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Abstract: Understanding the formation of the coral skeleton has been a common subject uniting
various marine and materials study fields. Two main regions dominate coral skeleton growth:
Rapid Accretion Deposits (RADs) and Thickening Deposits (TDs). These have been extensively
characterized at the 2D level, but their 3D characteristics are still poorly described. Here, we present
an innovative approach to combine synchrotron phase contrast-enhanced microCT (PCE-CT) with
artificial intelligence (AI) to explore the 3D architecture of RADs and TDs within the coral skeleton.
As a reference study system, we used recruits of the stony coral Stylophora pistillata from the Red
Sea, grown under both natural and simulated ocean acidification conditions. We thus studied the
recruit’s skeleton under both regular and morphologically-altered acidic conditions. By imaging the
corals with PCE-CT, we revealed the interwoven morphologies of RADs and TDs. Deep-learning
neural networks were invoked to explore AI segmentation of these regions, to overcome limitations
of common segmentation techniques. This analysis yielded highly-detailed 3D information about
the RAD’s and TD’s architecture. Our results demonstrate how AI can be used as a powerful tool
to obtain 3D data essential for studying coral biomineralization and for exploring the effects of
environmental change on coral growth.

Keywords: coral reefs; coral recruits; biomineralization; skeletal structure; synchrotron phase
contrast-enhanced microCT; PCE-CT; artificial intelligence; ocean acidification

1. Introduction

In tropical and subtropical oceans, symbiotic stony corals provide an ecological frame-
work that retains nutrients, support high rates of autotrophic production, and harbor
extensive biological diversity. The skeletons, created by tiny coral polyps in colonies, are
known to be among the largest bioconstructions in the world. Understanding the details of
structure generation and principles of coral skeletal formation have been a common topic
among diverse fields of study including biology, geochemistry, geology, paleontology, and
materials science. The skeletons of stony corals consist of two main skeletal regions known
as Rapid Accretion Deposits (RADs; also known as “calcification centers”) and Thicken-
ing Deposits (TDs; also called “fibers”). RADs correspond to areas of the skeleton with
rapid calcium carbonate deposition where new skeletal growth zones start to form [1–3].
They contain an organic matrix and consist of granular aggregates that comprise randomly
oriented calcium carbonate crystals containing both aragonite and stable amorphous cal-
cium carbonate [4–6]. A second calcium carbonate form, Mg-calcite, has been shown to also
be present in the early stages of RADs formation, typical of initial mineral development
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in early coral life stages [7]. Outward from RADs, the mineral grows into TDs, forming
elongated aragonite crystals with a fibrous morphology appearing compact and dense with
significantly reduced amounts of organics as compared to RADs [2,3,8–11].

The coral skeleton has been well characterized at the micro-structural level [2–5,8–13],
but less is known about how changes in the environment may affect its development, in
particular regarding the formation of RADs and TDs. Recent predictions suggest that
future ocean acidification (OA) conditions, resulting in a chemical shift toward higher
seawater pCO2 and lower pH, will significantly hinder the coral mineral formation and
overall skeletal growth [14–18]. In the early stages of coral life, we have recently shown
that exposure to future OA conditions causes a reduction in the abundance of RADs in
the skeletal spines [19]. However, previous results relied solely on scanning electron
microscope (SEM) images; hence, they were limited only to two-dimensional (2D) surface
observations. Indeed, most studies on coral skeletal structures make use of 2D-based
microscopy analyses [1–3,8,9,11–13,20], which lack volumetric quantifications. Therefore,
the lack of an appropriate methodology to precisely visualize the volumetric configuration
of RADs and TDs has limited investigation of the 3D structure of these two skeletal
regions [3,11,21].

Following the widespread development of high-resolution X-ray µCT in medical and
industrial applications, non-destructive imaging of 3D structures has become popular. It is
thus possible to monitor mineral internal structural changes [22] and characterization [23]
at resolutions down to a few tens of nanometers. Conventional X-ray µCT imaging meth-
ods mainly rely on X-ray absorption as a mechanism to generate images based on the
attenuation of the X-rays by the material, yielding spatial information about density distri-
butions within the sample. This technique, however, is prone to normalization artifacts and
does not distinguish between materials with very similar X-ray attenuation [24,25]. Other
methods such as phase contrast-enhanced microCT (PCE-CT) exploit differences in X-ray
interaction to create high-contrast images where even small differences in density along
the X-ray path can lead to strong contrast enhancement at interfaces between material
phases [24]. PCE-CT imaging can thus highlight edges and internal boundaries in intact
samples, even in the case of quite similar material compositions [24]. These characteristics
of PCE-CT make it a good candidate for enhancing the visibility of RADs and TDs and ease
their identification within the coral skeleton.

For a detailed analysis of microstructures, volumetric quantification techniques must
be applied with the capacity to accurately differentiate and represent individual material
phases. In recent years, several works have shown that artificial intelligence (AI) algorithms
can be applied for visual classification tasks such as in the case of materials with complex
microstructures [26–28]. These applications make increasing use of machine learning
methods based on Deep Learning (DL) neural networks. DL networks comprise a large
number of interconnected processors (neurons) that work in parallel [29]. For visual
classification, the network is trained to identify structures of interest using a training
“ground truth” dataset, which is used by the computer as a reference to classify similar
images. The process is known as supervised classification, and has been employed in µCT
images of minerals to visualize and characterize 3D structures with high accuracy [30–33].

In the present study, we combine AI and PCE-CT to obtain quantitative information
about the density and 3D distribution of RADs and TDs within coral skeletons imaged with
phase contrast enhancement. Such information is currently unavailable using conventional
2D or other imaging methods. We used coral primary polyps as the study system for the
development of a robust analytic 3D quantification methodology, since rapid calcifica-
tion during initial life stages of stony corals provides a unique opportunity to study the
formation of calcium carbonate that involves extensive skeleton morphological changes.
In addition, the early stages of coral development represent a good candidate to test the per-
formance of our approach under experimental conditions that we know induce alterations
in the development of RADs, such as exposure to OA conditions [19].
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To develop our new methodology and optimize its performance across varied condi-
tions, we analyzed high resolution scans of the skeletal structures of recruits of an abundant
stony coral species Stylophora pistillata from the Red Sea, following settlement and growth
under both natural and OA conditions. In particular, we simulated the global mean surface-
ocean decline in pH predicted to occur under the RCP8.5 scenario [34] by the end of this
century (pH drop ca. 0.1–0.4 units, from ~8.0 to 7.6; [35]). Employing PCE-CT, we identified
the µm-sized edges of RADs and TDs within the skeleton. The high-contrast images gen-
erated with PCE-CT allowed us to use AI to segment RADs and TDs, under both natural
conditions and under what we expect to be morphologically-altered OA conditions, and to
reproduce these structures in 3D with quantitative detail.

2. Materials and Methods
2.1. Sample Collection and OA Experiment

Coral larvae were collected from 15 randomly selected adult colonies of the stony
coral S. pistillata on the reef adjacent to the Interuniversity Institute of Marine Sciences (IUI,
29◦30′06.0” N 34◦54′58.3” E) in the Gulf of Eilat (Israel), under a permit from the Israeli
Natural Parks Authority. Larvae were collected using dedicated traps (160 µm plankton
net with a plastic collection container) that were placed on adult colonies from the shallow
reef (depth 6–7 m) for several nights of spawning during April 2020.

All actively swimming larvae were pooled together and were transported to a con-
trolled environment aquarium system at the Leon H. Charney School of Marine Science
(University of Haifa, Haifa, Israel). Larvae were placed in custom-made polypropylene
plastic chambers (~20 larvae per chamber) consisting of a central cylinder sealed at the
ends by plankton netting. Settlement chambers were used in this experiment to avoid
losing larvae through the water recycle system of the aquariums before settlement, as
previously reported [19,36,37]. Prior to the insertion of the larvae, the chambers were
washed to remove any potential chemical released by the plastic, and they were left to soak
in seawater for one week.

The settlement chambers (1 chamber per aquarium) were placed in a system of 6 flow-
through aquariums with artificial seawater (Red Sea Salt, Red Sea Ltd., Houston, TX, USA)
replicating the spring northern Red Sea water conditions as previously described [19]: pH of
8.19± 0.01 (seasonal mean± s.d.), salinity of 40.63± 0.03 g L−1 (seasonal mean ± s.d.), and
temperature of 22.18 ± 0.17 ◦C (seasonal mean ± s.d.). An irradiance of 250 µmol photons
m−2 s−1 on a 12-h light-dark cycle was provided by a Mitras LX 7206 LED aquarium light
system (GHL, Kaiserslautern, Germany).

Prior to the insertion of the settlement chambers, the carbonate chemistry of seawater
was manipulated in 3 of the experimental aquariums by injecting CO2 to reduce the am-
bient pH 8.2 (pCO2~487 µatm) and obtain the target value of pH 7.6 (pCO2~1938 µatm).
Temperature and salinity were monitored continuously throughout the experiment by elec-
trodes linked to a monitoring system (GHL, Kaiserslautern, Germany) that controlled CO2
injection, and they were also measured three times per day using a portable Orion Star™
A222 conductivity meter (Thermo Fisher Scientific, Waltham, MA, USA). Measurements of
pH (NBS scale) were performed three times per day using a pH glass electrode (Metrohm,
Herisau, Switzerland) where buffer solutions (Rocker Scientific, Taiwan) were employed to
perform calibration (pH 4, pH 7, and pH 10). Measurements of total alkalinity (TA) were
made once per day (triplicates) via titration with 0.1 N HCl containing 40.7 g NaCl L−1,
using an automatic alkalinity titrator (855 Robotic Titrosampler, Metrohm, Herisau, Switzer-
land) controlled by Tiamo (Software version 2.0, Metrohm, Herisau, Switzerland). Au-
tomated titrations of 50 mL samples were performed. Parameters of seawater carbonate
system were calculated from pH, TA, temperature, and salinity using the CO2SYS pack-
age [38] with constants from [39] as refit by [40] (Supplemental Table S1). Throughout the
experiment, corals were fed once per day with 2 mL of concentrated planktonic suspension
(Microvore, Brightwell R aquatics, Fort Payne, AL, USA). The experiment lasted for a total
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of 9 days, following our previous experimental procedure [19], after which primary polyps
were gently removed from the chambers and stored with 90% ethanol in 2 mL tubes.

2.2. X-ray µCT: Image Acquisition and Tomographic Reconstruction

Primary polyps were fixed with EpoFix resin (Agar Scientific, Stansted, UK) on top of
polypropylene micropipette tips. Tomographic scanning was conducted at BAMline [41,42],
the imaging beamline of BESSY II (the synchrotron storage ring of HZB—Helmholtz-
Zentrum Berlin, Germany). Each sample (N = 3 per pH treatment) was attached to a metal
stub and scanned with incremental rotation (multiple projections spanning 180◦) (Figure 1a)
using the high-resolution imaging setup (Supplemental Figure S1) [43] with exposure times
set to 1 s. Projection images were acquired with a final pixel size of 2.2 µm using PCE-CT
imaging mode at an energy of 24.5 keV. Additional absorption scans were performed for
comparison, using an energy of 16.26 keV, to ensure correct identification of the skeletal
structures avoiding contrast enhancement.
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Figure 1. Workflow for acquisition and processing of tomographic datasets of coral recruit skele-
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Figure 1. Workflow for acquisition and processing of tomographic datasets of coral recruit skeletons.
(a) X-ray projections are acquired from different angles of the skeleton with incremental rotation (0◦ to
180◦); (b) following normalization (gray star = additional details are shown in Figure 2), tomographic
cross-sectional slices are reconstructed; (c) cross-sectional slices are stacked and processed into 3D
views of the recruit skeletons; (d) AI-based segmentation and classification are performed so that the
features of interest can be analyzed and visualized in 3D. An example distribution of RAD thicknesses
is shown.
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Prior to reconstruction, data were normalized to account for beam inhomogeneities
using an in-house Octave-based reconstruction pipeline in the labs of the Charité, Uni-
versitätsmedizin (Berlin, Germany). Specifically, for each scan, the radiograms were
background-corrected by normalization with best-fitting (minimum variance) empty beam
(flat-field) images, obtained both before and after each scan, and corrected by subtraction of
dark-current images (Figure 2). Reconstruction was performed by the filtered back projec-
tion method using nRecon (v 1.7.4.2, Brucker micro-CT, Kontich, Belgium) to generate 3D
datasets from cross-sectional 2D images (Figure 1b). Tomographic datasets were visualized
and further processed in 3D using Dragonfly (v 2021.3, Object Research Systems—ORS,
Montreal, Quebec, Canada) (Figure 1c,d) [44], with additional stack analyses performed in
FIJI [45].
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Figure 2. Example X-ray µCT radiographs of a recruit skeleton as obtained on the beamline (left)
and after normalization (right). Radiographs were background-corrected by normalization with
empty beam (flat-field) images and by the subtraction of dark-current images. The dark silhouette
of the coral is seen to be suspended within a faint halo of epoxy resin, visible in the normalized
(right) image.

2.3. Deep-Learning-Based Image Segmentation

To objectively identify structures in the PCE tomographic data, each reconstruction was
segmented using the Deep Learning functions built into the 3D commercially-available soft-
ware Dragonfly (v2021.3, Object Research Systems—ORS, Montreal, Quebec, Canada) [46].
Segmentation is necessary for the processes of analysis and quantification of the volume
of RADs and TDs with respect to the total volume of the skeleton (mineral excluding
air cavities) of each primary coral polyp scanned. This process is required to partition
digital images into several sub-volumes, each representing a distinct 3D feature, obtained
by identification and grouping of similar volume pixels (voxels) [47]. Image segmenta-
tion is thus typically used to locate objects of interest in large volumes of data needing
quantification. In the present study, we applied semantic image segmentation by labeling
and grouping pixels in each slice-image according to the feature that they were part of
(RADs, TDs, or air spaces). For this classification, we used the U-Net network architecture
algorithm, which has been shown to be very efficient in segmenting biomedical images [48].
When applying supervised classification, the network is manually trained by providing
examples of how different features within the data should be classified. This is achieved
by manually selecting groups of voxels and assigning them to a specific feature within a
set of representative images, considered to be a training dataset. The computer then uses
the manually-segmented training datasets as reference for automatic classification of all
other regions in all images. We therefore manually delineated RADs, TDs, and air spaces in
several (<10) 2D slices within each reconstructed tomographic dataset. These were used to
train the network to recognize different features within all other images (Figure 3a–d).
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Figure 3. Overview of the DL (deep-learning-based) image segmentation process. (a) Example tomo-
graphic cross-sectional slices across the skeleton of a primary polyp before segmentation, revealing
RADs (dark gray areas, yellow arrows) enclosed within TDs (light gray areas, pink arrowheads).
(b,c) Manually delineated RADs (b; marked in yellow) and TDs (c; marked in pink) defined in a
confined region within the training dataset. (d) Complete region manually delineated as training
dataset, showing all three features (RADs in yellow, TDs in pink, and air spaces in green). (e) Result
of the complete dataset processed by automatic DL-based segmentation. The AI network was applied
to all slices within the stack, and it has automatically successfully distinguished RADs (yellow) and
TDs (pink). Scale bars: 300 µm.
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Training requires optimizing a series of parameters that define the performance of
the U-Net network workflow. Within the Dragonfly platform, several parameters can be
tuned: (1) patch size (images are split into smaller rectangular patches that contain the
feature of interest [49]), (2) stride-to-input ratio (a parameter defining the typical position
relationships between neighboring patches), (3) batch size (the number of patches evaluated
concomitantly), (4) number of epochs (cycles of iteration that involve computation of all
batches of the training dataset), (5) loss function (which measures the difference between
groups of voxels in the training set images, considered to be “the ground truth images”,
and the output value predicted by the network [50]), (6) optimization algorithm (different
approaches to minimize the loss function, and thus to reduce the training error), and
(7) data augmentation (how many times each data patch is augmented during a single
training epoch). In this work, optimization of the DL network performance was achieved
by making trial runs with different combinations of number of training slices and of the
above-mentioned values of network parameters (starting with default settings provided at
first by the software), until reaching reproducible accuracy of the segmentation (a single
user ensured by visual examination that the trained network accurately segmented skeletal
regions, by comparison to the ground truth images, i.e., the training set of images). The
final optimized workflow thus required training datasets of 8 to 11 slices and a series of
parameters (1–6 as described above) set to: (1) 32, (2) 1, (3) 32, (4) 100, (5) OrsDiceLoss,
(6) Adadelta, and (7) 2. The trained network was then applied to segment all slices within
each tomographic stack (Figure 3e). The segmented skeletal structures were visualized in
3D (Figure 1d) and their thickness was computed.

2.4. Performance of the DL-Based Image Segmentation and Evaluation of the RADs/TDs Shape
Variability within and between Tomographic Datasets

Each tomographic dataset (corresponding to a single coral recruit) was used to train
a DL network independently. Representative slices from each dataset were trained to
identify the 3 image features, as shown in Figure 3. Thereafter, networks optimized for
each dataset were checked for segmentation of other datasets (e.g., DL network optimized
on dataset A applied to segment dataset B). The degree to which image features were
correctly classified as TDs or RADs was assessed by visual inspection and by computing
the degree of mismatch (underestimation or overestimation in % of the RADs area with
respect to the total area of the skeleton - measured as the combined cross-sectional RAD +
TD areas in each slice). Performance was also compared with a DL network trained using
all tomographic datasets (3 from the control pH and 3 from the low pH, 8–11 training slices
were selected within each dataset) and using it to segment datasets from both the control
and low pH conditions.

Because the performance of AI-based image segmentation is strongly influenced by
the degree of variability of the target-objects shapes [51–54], we estimated the variation in
the RADs-TDs relative shape configuration by using basic shape descriptors (perimeter
and area per slice) and comparing them across datasets. In particular, we computed the
RADs-TDs relative shape configuration according to Equation (1).

C =

P(r)
A(r)

P(t)/A(t)
(1)

where P(r) and A(r) are the perimeter and area of RADs, respectively, and P(t) and A(t) are
the perimeter and area of TDs, respectively. Such values were computed per each slice
within each single dataset and ultimately expressed as a percentage. We then calculated
the skewness of C distributions and used it as a metric to evaluate the degree of the
RADs-TDs shape variation across datasets, as well as to compare it with the results of the
segmentation performance.
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2.5. Statistical Analysis

The per-slice percentage of RADs area over the cross-sectional area of the skeleton
computed for different segmentation outcomes, as well as the skewness of the distribution
of the per-slice RADs-TDs configuration, were tested for normality (Shapiro–Wilk test)
and homogeneity of variance (Brown–Forsythe test). For the skewness measurements,
the unpaired t-test was used (to test the differences between pH treatments), in which
significant groups have a value of p ≤ 0.05 (n = 3 primary polyps per pH condition).
Nonparametric equivalents of tests were used in cases where the assumptions of normality
and homogeneity of variance were violated. For such cases (i.e., mean per-slice percentage
of RADs area over the total area of the skeleton), a Wilcoxon matched-pairs signed rank
test was used, in which significant groups have a value of p ≤ 0.05. The GraphPad Prism
software version 9.0.0 (GraphPad Inc., San Diego, CA, USA) was used to perform the
statistical tests. All results are presented as mean ± SE.

3. Results
3.1. Detection and Distinction of Coral Skeletal Structures

We reconstructed high-resolution tomography datasets of up to 1000 cross-sectional
slices per scanned coral primary polyp, each amounting to a total of 54 GB of data. Each
reconstructed image presents the complete form of the original coral skeleton including
details of the internal skeletal architecture. In the PCE-CT images, strong differences in
contrasts within the skeleton revealed clear internal variations in mineral distribution
(Figure 4). Such variations coincide with previous observations of RADs possessing a
less compact arrangement of the aragonite aggregates and a higher amount of organics
compared to TDs [2,3,8–13]. Absorption images further confirm variations in mineral
density between skeletal regions, though with blurry edges due to the poor signal. These
scans show that RADs are indeed less dense than the surrounding TDs (~20% lower
density; Supplemental Figure S2). This clear difference in density allowed us to ascertain
that the contrasts observed by PCE-CT correspond to RADs and TDs in all phase contrast
enhanced datasets. To allow for volumetric quantification and 3D visualization, image
segmentation has to be applied, which requires clear boundaries to be present between
different features [55]. The PCE-CT imaging mode appears, therefore, to be perfectly suited
for the purpose, as the interfaces between RADs and TDs are accentuated and easy to
identify, especially when compared to absorption images (Figure 4).
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Figure 4. Typical coral skeleton details observed in cross-sectional tomography slices and comparison
between absorption and PCE imaging modes. Differences in X-ray absorption within the skeleton
reveal variations in both mineral distribution and density between RADs (darker regions correspond
to lower density) and TDs (lighter regions, higher density); the red marked insets are shown on the
right. Strongly defined boundaries can be observed between RADs and TDs in slices from PCE-CT
datasets, whereas absorption images provide a blurry, poorly distinguishable separation between the
two skeletal regions. Scale bars: 300 µm (left images), 100 µm (right images).

3.2. Segmentation of RADs and TDs

Conventional segmentation methods typically rely on choosing cut-off gray-values and
are often based on the voxel intensity histograms. By applying a thresholding, the image
can be segmented into the features that are below or above defined threshold values [56].
A gray-value histogram of an example coral skeleton shows that no clear distinction exists
in gray-values corresponding TDs and RADs, as there is an overlap between the intensity
ranges (for example, see gray-values of the margin of TDs facing the exterior of the skeleton
and facing the RADs in Figure 5a,c). Phase-contrast images in fact are edge enhanced,
meaning that both the brightest and lowest intensities of the image are found in the margins
delineating the edges and internal boundaries of different densities and interfaces in the
sample, and meaning that different features of interest may have the same “color”.

Although PCE-CT imaging creates a sharp visual discrimination of RADs and TDs, a
simple “binary” threshold applied to this type of image does not yield precise segmentation
and reliable distinction between the two skeletal regions, due to the overlap between
the intensity range of RADs and the TDs margins. This is shown by the mismatches
between the distribution of RADs and TDs as observed in the reconstructed image and
the distribution outlined by simple thresholding (Figure 5a,b). Thus, segmentation and
ultimately quantification and 3D visualization of RADs and TDs require the use of a more
sophisticated technique. Figure 6a depicts results obtained by the automatic segmentation
performed using DL networks, which reveals a far better distinction of RADs and TDs
within the recruit skeletons. The impressive separation between features becomes evident
within the complex shapes of RADs across the skeleton (Video S1), and provides a means for
overcoming the limitations imposed by the overlap in gray-values intensity ranges. Such
detail-sensitive segmentation of RADs and TDs across an entire stack of slices ultimately
allows for accurate volumetric quantification and 3D reproduction of the entire recruit’s
skeleton, including fine details of local thickness within RADs (Figure 6b, Video S1).
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Figure 5. Slices and typical histogram of gray-values in PCE image and quality of non-DL-based
image segmentation. (a) Close-up of the skeleton, showing RADs (dark gray areas), TDs (light gray
areas), and delineating the outer and inner edges of TDs (green and pink lines, respectively). (b)
Result of a simple threshold applied to segment RADs (RADs segmented by the thresholding method
are colored in red). Note that, compared to their actual shape in the ground truth image (a), RADs
are not precisely segmented (see arrows for example mismatch, where TDs regions are classified as
RADs) and they are not distinguished from the outer edge of TDs, which are also thresholded as
RADs by this method. (c) Gray-value histogram for an example tomographic stack of an imaged
coral skeleton. The gray-value ranges for all regions depicted in (a) are highlighted in different colors.
Note the overlap between the gray-value ranges of RADs and of the inner/outer edges of TDs, which
makes it impossible to reliably segment these regions by simple threshold, as demonstrated in (b).
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Figure 6. Deep-Learning-based image segmentation and quantitative 3D reproduction of segmented
RADs and TDs. (a) Two example 3D renderings of a primary polyp skeleton virtually sliced in the
transverse plane (upper row) and in the longitudinal plane (bottom row). Red dotted lines show
enlargements of the sliced skeleton that have been segmented using DL (segmented TDs and RADs
are colored in pink and yellow, respectively). DL, Deep Learning. (b) Segmentation of RADs and TDs
across the entire stack of slices allows 3D separation of features and quantification, including details
of local thickness (µm).

3.3. Evaluation of the DL-Based Segmentation Performance

Figures 6 and 7c,d show the intricate details made available due to the DL segmenta-
tion based on training an independent network (e.g., network A trained and applied on
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dataset A). Visual inspections of the segmentation outcomes reveal that applying a network
optimized on a single tomographic dataset does not always provide a precise segmentation
of other datasets (cross segmentation), as demonstrated by small mismatches between the
real arrangement of RADs and TDs (as observed in “ground truth” images, Figure 7a,b)
and the distribution outlined by the DL segmentation (Figure 7e,f).
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skeleton, for both control pH dataset (mean per-slice difference of −1.60% ± 0.07 between 
the % RADs area/total area obtained with independent segmentation and the one obtained 
with cross segmentation; Wilcoxon test, W = −20060, p < 0.0001) (red dots compared to 
green dots in Figure 8a) and for low pH dataset (mean per-slice difference of +7.90% ± 0.38 
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pared to blue dots in Figure 8b). Importantly, however, for the normal pH, the differences 

Figure 7. Evaluation of the DL-based segmentation performance. (a,b) Details of the skeletal
structures in representative coral recruits from the control and low pH conditions before applying
the DL-based segmentation (ground truth images). RADs and TDs in example areas have been
manually delineated in yellow and pink, respectively. (c,d) Segmentation of RADs and TDs based
on training a network independently per each single dataset. Specifically, (c) shows the outcome
of the segmentation of network A trained and applied on dataset A (a representative control pH
sample), whereas (d) shows the outcome of the segmentation of network X trained and applied
on dataset X (a representative low pH sample). (e) Segmentation obtained by employing a DL
network that was trained using dataset B (another representative control pH sample) and applied
to dataset A. The white arrows point to mismatches in the segmentation as compared to the more
accurate segmentation in (c). Note how RAD regions have been segmented as TDs. (f) Segmentation
obtained by training the DL network on dataset A and using it to segment dataset X. The white
arrows point to mismatches in the segmentation as compared to the correct segmentation in (d).
(g,h) Segmentation obtained by employing a DL network that was trained using all tomographic
datasets (all 6 datasets from both control and pH conditions). White arrows identify example points
where different segmentation is seen in (g) as compared to (e), and the better segmentation in (h) as
compared to (f). Scale bars: 100 µm.

Such visual segmentation mismatches for the cross segmentation cases lead to signifi-
cant differences in the mean per-slice percentage of RADs area over the total area of the
skeleton, for both control pH dataset (mean per-slice difference of −1.60% ± 0.07 between
the % RADs area/total area obtained with independent segmentation and the one obtained
with cross segmentation; Wilcoxon test, W = −20060, p < 0.0001) (red dots compared to
green dots in Figure 8a) and for low pH dataset (mean per-slice difference of +7.90% ± 0.38
between the % RADs area/total area obtained with independent segmentation and the
one obtained with cross segmentation; Wilcoxon test, W = 13861, p < 0.0001) (purple dots
compared to blue dots in Figure 8b). Importantly, however, for the normal pH, the differ-
ences are less than 2%, which is impressive given the huge number of slices processed. The
generation of such discrepancies may be due to the sensitivity of AI in segmenting images
where there are large variations in the shape of the objects of interest between different
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datasets [51–53]. We indeed found substantial variations in the shape of skeletal features
among datasets, as indicated by the different skewness values of the distributions of the
RADs-TDs shape configurations (Figure 8c,d and Supplemental Figure S3). Curiously
though, we did not find a significant correlation between these skewness values and the
degree of overestimation or underestimation of the RADs/total skeleton area. This suggests
that, on average, DL segmentation does not skew the data and is certainly no less accurate
than other segmentation methods.
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Figure 8. Evaluation of the DL-based segmentation performance based on the per-slice estimation
of the area of the coral skeletal features and skewness of the distributions of the RADs-TDs shape
configuration across samples. (a,b) Measured per-slice area of RADs over the total area of the skeleton
(RADs + TDs) estimated using independent, cross, and all-inclusive segmentations (as shown in
Figure 7) in the case of a control pH sample (a) and a low pH sample (b). The slice number indicates
the progression through the recruit’s skeleton going from the base to the top, as illustrated by the
coral skeletons on the right side of the graphs. Note how, for both control and low pH datasets,
the per-slice area of the RADs obtained with all-inclusive segmentation gets closer to the value
obtained with independent segmentation (red dots versus yellow dots and purple dots versus light
blue dots, respectively) compared to the per-slice area obtained with cross segmentation (red dots
versus green dots and purple dots versus blue dots, respectively). (c,d) Skewness of the distributions
of the per-slice RADs-TDs shape configuration in control pH (c) and low pH (d) samples (see also
Supplemental Figure S3). The ratio of the RADs perimeter/area over the TDs perimeter/area (“C”)
was computed as an estimate of the relative shape of the skeletal features across the recruit skeletons.
The skewness values are used as a metric to evaluate the degree of the RADs-TDs shape variation
across datasets.
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Notably, differences in the skewness of distributions are particularly evident when
comparing datasets across pH conditions. Low pH datasets in fact have a significantly
lower mean skewness (5.47 ± 0.48) compared to control pH dataset (mean of 11.13 ± 1.36;
Unpaired t test, t = 3.922, p = 0.017) (Figure 8c,d), suggesting an underlying shaping effect
of acidic seawater on the RADs-TDs distribution across the recruits skeleton, requiring
further in-depth investigation.

Further visual evaluation of the different segmentation outcomes reveals that applying
a network trained using all tomographic datasets (named all-inclusive segmentation)
provides a much improved segmentation performance compared to the cross segmentation
(Figure 7e–h). These observations are supported by the measurements of the mean per-
slice percentage of RADs area over the total area of the skeleton (Figure 8a,b). For both
control and low pH datasets, the all-inclusive segmentation yielded a significantly better
estimation of such percent area than the one produced by the cross segmentation (for
the control pH dataset: mean per-slice difference of −0.95% ± 0.10 between the % RADs
area/total area obtained with independent segmentation and the one obtained with all-
inclusive segmentation, Wilcoxon test, W = −13081, p < 0.0001; for the low pH dataset:
mean per-slice difference of +2.65% ± 0.15 between the % RADs area/total area obtained
with independent segmentation and the one obtained with all-inclusive segmentation,
Wilcoxon test, W = −13651, p < 0.0001)(see red dots compared to yellow dots in Figure 8a
and purple dots compared to light blue dots in Figure 8b). These results indicate that
variations in the coral geometries themselves increase the variability of shapes encountered
by the model during training, which in turn substantially increases the robustness of the
DL-based segmentation performance.

4. Discussion

Combining PCE-CT and AI-based image segmentation, we have developed a highly
sensitive methodology to obtain quantitative volumetric information about RADs and
TDs, the two main skeleton domains of reef-building corals (Figure 6, Video S1). As is the
case for many tomographic analyses, image segmentation of the coral is a necessary step
for quantitative analytical investigations of the datasets. Our work provides a pipeline
that allows to extract the regions corresponding to volumes and densities of interest and
to obtain their detailed 3D geometry quantification. Image contrast differences strongly
influence the segmentation performance, as they determine how well objects of interests
are differentiated by both human and machine vision, thus improving the object perceptual
quality [57,58]. In the present study, we show that PCE-CT yields the needed high contrast
difference that is essential to visually identify the fine intricate interwoven structures of
TDs and RADs within the intact coral skeleton. Indeed, PCE has proven to be a powerful
tomographic method in both biomedical research and geological sciences to increase image
contrast and enhance image segmentation performance [59].

Although PCE-CT imaging greatly facilitates the visual distinction between RADs
and TDs by accentuating their µm-sized boundaries, it introduces difficulties to precisely
segment the two skeletal regions using simple segmentation techniques. Specifically, edge
enhancement and strong artefacts totally preclude any phase retrieval such as the paganin
method [60]. For many datasets, thresholding is the simplest and more common method
of segmenting images, which assumes that it is possible to find a single threshold value
coinciding with the grayscale intensity of the pixels that correspond to the same structure
in the volumetric image [56]. However, accurate image thresholding is only possible in
cases where the different features in an image have clearly different peaks in the gray-value
histogram. The significant overlap observed between the gray-value ranges of RADs and
of the TDs edges makes it impossible to achieve a complete segmentation of the skeletal
structures using a simple threshold (Figure 5). It is for this reason that DL algorithms are
of great interest, as they may help overcome this difficulty by iteratively learning from
data, allowing computers to digitally dissect images through automatic detection and
classification of pixels belonging to the structures of interest [61]. In spite of the high
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complexity of the RADs structure across the recruit skeletons, the automatic segmentation
performed by training DL networks delineated and distinguished RADs and TDs with great
detail, an essential step on the path for volumetric quantification and visualization (Figure 6
and Video S1). Though computationally intensive, automated image segmentation has
been widely reported in recent years for biomedical image segmentation (reviewed in [62])
as well as for mineral characterization [30–33]. However, up to now, the use of AI for
retrieval of biologically interpretable results in the context of coral skeleton morphology
has never been reported.

The impressive, robust performance of the DL-based segmentation in identifying and
distinguish RADs and TDs across the coral skeleton particularly applies in the case of DL
networks optimized for single datasets independently. In contrast, a network that was
trained on one specific tomographic dataset yields severe mismatches when applied to
segmentation of a different dataset, presumably because it is presented with previously
unencountered shape configurations of the target skeletal features (Figures 7 and 8, Supple-
mental Figure S3). This suggests that the variability in coral geometries must be considered
and possibly quantified, when generalizing findings, e.g., TDs or RADs morphologies. Fur-
thermore, this suggests that the performance of AI in segmenting coral skeletal structures
is quite sensitive to the large variability of the shape of RADs and TDs that exist among
different recruits. Such shape variability is especially evident when comparing control pH
recruits to low pH recruits, suggesting a morphologically-altering effect of OA on coral
skeletal features that will require further in-depth examination to be deciphered. We specu-
late that the significant morphological differences tip the ratio between TDs and RADs in
the skeletons in such a way that AI needs much more information to fully characterize the
effects of OA. Note that the number of regions and slices presented to the DL for training
in the normal pH and OA affected recruits was identical. This clearly indicates that normal
pH corals are more similar to one another than to the pH affected corals.

Indeed, varying appearance of target features poses a great challenge in image segmen-
tation (reviewed in [54]). For example in medical research, there can be wide differences
between different medical images that affect the adaptability of DL network models during
segmentation [62,63]. This is mainly due to the heterogeneous appearance of target organs
for segmentation, which may vary hugely in size, shape and location from one patient
to the other [64]. Another aspect that may restrict the performance of DL-based image
segmentation is the limited diversity of data available to train a network [54,62,63]. Here,
we show that widening the spectrum of possible appearances of the target skeletal features
to be recognized using AI across multiple datasets considerably improves the DL-based seg-
mentation performance (Figures 7 and 8). This showcases the power of AI when fed with
diverse training data, and the potential of application across multiple tomographic datasets.

A commonly adopted method to generate new samples and increase the size of
the training datasets is data augmentation, which is the application of a set of image
transformations (e.g., rotation or flipping) to the dataset [65]. In this way, previously
unencountered target features can potentially be approximated by the network. However,
this method also adds sources of error and variability to the general methodological
framework, as so far there is no strict consensus on which transformation to introduce and
generally the transformation parameters are inconstantly chosen [54]. In this regard, we
aim at improving the performance and generalizability of DL models across diverse coral
datasets by collecting a larger diverse array of coral tomography data. If such datasets are
made publicly available through, for example, open-access online databases, they will form
a source of data that can be used to train robust, efficient, and generalizable DL models
for use in coral research. It should be noted that image processing and segmentation of
entire coral polyps with resolutions of ~2 µm and, in particular, using DL networks require
very large computation memory and power, for which high-performance workstations
may not be ubiquitously available. Yet, providing tools to help researchers analyze and
utilize such data is essential, thus forming a data-collection-analysis feedback loop. Our
work presented here is a first step on this ambitious path.
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5. Conclusions

To the best of our knowledge, this is the first study that applied AI approaches to
investigate the internal 3D geometry of RADs and TDs in coral skeletons based on high-
sensitivity, non-destructive PCE-CT data. The approach presented here opens the possibility
of using AI to reconstruct and quantitatively analyze the internal skeletal network of reef-
building corals. In particular, such technology has the potential to improve ecological
monitoring programs, by assessing coral skeletal anatomy and providing morphological
descriptors in order to taxonomize hard corals to genus and species levels. In addition, it can
expand our knowledge on coral biomineralization by providing a means of characterizing
the microscale interfaces within the different coral skeletal regions. Lastly, such a tool allows
us to study the dynamics of coral skeletal formation under a variety of environmental
conditions, including predicted OA scenarios.

In the last decades we witnessed a significant decline in coral reefs all over the world,
and as global climate changes are becoming more severe, the need to protect coral reefs
is becoming urgent. Hence, applying materials science contrast-enhanced methods to
structural research in corals would be of great benefit for the development of highly
targeted restoration strategies, as it would critically expand our knowledge on the effects
of environmental change on coral skeleton development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jmse10030391/s1, Figure S1: Coral sample fixed in the sample holder in front of the X-ray
source. Figure S2: Density variation among RADs and TDs. Figure S3: Skewness of the distributions
of the per-slice RADs-TDs shape configuration across tomographic datasets. Table S1: Parameters
of the carbonate chemistry across experimental pH conditions. Video S1: 3D view of coral skeletal
structures before and after DL-based-segmentation.
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