 6 3 4 4 2 5 5 2 7 4 8
14:00 5 4 6 2 6 4 4 6 3 5 4
15:00 6 2 5 3 6 6 6 7 4 3 6
16:00 8 1 5 2 9 5 7 4 2 3 11
17:00 6 2 6 3 7 4 4 7 2 2 8
18:00 3 3 4 3 6 6 4 5 3 6 7
19:00 4 6 3 5 3 6 6 4 5 7 4
20:00 6 3 3 3 2 3 2 6 4 1 3
21:00 4 5 2 6 5 3 6 5 6 2 9
22:00 2 2 3 3 4 5 5 3 3 4 6
23:00 3 3 2 1 3 4 3 5 2 3 8

Table 3. Hyperparameters used in PCC–GRU.

Hyperparameter Value

Epochs 100
Dropout Rate Rate
Learning Rate 0.0005

Batch Size 8
Hidden Unit 64
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4.2. Results and Analysis

The data of four sections (H3, H5, H9, and H11) were selected to verify the method
proposed in this research. In order to set the optimal threshold of PCC and time steps in
the GRUs, many experiments were carried out in this research. Indicators for evaluating
the experimental results can be calculated using Equations (10)–(13). In these equations,
xi is the temporary ship traffic volume value measured on 30 March 2021, while pi is the
predicted value by PCC–GRU, calculated with different parameters.

To study the influence of spatiotemporal state variables on prediction accuracy and
determine the optimal parameters, the thresholds of PCC were set as 0.8, 0.7, 0.6, and 0.5,
because when the threshold is greater than or equal to 0.8, there is no section related to H3,
H5, H9, or H11 in space. To improve the prediction accuracy, the PCC algorithm was used
to select spatial characteristic variables. From the position of each observation section, it
can be seen that the sections with a large correlation and with the target section are located
in the water area around the target, indicating that the traffic flow of the surrounding
water area has a great impact on the target section. According to the actual situation,
the effectiveness of the PCC algorithm in spatial feature variable selection was verified.
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Timesteps are an import parameter in neural networks. If the number of timesteps is n,
that means that we think that each value is related to n values in front of it. If the timestep
used in prediction is too large, it will lead to time information redundancy and affect the
accuracy of the prediction results. If the timestep is too small, it will lead to overfitting of
the model. The performance of the model can be seen in Tables 4–7, where the timestep of
7 obtains the lowest error. Therefore, we set the timestep to 7 in our experiments.

Table 4. Prediction performance of different thresholds in H3.

Threshold Section
Related to H3

Time
Steps MAE RMSE MAPE R2

0.8 /

3 1.61207 1.75961 42.58056 0.16006
4 1.16523 1.38184 34.99692 0.48199
5 0.69115 0.82319 18.32865 0.71491
6 0.67851 0.80884 19.62209 0.81716
7 0.65454 0.78254 18.45094 0.82826

0.7 H1
H5

3 1.47985 1.69798 41.62103 0.15091
4 1.16954 1.38582 33.64929 0.47622
5 0.70286 0.88204 20.64433 0.82194
6 0.66256 0.83853 19.73351 0.80314
7 0.65273 0.74592 18.75563 0.81522

0.6
H1
H5
H8

3 1.31057 1.68343 39.71651 0.13742
4 1.20977 1.30272 36.35331 0.45431
5 0.66667 0.81497 20.85102 0.81914
6 0.66667 0.76497 19.59404 0.88914
7 0.53453 0.68563 10.65256 0.90365

0.5
H1
H5
H8

3 1.31057 1.68343 39.71651 0.13742
4 1.20977 1.30272 36.35331 0.45431
5 0.66667 0.81497 20.85102 0.81914
6 0.66667 0.76497 19.59404 0.88914
7 0.53453 0.68563 10.65256 0.90365

Table 5. Prediction performance of different thresholds in H5.

Threshold Section
Related to H5

Time
Steps MAE RMSE MAPE R2

0.8 /

3 1.58275 1.76979 38.51897 0.22023
4 1.21120 1.41877 30.82569 0.49887
5 0.67241 0.82000 16.96503 0.83260
6 0.66235 0.81385 16.22976 0.83510
7 0.64080 0.80765 16.31632 0.83760

0.7 H3
H8

3 1.41724 1.75878 38.06598 0.39443
4 1.16666 1.39777 29.46423 0.51568
5 0.66816 0.81505 16.21954 0.83117
6 0.63662 0.79003 15.56588 0.84225
7 0.63345 0.72873 15.60616 0.85674

0.6
H1
H3
H8

3 1.39669 1.69558 36.73457 0.32426
4 1.16373 1.33858 28.51531 0.59998
5 0.66104 0.80524 15.78878 0.82455
6 0.64689 0.78769 13.30716 0.89652
7 0.62234 0.71074 9.47337 0.91359

0.5
H1
H3
H8

3 1.39669 1.69558 36.73457 0.32426
4 1.16373 1.33858 28.51531 0.59998
5 0.66104 0.80524 15.78878 0.82455
6 0.64689 0.78769 13.30716 0.89652
7 0.62234 0.71074 9.47337 0.91359
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Table 6. Prediction performance of different thresholds in H9.

Threshold Section
Related to H9

Time
Steps MAE RMSE MAPE R2

0.8 /

3 1.48127 1.86125 30.61857 0.23653
4 1.22701 1.42535 25.32567 0.30146
5 0.68241 0.83008 14.76454 0.76802
6 0.67965 0.82055 13.19848 0.77274
7 0.66523 0.81516 12.53072 0.78172

0.7 H6

3 1.46275 1.85476 29.59729 0.25606
4 1.12356 1.37632 23.55022 0.34897
5 0.66839 0.82769 13.284 0.77004
6 0.61092 0.82319 13.10851 0.78238
7 0.60939 0.80334 12.46232 0.79934

0.6 H4
H6

3 1.45873 1.80834 31.70823 0.272437
4 1.10492 1.37089 23.86203 0.367155
5 0.63366 0.82304 14.44496 0.81392
6 0.61264 0.82218 14.5587 0.83497
7 0.60034 0.80091 11.53072 0.85034

0.5
H2
H4
H6

3 1.42701 1.76694 30.44643 0.27749
4 1.10471 1.36167 24.53903 0.36465
5 0.62425 0.78569 12.67354 0.84606
6 0.58977 0.77932 11.04543 0.89926
7 0.56942 0.75345 9.59432 0.92342

Table 7. Prediction performance of different thresholds in H11.

Threshold Section Related
to H11

Time
Steps MAE RMSE MAPE R2

0.8 /

3 1.51585 1.78957 21.30284 0.39355
4 1.21831 1.42137 16.93147 0.58054
5 0.67381 0.82084 10.42556 0.69343
6 0.64799 0.80493 9.12566 0.79752
7 0.62345 0.79238 8.70294 0.80071

0.7 H8

3 1.50861 1.77856 21.14639 0.45469
4 1.17674 1.39735 16.42899 0.61225
5 0.68965 0.81455 10.25764 0.79094
6 0.66667 0.80497 9.05628 0.74576
7 0.61225 0.75934 8.57453 0.83634

0.6 H8
H9

3 1.48741 1.74551 20.91039 0.48333
4 1.12575 1.33582 15.97794 0.67957
5 0.65062 0.80676 10.17630 0.79775
6 0.62077 0.79132 8.80699 0.83894
7 0.60225 0.76385 8.53494 0.85846

0.5
H5
H8
H9

3 1.42989 1.76357 18.58104 0.56642
4 1.06954 1.31858 13.15588 0.69508
5 0.61793 0.76473 9.267573 0.85563
6 0.58345 0.72785 8.238327 0.89162
7 0.52425 0.68346 7.33485 0.92125

Further analysis of the impact of timestep on prediction accuracy shows that the
selection of different parameter combinations will change the prediction accuracy of the
model. Within a certain range, the prediction accuracy is positively correlated with the
timestep. In a certain range, with the decrease in the spatial threshold, the spatial correlation
between observation sections is lower. In the case of a high threshold, too little information
on other sections leads to a poor prediction effect. In the case of a low threshold, too
much irrelevant information is added to interfere with the prediction effect. Based on the
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prediction performance of different thresholds in Tables 4–7, the threshold was set to 0.5,
0.5, 0.6, and 0.6, respectively. The predicted and true values of observation sections H3, H5,
H9, and H11 in the training dataset are shown in Figure 6; the predicted results are in good
agreement with the actual values, indicating that the PCC–GRU model is feasible in the
actual traffic scenario.
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To verify the prediction performance of the PCC–GRU model, comparative experi-
ments were set up in this study. LSTM, SVM, and ARIMA were used to predict the traffic
flow of H3, H5, H9, and H11. These methods are commonly used in maritime traffic flow
prediction [62–64]; therefore, these methods were used as benchmarking methods. After
many experiments, the parameters of each model in the experiment were determined, as
shown in Table 8. The prediction results of the ship traffic flow of each model are shown in
Figure 7.

Table 8. Parameter setting of models.

Model Parameter

LSTM
Neuron 12

Timesteps 5
Number of Iterations 300

SVM
Kernel Function Radial Basis Function
Penalty Factor 0.8

Number of Iterations 500

ARIMA
Autoregressive Terms 2

Moving average Terms 6
Difference Items 1
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It can be seen from Table 9 that different models have different results in the traffic flow
prediction experiment in the wind farms water area. In our case study, the LSTM model
did not take into account the spatial information in the data, so its prediction accuracy was
lower than that of the PCC–GRU model, and the time taken to train the LSTM model was
too long for real-time prediction of maritime traffic flow. The machine learning algorithm
SVM is suitable for short-term traffic forecasting, but the output of the SVM model will
oscillate as the training data and the forecasting time increase. Meanwhile, the linear
model ARIMA is unable to identify the randomness and nonlinearity in the data, making
it difficult to make accurate predictions of random changes in traffic. The MAE of the
PCC–GRU model in the prediction experiments of the four sections (H3, H5, H9, and H11)
was 0.3333, 0.3750, 0.3333, and 0.3333, respectively; the RMSE of the PCC–GRU model of
the four sections was 0.5774, 0.6124, 0.5774, and 5774, respectively, while the MAPE was
8.1597, 7.0006, 10.7639, and 5.1403, respectively, which is the smallest in the comparative
analysis of the models. R2 is usually used to describe the fitting degree of the data; the
closer it is to 1, the better the fitting degree, and the smaller the deviation between the
fitted curve and the original data points. The R2 of the PCC–GRU model was 0.8799, 0.9116,
0.9063, and 0.9521, respectively, which was greater than that of other models. The bar
chart of the error analysis indicators can be seen in Figure 8. In conclusion, the prediction
results of the PCC–GRU model are closer to the observed values, and the performance of
its algorithm is better than that of other traditional traffic flow prediction methods. The
analysis of vessel traffic flow is the basis for evaluating the safety of vessel navigation in a
given area of water. By predicting the ship traffic flow in the wind farms water area and
maintaining real-time monitoring, it is possible to predict the business of vessel navigation
and to control the traffic flow to avoid close-quarters situations.
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Table 9. Performance comparison of different models.

Models
Evaluation Indexes

MAE RMSE MAPE R2

H3

PCC–GRU 0.3333 0.5774 8.1597 0.8799
ARIMA 0.8750 1.0992 24.2411 0.5647

SVM 0.5833 0.7638 16.5972 0.7899
LSTM 1.3333 1.5275 36.9792 0.1595

H5

PCC–GRU 0.3750 0.6124 7.0006 0.9116
ARIMA 0.9167 1.0801 21.6402 0.7250

SVM 0.6667 0.8165 17.3247 0.8429
LSTM 1.1250 1.3385 27.1957 0.5774

H9

PCC–GRU 0.3333 0.5774 10.7639 0.9063
ARIMA 0.8333 1.0000 26.6022 0.7188

SVM 0.7083 0.8416 24.2640 0.8008
LSTM 1.0417 1.3385 34.2758 0.4961

H11

PCC–GRU 0.3333 0.5774 5.1403 0.9521
ARIMA 0.9167 1.1902 14.7058 0.7964

SVM 0.7083 0.8416 11.9562 0.8982
LSTM 1.3750 1.5679 22.7626 0.6466
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5. Conclusions

According to the needs of traffic characteristic analysis and traffic supervision in com-
plex waters, this study introduced the spatial correlation of ship traffic flow structure into
machine learning based on the variant GRU of the recurrent neural network, constructing a
spatiotemporal dependence characteristic matrix of ship traffic flow, and improving the
prediction accuracy of the ship traffic flow by the neural network. The PCC algorithm is
simple to implement and fast to compute, taking into account the degree of correlation of
time series at different times, and it is suitable for determining correlation between random
variables. The GRU uses a unique memory module instead of implicit nodes, which in-
creases the robustness of the model and can effectively compensate for the shortcomings
of traditional neural networks that cannot effectively process long time series. Taking the
water area of the wind farm in the Yancheng sea area of Jiangsu Province as an example,
the traffic flow in this area was predicted. Compared to results of the commonly used ship
traffic flow prediction models ARIMA, SVM, and LSTM, the GRU method’s prediction
was proven to be effective. The machine learning algorithm SVM is suitable for short-term
prediction of traffic flows, but as the prediction time increases, the output of the SVM model
will oscillate. The linear model ARIMA cannot identify the randomness and nonlinearity in
the data, making it difficult to accurately predict the random changes in traffic. The LSTM
model does not take into account the spatial information in the data, and therefore has a
lower prediction accuracy than the PCC–GRU model.

By predicting the ship traffic flow and analyzing the temporal and spatial characteris-
tics of traffic flow in complex waters, the marine traffic situation can be evaluated in real
time, providing a theoretical basis for the risk evaluation and navigation safety guarantee
of complex waters—especially the waters in wind farms with multi-route intersection—and
reduces the risks of navigation and operation in the waters. Modelling the spatiotemporal
dependence of ship traffic flow is a key area of future research. There are many factors
affecting traffic flow prediction that have not been fully considered in this paper. The model
proposed in this paper learns static spatial dependencies; however, the dependencies be-
tween locations may change over time. In subsequent research, dynamic structures should
be considered in order to further improve the prediction performance.
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