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Abstract: Underwater images often come with blurriness, lack of contrast, and low saturation due
to the physics of light propagation, absorption, and scattering in seawater. To improve the visual
quality of underwater images, many have proposed image processing methods that vary based on
different approaches. We use a generative adversarial network (GAN)-based solution and generate
high-quality underwater images equivalent to given raw underwater images by training our network
to specify the differences between high-quality and raw underwater images. In our proposed method,
which is called dilated GAN (DGAN), we add an additional loss function using structural similarity.
Moreover, this method can not only determine the realness of the entire image but also functions
with classification ability on each constituent pixel in the discriminator. Finally, using two different
datasets, we compare the proposed model with other enhancement methods. We conduct several
comparisons and demonstrate via full-reference and nonreference metrics that the proposed approach
is able to simultaneously improve clarity and correct color and restores the visual quality of the
images acquired in typical underwater scenarios.

Keywords: underwater image restoration; dilated generative adversarial networks; artificial intelli-
gence; deep learning

1. Introduction

Marine resource exploration is very difficult due to image distortion caused by the
underwater environment. Most images have complicated lighting conditions, color casts,
color artifacts, and blurred details, which make image restoration more challenging. There-
fore, underwater image enhancement-related innovations are essential to improve the
visual quality and merit of images so as to accurately perceive the underwater world.

Researchers have addressed these problems with several image processing methods to
improve the quality of images taken in underwater environments. One traditional approach
is to use a degradation model to enhance underwater images, with a focus on adjusting
image pixel values to produce appealing results without underwater physical parameters.
However, important complex underwater physical and optical factors are required, which
make such traditional methods difficult to implement. Because of the lack of important
physical parameters, these methods exhibit poor visualization performance across a variety
of underwater images. In addition, these models often are too computationally expensive
for use in real-time applications.

With the increasing resources of data and computing power from time to time, tradi-
tional methods are being substituted by artificial intelligence (AI). Deep learning has gained
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popularity due to its exceptional performance when trained with massive amounts of data.
Furthermore, various convolutional neural network (CNN) architectures have been applied
broadly to computer vision tasks, e.g., image deraining [1], image super-resolution [2],
and image denoising [3], and deep learning has been applied to enhance underwater
images [4–9]. Generative adversarial networks (GANs) have improved tremendously in
the field of synthetic images, by which underwater image quality can be enhanced using a
large collection of paired or unpaired data. The basic architecture of GANs are based on
the structure of two neural networks, making one against another to create instances of
data that are synthetic enough to pass the discriminator as real data. These networks are
widely used in the field of generating images, videos, and voices.

In this paper, we propose a GAN-based deep model focusing on generating high-
quality underwater images equivalent to given (input) real-world underwater images by
removing color artifacts and casts. We term our solution dilated GAN (DGAN). DGAN
uses the structural similarity index measure (SSIM) in its structure to increase the learning
concentration of structural similarities between the enhanced image and ground-truth
image domains. Furthermore, the pixel-based L1 norm and gradient operation constrain
the architecture to produce high-quality underwater images. A general view of our pro-
posed structure is shown in Figure 1. We go through an evaluation and comparison on
the performance of the proposed architecture on two different datasets (containing both
enhanced and real-world underwater image pairs). The experimental and comparative
results show that the proposed method generates better high-quality underwater images
when compared to state-of-the-art methods. Our contributions include the following:

1. We propose a GAN-based domain-transfer technique to produce a high-quality un-
derwater image equivalent to a given (input) real-world underwater image, where an
encoder–decoder architecture is used on both generator and discriminator.

2. In contrast to general generators, the encoder of the generator has a dilated convolu-
tional to capture more contextual information.

3. We use an additional loss term based on the structural similarity index measure
(SSIM), norm L1, and gradient operation for improved results.

4. We conduct experiments on two different large benchmark datasets.
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Following the introduction in Section 1, Section 2 briefly introduces the related work.
Section 3 presents a more detailed representation of our proposed strategy, including
the visual enhancement of underwater imagery. We discuss experimental results and
comparisons in Section 4, followed by a conclusion in Section 5.

2. Related Work

Given the importance of underwater vision, many techniques have been proposed
to enhance underwater images. We summarize these approaches based on traditional
methods and deep-learning-based approaches.

2.1. Traditional Methods

The main goal of techniques of underwater image enhancement is to improve the
quality of underwater images by manufacturing a degradation model, which is later run
through estimation of model parameters. The most popular method is perhaps the dark
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channel prior (DCP) technique [10], which is applied primarily to dehaze fogged images.
DCP does well in dehazing fogged images, but fails to restore underwater images. DCP-
based variants have been developed for underwater imaging [11,12]. Drews et al. [11]
propose a method that specifies and applies the DCP only on the blue and green channels
apart from the red channel to predict the transmission map. Galdran et al. [12] propose
a novel method based on DCP theory to improve clarity and correct color in the under-
water environment. Peng et al. [13] propose a method, generalized dark channel prior
(GDCP), to perform an image restoration process. This method reduces the variables to
several DCP variants for special cases of conditions of ambient light and turbid medium.
Instead of the DCP, Li et al. [14] employ a hybrid method to improve the visual quality
of degraded underwater images, which includes color correction and underwater image
dehazing. Another traditional method modifies image pixel values to improve visual
quality. Iqbal et al. [15] propose an unsupervised color correction method (UCM) based on
color balancing, contrast correction of the RGB color model, and an HSI color model for
underwater image enhancement. Ancuti et al. [16] propose a method that combines two
images processed by white balance adjustment and contrasts limited adaptive histogram
equalization. Fu et al. [17] employ a retinex-based approach to enhance a single underwater
image that includes color correction, lightening of dark regions, naturalness preservation,
and edge and detail enhancement. In 2017, the same authors [18] proposed a two-step
approach, which includes two algorithms, color correction and contrast enhancement, for
underwater image enhancement. Despite the excellent results obtained from these models,
the complexity of the algorithm and lack of important physical parameters prevent their
application for general users.

2.2. Deep-Learning-Based Methods

Another approach to underwater image enhancement employs learning-based meth-
ods. Deep learning is popular as a powerful tool for solving low-level vision problems,
and has boosted this already rapidly developing field. Most of the literature on generating
high-quality underwater images introduces generative adversarial network (GAN)-based
architectures [5–8]. These methods heavily rely on synthetic pairs of high-quality images
and degraded counterparts due to the training method. Fabbri et al. [7] demonstrate that
CycleGAN can be used to perform dataset generation, which contains paired images for the
restoration model of the underwater image. Li et al. [6] employ an unsupervised generative
network and propose a real-time color correction method (WaterGAN) for monocular
underwater images. Wang et al. [5] propose an underwater GAN (UWGAN) for generating
realistic underwater images, and use U-net with combined loss functions for degraded
underwater image enhancement. In 2020, Guo et al. [8] proposed a multiscale dense gen-
erative adversarial network (GAN) for enhancing underwater images. This method can
perform color correction and detail restoration simultaneously.

Our work differs from the abovementioned works in its introduction of an uncon-
ventional GAN-based solution, which uses an encoder–decoder-based architecture as the
discriminator structure, and loss function based on SSIM, L1, and gradient loss. Further-
more, for comparison of the proposed solution and three recently proposed GAN-based
architectures (UGAN [7], UWGAN [5], and WaterGAN [6]), we utilize two datasets in our
experiments. There are several differences between our network and the most relevant
literature, which include: (i) the usage of the pixel-based SSIM loss in the discriminator
loss function, (ii) an increase in the dilated convolution in the encoder part of the generator
architecture to adapt the receptive fields for images of different scales, and (iii) in the
discriminator architecture, we include a decoder part to generate underwater images with
high quality.

3. Proposed Architecture

Briefly, a GAN is a type of network that consists of a generator network and a
discriminator network. Each network attempts to beat one another in an adversarial
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relationship [19]. The goal of the discriminator is to determine whether the input image is
real or fake by discriminating the output of the generator from real images, and the goal
of the generator is to produce fake images that imitate real images so well that it fools
the discriminator.

Our network architectures are based on two distinct U-Net structures. We use the
first in our generator (see Figure 2), and the second in the discriminator (see Figure 3),
which is similarly structured as U-Net [20]. In both Figures 2 and 3, the block structures
are used in the encoder and decoder networks; each of those blocks is coded with color
based on their type. Conversely, the upsampling layer of the discriminator is composed
of bilinear interpolation with a scale rate of 2, which is shown in Figure 3. Moreover, an
average pooling with stride 2 to downscale the input to one-half resolution forms the
downsampling layer. In the figures, stride value uses s, padding value uses p, and kernel
sizes are 1 × 1, 2 × 2, and 3 × 3.

3.1. Generator Network

This generator network uses the U-Net framework [21] as initialization to resolve the
process of image-to-image translation tasks. Low-level features are hierarchically extracted
and recombined into higher-level features into the encoder by the U-Net architecture,
followed by a multiple-feature, elementwise classification in the decoder. The encoder–
decoder architecture of our generator is shown in Figure 2. In the encoder stage, there
are four downsampling blocks. Each downsampling block consists of three network
layers, namely the convolution layer, ReLU layer, and MaxPooling layer, to extract features.
Similarly, each upsampling block of the decoder stage also consists of three network layers
(upsampling layer, convolution layer, and ReLU layer) to reconstruct the image at the same
resolution. For each block in the encoder, the convolutional result is transferred to the
decoder symmetrically before max-pooling. On the other hand, each block in the decoder
receives the feature representation that learned from the encoder and simultaneously
concatenates it with the output from the deconvolutional layer. In addition, for the necessity
of generating high-quality results, the increasing of feature resolution is inevitable, recent
state-of-the-art methods rely heavily on the use of dilated convolution [22], in which the
spacing between each pixel in the convolutional filter represents the dilation rate. By
increasing the field of view, the receptive field arises as an additional advantage. Thus,
this helps the filter capture more contextual information. Therefore, for each block in
the encoder, to extract more information in multiscale feature maps, we adopt a dilated
convolution with rates of 1, 2, 3, and 4, as shown in Figure 2.

3.2. Discriminator Network

In general, based on their output format, discriminator architectures are classified as
either discriminators for real-or-fake classification of the entire input image or discrimi-
nators that judge both the entire image and its pixels. Figure 4 compares the two types.
A recent study [20] reports that the improvement of utilizing U-Net architecture for the
discriminator increases the performance of the overall GAN architecture by looking into
each individual pixel. To classify each pixel individually in our discriminator for gener-
ating high-quality underwater images, we use an architecture inspired by this work. We
use bilinear interpolation in the discriminator for the upsampling stages and an average
pooling layer for the downsampling stages to limit the number of learnable parameters,
as using upsampling and average-pooling functions reduces memory consumption when
compared to convolutional and deconvolutional layers.
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Figure 4. Comparison between the one-level discriminator and two-level discriminator: (a) the entire
image is classified by the one-level discriminator as either fake or real, whereas (b) the two-level
discriminator judges both constituent pixels and the whole image.

A package of multiple layers with skip connection(s) is called a residual block. Two
types of residual blocks are utilized in our discriminator. We downsample its input as the
first type of residual block (green boxes in Figure 4) and upsample its input (red boxes)
using the second type. We include 2D convolutional layers with 3× 3 and 1× 1 kernel sizes
and the same padding in both residual blocks. Before applying convolutional layers, the
red block uses interpolation to upsample its input, the green block uses average pooling to
downsample its input after applying convolutional layers. In the end, both blocks perform
channel-wise summation on two parallel branches and pass the output to the next block.

3.3. Discriminator Loss

Using encoder–decoder architecture, our discriminator contains three loss terms that
are given in Equation (1). The first two discriminator terms focus on the whole image
(see Equation (2)) and each constituent pixel (see Equation (3)) as fake or real. The last term
is SSIM-based loss (LSSIM).

LD = LDenc + LDdec + α× LSSIM (1)

where LDenc represents the loss, which is obtained at the end of the encoder for image-based
loss, and LDdec represents the loss, which is the decoder for pixel-based loss at the end. The
definition is shown as follows:

LDenc = −Ey[log Denc(Y)]−Ex[log(1− Denc(G(X)))] (2)

LDdec = −Ey

[
∑
i,j

log [Ddec(Y)]i,j

]
−Ex

[
∑
i,j

log (1− [Ddec(G(X))]i,j)

]
(3)

where Y is the ground-truth, high-quality underwater image, G(X) is the generator’s high-
quality underwater image output, E (.) refers to the expected value, D(Y) and D(G(X))
are the discriminator outputs, and (i, j) refer to both images’ coordination of pixels (where
both input and output have the same dimensions). The decoder output of the discriminator
yields the probability of each pixel being real or fake in a separate way.

When humans observe an image, people extract the exact information of the image
structurally, without the deviation between the corresponding pixels of images. However,
as an evaluation criterion based on structural information to measure the degree of similar-
ity between images, the structural similarity can not only overcome the influence of the
changing texture caused by light changes, but it is also more suitable for human subjective
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visual effects. We add the additional LSSIM to ensure that the generated output resembles
the given input image structurally.

LSSIM =
1
m

m−1

∑
i=0

(1− SSIM(G(Xi), Yi)) , (4)

where m is the batch size. As a similarity metric measuring function between images Y and
G(X), the definition of SSIM [23] is shown as follows:

SSIM
(
Y′, Y

)
=

2µy′µy + C1

µ2
y′ + µ2

y + C1
·

2σy′σy + C2

σ2
y′ + σ2

y + C2
·

σy′y + C3

σy′σy + C3
(5)

where C1, C2, and C3 are parameters to ensure division stability [24]. We set C3 = C2/2
while C1 = (0.03 ∗ L)2 and C2 = (0.05 ∗ L)2, where we use L as the representative of
the image pixels’ range. As described above, Y′ is the generated output high-quality
underwater image G(X), Y is the ground truth (high-quality underwater image), σy′ and
σy are modified standard deviations for Y′ and Y, and µy′ and µy are the modified mean
values of their respective images. Finally, the modified covariance is referred as σy′y. The
computation of SSIM’s detail can be found in [24].

3.4. Generator Loss

Three losses in different terms are also used in our generator (LG). The first term is the
ED (encode/decode) loss (LED), which focuses on image global structures and local details.
We additionally use L1-distance loss (LL1) and gradient loss (Lg) as

LG = LED + β ∗ LL1 + γ ∗ Lg (6)

where the terms β and γ define the hyperparameters for the generator network loss function.
While the luminance information of the underwater image is pixel-intensity characterized,
a gradient can partially be used as an indicator of texture detail for underwater image
enhancement. Therefore, to obtain a high-quality underwater image with an intensity
similar to the ground-truth underwater image, we use LL1 and Lg to describe the content
loss of the image during the generation process. For a single image, LL1 and Lg are
defined as

LL1 = E[||Y− G (X) ||1] (7)

Lg = E[||∇Y−∇G(X)||] (8)

where Y and G(X) represent the ground-truth (high-quality) and generated underwater image,
respectively, || ||1 denotes the L1 norm of the matrix, and∇ denotes the gradient operator.

LED = −Ex

[
log Denc(G(X)) + ∑

i,j
log[Ddec(G(X))]i,j

]
(9)

In Equation (9), the objective function of ED loss (LED) forces D(G(X)) through
maximization to deceive the discriminator. That is, when the generator generates an image,
the higher the score is for realness, the more realistic it is. A generator’s loss is calculated
as if the discriminator classifies the realness of the generated images.

4. Experimental Results and Analysis

This section describes the datasets and metrics which are used to evaluate the proposed
method. On both underwater images, either synthetic or real-world images, we compared
the proposed method with state-of-the-art methods of underwater image enhancement.
All experiments were implemented based on the CUDA C++ API on an i7 Intel CPU with
16 GB RAM and GTX 1080Ti GPU with 11 GB on-chip memory.
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4.1. Underwater Dataset

In these experiments, we used two publically available underwater datasets, EUVP [25]
and UIEB [26], to illustrate the robustness of the proposed method. By containing separate
sets of 11,435 paired image samples of poor and good perceptual quality in the Enhancing
Underwater Visual Perception (EUVP) dataset, supervised training of underwater image
enhancement models can be facilitated. Each image is 256× 256. The EUVP test set consists
of 515 image pairs of the same size. There are 890 raw underwater images with correspond-
ing reference images of high quality contained by the Underwater Image Enhancement
Benchmark (UIEB) datum. In the UIEB dataset, we used a random subset of 800 images for
training and the remaining 90 images for testing, and used five-fold cross-validation. In
our training process, we used Adam optimization with a learning rate of 2 × 10−4 for the
generator and a learning rate of 2 × 10−6 for the discriminator. We set the batch size to 32.
With random initialization, networks were trained from scratch. We set α = 1.0, β = 2.0,
and γ = 1.5 in our experiments.

4.2. Quantitative Evaluation

We employed two full-reference metrics to secure the performance evaluation for each
network: the structural similarity index measure (Equation (5)) and the peak signal-to-noise
ratio (PSNR). A reflection of the proximity to the reference can be understood from these
two metrics, where a high level of PSNR value represents closer image content and a
reflection of more similarity between structures and textures represented by a higher SSIM
value. To make our results more convincing, when evaluating the underwater images,
we employed a nonreference metric: the underwater image quality measure (UIQM) [27].
A higher UIQM score suggests a more consistent result with human visual perception.
The Frechet inception distance (FID) [28] has been used for quality measurement of the
generated images. The FID is a method for comparing the statistics of two distributions by
computing the distance between them. Mathematically, it can be written as

FID(r, g) = ||µr − µg ||22 + Tr

(
Σr + Σg − 2

(
ΣrΣg

) 1
2

)
(10)

where µr, µg represent the means of real-world underwater images and generated under-
water images, respectively; Σr, Σg represent the covariances of real-world and generated
underwater images; and Tr denotes the matrix trace. A lower FID score means the generated
image is more realistic.

4.3. Discussion

First, we evaluated the proposed method on the test sets of the two datasets with
traditional and deep-learning methods. The quantitative evaluation is summarized in
Table 1. The best results of different metrics are marked in bold. Table 1 shows that no
method is best in terms of all metrics. However, the results demonstrate that DGAN out-
performs other methods in terms of both PSNR and SSIM. To demonstrate the advantages
of the proposed DGAN, visual comparisons are presented in Figure 5a,b. Although the
two images may give the impression that the UDCP results are sharper, a careful inspec-
tion reveals that UDCP leads to excessive enhancement and oversaturation. Similarly,
the UWGAN images are unnatural and excessively enhanced. As opposed to UWGAN,
the proposed method presents promising results without introducing artificial colors and
casting colors on real-world imagery. The main reason is that the generator network of
the proposed model uses dilated convolution layers to control the receptive fields of a
filter without changing the dimension of the data via polling or striding, and without
increasing the number of parameters. This property is especially useful in tasks where the
precise pixel position is important. Finally, the restored images by DGAN obtained better
image enhancement results on the two datasets, with improvements in both visual quality
and quantitative metrics compared to existing methods. Overall, deep-learning-based
methods produce better restoration results than traditional methods, which produce blurry
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and colorcast results. This is exhibited for DCP [10], UDCP [11], and the retinex-based
method [17], as the ineffective result shows the unsuccessful removal of the green-bluish
tone in the underwater images. Deep-learning-based methods have fewer color artifacts
and more high-fidelity object areas.

Table 1. Comparison of different algorithms on two different datasets.

EUVP Dataset SSIM↑ PSNR↑ UIQM↑ FID↓
DCP 0.825 27.44 3.17 27.54

UDCP 0.745 27.83 3.81 25.87
Retinex based 0.821 27.94 3.64 39.42

UGAN 0.775 28.56 4.82 21.49
UWGAN 0.793 27.69 4.12 25.74

WaterGAN 0.834 28.73 4.37 18.76
DGAN 0.857 28.20 4.39 19.55

UIEB Dataset SSIM↑ PSNR↑ UIQM↑ FID↓
DCP 0.863 27.76 2.17 29.54

UDCP 0.667 28.14 3.81 22.87

Retinex based 0.779 27.94 3.64 32.42

UGAN 0.763 28.28 4.11 16.49

UWGAN 0.841 28.35 3.77 17.74

WaterGAN 0.784 27.33 4.27 18.76

DGAN 0.894 28.57 3.90 16.55
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(b) UIEB dataset.

Considering underwater scenes, we also employed the UIQM metric to evaluate
underwater image enhancement. Note that UIQM is a valuable reference but cannot give
absolute justifications, for they are nonsensitive to color artifacts and casts and biased to
some features. In Table 1, the UIQM results were obtained by applying different methods
in different underwater scenes. Although the proposed DGAN does not achieve the best
UIQM results, it does exhibit good performance in underwater images in various scenes.
In addition, Figure 6 shows the qualitative results of three examples with zoomed patches;
we explored the block effect of enhancement underwater images. In this figure, we contrast
the featured image patches by local pattern. The results without dilated convolution
(UGAN) exhibit an obvious block effect. However, in an effort to achieve better subjective
perception, DGAN with dilated concatenation removes this block effect at the cost of
decreased UIQM performance.
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5. Conclusions

As the use of marine resources increases, the demand to improve the visual qual-
ity of underwater images has also increased. After enhancing underwater images, we
promote underwater object detection and classification performance. In this paper, we
present DGAN, a method for enhancing underwater imagery. The U-Net architecture of
the discriminator and the dilation convolution of the generator are used to improve visual
perception when we construct the DGAN neural network. In addition, to establish a robust
connection between local patches and global contents, we change both the loss function
and basic architecture. Our results have shown high performance, which is in a domi-
nant position compared to state-of-the-art underwater image enhancement methods. In
future work, more effective underwater image enhancement frameworks via unsupervised
learning to reduce the burden of paired training data needs to be exploited.
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