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Abstract: Due to the nonlinearity of the deep-seafloor and complexity of the hydrodynamic force
of novel structure platforms, realising an accurate motion mechanism modelling of a deep-sea
landing vehicle (DSLV) is difficult. The support vector regression (SVR) model optimised through
particle swarm optimisation (PSO) was used to complete the black-box motion modelling and vehicle
prediction. In this study, first, the prototype and system composition of the DSLV were proposed, and
subsequently, the high-dimensional nonlinear mapping relationship between the motion state and
the driving forces was constructed using the SVR of radial basis function. The high-precision model
parameter combination was obtained using PSO, and, subsequently, the black-box modelling and
prediction of the vehicle were realised. Finally, the effectiveness of the method was verified through
multi-body dynamics simulation and scaled test prototype data. The experimental results confirmed
that the proposed PSO–SVR model could establish an accurate motion model of the vehicle, and
provided a high-precision motion state prediction. Furthermore, with less calculation, the proposed
method can reliably apply the model prediction results to the intelligent behaviour control and
planning of the vehicle, accelerate the development progress of the prototype, and minimise the
economic cost of the research and development process.

Keywords: deep-sea landing vehicle; black-box modelling; support vector regression; particle
swarm optimisation

1. Introduction

The resources and energy contained in the ocean can play a decisive role in human
development. The microbes found in deep-sea hydrothermal and cold-spring phenomena,
such as pressure phagocytosis, heat phagocytosis, and chemical energy synthesis, are highly
important for investigating the geological evolution and origin of life [1]. Based on the
requirement of scientific research on the large-scale distribution of benthic organisms and
long-term, fixed-point precise surveys, and to ensure stable and reliable deep-sea research,
countries around the world are focused on developing miniaturised deep-seafloor crawling
robots, such as: ‘ABISMO’ (Japan, in 2007 [2]), ‘Wally’ (Germany, in 2013 [3]), ‘Benthic
Rover’ (America, in 2007 [4]) and ‘Luling’ (China, in 2020 [5]). In this study, a deep-sea
landing vehicle (DSLV) system, in which crawler chassis and conventional underwater
robots are combined, was proposed [6]. The system can complete the sites-series movement
detection over a large area and the time-series precise investigation in a local area with
high reliability and strong expansibility to adapt to a complex seafloor.

The DSLV exhibits the advantages of sites-series movement and precise positioning.
However, quantifying the actual mechanical properties of the bottom material is difficult
because of the extremely complex sediment composition. Furthermore, precise in situ
shearing and subsidence experiments are restricted because of their inoperability on the
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seafloor [7]. In existing studies, the existing empirical model, combined with the simulated
sediment material in the laboratory, is typically used for motion analysis of the crawling
robots. Xu et al. [8] prepared an optimum sediment simulant based on the main physical
and mechanical properties of sediments in the Pacific Ocean, and combined their theory
with endochronic theory to analyse the effects of the turning velocity, crawler spacing,
and contact length with sediment on movement characteristics. However, the unavoid-
able effects of hydrodynamic and current interference were neglected in the process of
establishing the motion model. Zhang et al. [9] performed experiments to investigate the
mechanical properties of simulated tracks and sediment based on Bekker’s theory and
realised the secondary development of seafloor sediments. Although hydrodynamics and
nonlinear sediments are included, the multi-condition motion state of the tracked vehicle is
analysed in the simulated seabed, and an applicable motion model has not been established.
Inoue et al. [10] established a motion model suitable for crawling vehicles by replacing
the complex track mathematical model with a model developed using multiple massless
linear springs and a limited number of mass blocks, and simplified the track ground to a
viscoelastic Kelvin model to analyse the crawler motion dynamics with the consideration
of added mass, buoyancy, and hydrodynamic resistance. However, modelling based on the
mechanical mechanisms and equivalent models in a complex system is difficult because the
hydrodynamic resistance, current interference, and seafloor sediment cannot be completely
simulated, and these processes considerably affect each other. Therefore, the data-driven
black box modelling method based provides a promising approach to resolve the problem
of seafloor nonlinear motion models.

Adopting the method of computational artificial intelligence as an effective black box
modelling tool is an alternative method, which can be used to overcome the modelling
difficulties in nonlinear mechanical systems. With the rapid development of computer
computing, artificial intelligence [11] has been widely used in bioinformatics, pattern recog-
nition, linear regression analysis, and nonlinear system prediction, and its effectiveness in
realising practical tasks has been proven. Shafiei et al. [12] completed the nonlinear mod-
elling of the time-varying mass underwater vehicle by using an artificial neural network
(ANN). Hamzaoui et al. [13] estimated the optimal unknown parameters of a nonlinear
system using the proposed inverse artificial neural network (iANN) in the state of known
input parameters. Due to its adaptability and self-organisation in nonlinear systems, ANN
is superior to other intelligent methods of system modelling. However, its learning effi-
ciency exhibits unique limitations, such as the necessity of numerous training samples,
and the requirement of highly experienced personnel to set internal structure parameters.
As an efficient machine learning (ML) algorithm, the support vector machine (SVM) can
achieve an excellent generalisation with few learning modes based on structural risk min-
imisation (SRM). Zhang et al. [14] proposed a black box of tractor’s nonlinear subsurface
motion and established an inverse model of its motion process combined with the pro-
posed granular support vector regression (GSVR) when the hyperparameters of support
vector regression (SVR) were not optimally discussed. The optimisation algorithms used to
solve hyperparameters are promising approaches in some research fields. Wang et al. [15]
established a black box prediction model for ship manoeuvring motions in four degrees
of freedom based on a support vector machine optimised through least square (LS-SVM).
Zhu et al. [16] estimated ship-manoeuvring parameters using SVM, which was optimised
through recursive least square (RLS-SVM), and the consistency between the identified and
simulated ship was confirmed.

The motion analysis of the seafloor crawling vehicle still depends on the mechanism
model or equivalent model according to the aforementioned discussion. Although the
crawler inverse model has been analysed, the high-precision hyperparameter model combi-
nation must be further studied. The novel framework of SVR optimised through particle
swarm optimisation (PSO-SVR) was proposed to investigate the motion characteristics used
in this study. This study enabled DSLV black-box motion modelling and prediction on the
nonlinear seafloor with the data samples obtained from virtual prototype simulations. This
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framework model comprises SVR and PSO. Unlike the excellent recognition and diagnosis
ability of SVM towards feature samples, SVR can completely describe the time series motion
state under various driving forces. PSO was used for the hyperparameter optimisation
of the SVR module due to its advantages of the absence of coding and requirement of
fewer parameters. Hyperparameter global optimisation results were acquired with fewer
iterations than were required for other algorithms. In addition, the virtual prototype, which
comprehensively considers the hydrodynamic resistance, current interference, and nonlin-
ear seafloor sediments, was established to completely restore the seafloor environment to
obtain high-accuracy training and testing samples. The experimental evaluation verified
the effectiveness of the proposed black-box model framework in motion state prediction by
predicting the time series motion states of the 2:1 scaled test prototype in multi-drive states.

The rest of this paper is organised as follows: Section 2 introduces the design of
the conceptual prototype and describes the motion modelling of the black box of our
DSLV. Section 3 introduces the basic principles of SVR and PSO, and presents the black-
box motion modelling framework based on PSO–SVR. In Section 4, the modelling and
prediction capabilities of the proposed framework are presented under constant driving
and variable driving condition tests. Section 5 summarises this paper’s contributions and
discusses further research directions regarding the DSLV.

2. Prototype Design and Motion Model

Among the typical mobile detection equipment commonly used in deep-sea scientific
investigation and exploration, conventional gliders, autonomous underwater vehicles
(AUVs) and human occupied vehicles (HOVs) are mainly used for floating detection or
‘leapfrog’ operations after contacting the seafloor. The operation time of this equipment is
limited because of its continuous demand for energy supply. Remotely operated vehicles
(ROVs) can achieve continuous energy transmission from the vessel; however, its investiga-
tion cannot be realised over a wide area because of the constraints of its own photo-electric
cable. Furthermore, the lander exhibits a long-term fixed-point scientific detection on the
seafloor; however, its application expansion is considerably restricted because of its im-
movability [17]. As displayed in Figure 1, DSLV can complete fixed-point observations and
measurements for up to 6 months within a local range, such as mode 1 with the low-power
sleeping cycles and multi-site movement, and explorations and investigations over a large
area of approximately 10 km, such as model 2 can be realised. The measurement data with
time-series characteristics and sites-series characteristics were recorded, and subsequently
combined within its multi-parameter sensor systems and self-floating instruments. The
combination of a mobile platform and sensor systems enabled a novel ocean observation
from seafloor to the sea surface, covering various spatial and temporal scales.
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2.1. Conceptual Prototype Design of DSLV

The DSLV, in which crawler chassis and function components are integrated, is de-
signed as a universal transporting platform to ensure stable operation, instrument delivery,
and intelligent expansion, as displayed in Figure 2. The conceptual prototype has dimen-
sions of 2.2 m × 1.6 m × 1.3 m, and the maximum design depth of the vehicle is 4500 m.
The prototype has a plurality of syntactic foam, which can provide buoyancy wrapped
around the titanium component framework. The vehicle weighs 1600 kg in air and has
approximately 50 kg of negative buoyancy in seawater; specifically, the actual value of
negative buoyancy can be designed according to the various requirements of special scien-
tific research tasks. The modular design of functional components facilitates the autonomy
and expansibility of each electrical subsystem, so the modular subsystems for docking and
scientific payload can be added depending on various scientific requirements. However,
considering the minimum hydrodynamic resistance, the lightest structural weight, maxi-
mum scientific load expansion, and outstanding trafficability are basic requirements that
should be achieved during prototype development.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 4 of 21 
 

 

Lander

ROV

Glider

AUV

HOV

Vessel

Model 1

Model 2

 
Figure 1. Schematic sketch of the demonstration mission. (Note: Sampling locations are repre-
sented by small triangles in the figure) 

2.1. Conceptual Prototype Design of DSLV  
The DSLV, in which crawler chassis and function components are integrated, is de-

signed as a universal transporting platform to ensure stable operation, instrument deliv-
ery, and intelligent expansion, as displayed in Figure 2. The conceptual prototype has di-
mensions of 2.2 m × 1.6 m × 1.3 m, and the maximum design depth of the vehicle is 4500 
m. The prototype has a plurality of syntactic foam, which can provide buoyancy wrapped 
around the titanium component framework. The vehicle weighs 1600 kg in air and has 
approximately 50 kg of negative buoyancy in seawater; specifically, the actual value of 
negative buoyancy can be designed according to the various requirements of special sci-
entific research tasks. The modular design of functional components facilitates the auton-
omy and expansibility of each electrical subsystem, so the modular subsystems for dock-
ing and scientific payload can be added depending on various scientific requirements. 
However, considering the minimum hydrodynamic resistance, the lightest structural 
weight, maximum scientific load expansion, and outstanding trafficability are basic re-
quirements that should be achieved during prototype development. 

Syntactic Form

Crawler Chassis

Framework

 
Figure 2. Conceptual prototype and configure of the DSLV. 

As a powerful carrier platform for autonomous mobile scientific research on the sea-
floor, DSLV consists of four major subsystems, namely, chassis drive and crawling sys-
tems; energy and electronic systems; location and recovery systems; scientific payload and 
communication systems. As displayed in Figure 3a, the crawler assemblies are used as the 
chassis walking structure to ensure the passage of the vehicle on the seafloor. All of its 

Figure 2. Conceptual prototype and configure of the DSLV.

As a powerful carrier platform for autonomous mobile scientific research on the
seafloor, DSLV consists of four major subsystems, namely, chassis drive and crawling
systems; energy and electronic systems; location and recovery systems; scientific payload
and communication systems. As displayed in Figure 3a, the crawler assemblies are used as
the chassis walking structure to ensure the passage of the vehicle on the seafloor. All of
its moving parts are made of polyethylene, including crawlers, wheel sets, fenders, and
bearings, in which the fenders avoid the crawler track blockage by the rocks. Each crawler
system is driven by a DC brushless motor with a 1:160 reduction in spur gear, a voltage of
110 V, and a power of 450 W. As the customised motor and reducer are installed in a sealed
cabin filled with hydraulic oil and surrounded by a high-pressure environment, the driving
efficiency is only maintained in the range of 50–70%.
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As displayed in Figure 3b, the system is supplied by the control and power lithium
batteries, the electronic equipment and control system are powered by a 24 V control battery
pack (capacity of 6.5 kWh), and the brushless motor and manipulator are powered by a
110 V power battery (capacity of 13.5 kWh). The control system includes a main control
core, a drive control core, a video control core and corresponding peripheral circuits. The
three aforementioned control cores are used to realise the information exchange based on
the CAN bus. The design of the bow and stern junction boxes facilitates the overall system
layout and function expansion.

As displayed in Figure 3c, after completing an investigation mission, the 120 kg
ballast iron equipped with the vehicle is released according to the combined command of
the passive motor and active acoustic releaser. The ballast iron state is measured by the
detection sensor in real time, and the main control core performs remedial measures based
on the detection information. After releasing the ballast iron, the vehicle float sup to the
sea surface with a positive buoyancy of approximately 70 kg in a stern cocking attitude.
Researchers have combined the positions provided by the argo beacon, the iridium beacon,
and the flag to complete recovery.

As displayed in Figure 3d, the LED lights and cameras installed at the bow and stern
were combined with an optical fibre to form an observation and communication system,
which can upload the seafloor video to the vessel monitoring terminal in real time. Multiple
sensors on the vehicle, including ADCP, CTD, Altimeter, and navigation sensors, can obtain
multi-dimensional environmental information for scientific research. As the six self-floating
instruments can intermittently transmit the data for multi-parameter sensors, including
temperature, salinity, pressure, turbidity, and chlorophyll, to the sea surface, and send
them to the laboratory via Beidou satellite, we obtained a 6-month seafloor environment
changing in real-time as much as possible. In addition, the manipulator can also collect
interested samples, such as soft-bodied organisms, metal mineral nodule, sediments, and
store them in the sampling basket and transport them to the vessel. All the aforementioned
data can be stored and decided locally to realise the real-time remote control with vessel
through the micro-fibres.

2.2. Motion Model of Black-Box

According to the aforementioned description, the DSLV mainly performs continuous
linear motions on the seafloor over a wide area and multi-angle steering motions in a local
area. Before analysis of the motion, three basic assumptions were made:

1. The carrier of the vehicle exhibits a symmetrical structure with respect to its longitu-
dinal and transverse axes;
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2. The coordinate position of the vehicle’s mass centre coincides with the geometric
centre of the carrier structure;

3. The seafloor is flat in the local area, and motion analysis can be based on a two-
dimensional plane.

Generally, the vehicle motion on the geographic coordinate system O-XY includes:
forward, sideshift, heave, pitch, roll and yaw, but because the seafloor was considered to be
flat, only forward, sideshift, and yaw were considered. The design and installation ensure
that the origin oc of the carrier coordinate system oc-xy always coincides with the mass
centre of the vehicle, and the motion coordinate system and the carrier coordinate system
also completely coincide.

When DSLV changes from a linear motion to a steering motion, its instantaneous
steering centre does not coincide with the mass centre of the carrier. As displayed in
Figure 4, when the lateral force Fy is zero, o1 is considered the centre point of instantaneous
steering. Next, the vehicle has a certain forward speed, and the steering centre moves
forward from o1 to o2 to generate sufficient lateral force to balance the centrifugal force
caused by carrier steering. Because of the separation of o2 and oc, the instantaneous velocity
vc produces a lateral slip angle α, and the figure clearly shows that when point o2 is behind
oc, the lateral velocity of the centre of mass points from the outside to the inside of the track,
when the point o2 is in front of oc, the lateral velocity of the centre of mass points from the
inside to the outside of the track.
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The kinematic analysis of the vehicle motion process as displayed in Figure 4a. The
vehicle motion on the O-XY of the geographic coordinate system can be considered as the
synthesis of the forward motion with the centroid velocity vc and the steering motion with
the angular velocity w, where vx and vy represent the decomposition variables of vc on x
axis and y axis, respectively, and the vehicle direction angle and the position relative to
O-X axis of the geographic coordinate system are represented by ϕ and θ, respectively. The
kinematic analysis equation is expressed as:

.
x = vx cos θ + vy sin θ
.
y = vx sin θ + vy cos θ
.
θ = w

(1)

In the dynamic analysis of the vehicle motion process, as shown in Figure 4b, Fi and
Fo represent the seafloor sediments’ traction resistance of the inner and outer crawlers,
respectively, Ri and Ro represent the seafloor sediments rolling resistance of the inner
and outer crawlers, respectively, Ff is the deep-sea current interference force, Fd is the
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hydrodynamic resistance opposite to the motion direction, and the movement process
is also affected by lateral resistance Fy and resistance torque Mc. The dynamics analysis
equation is expressed as:

m
.
vx = Fo + Fi − Ro − Ri − Fd − Fc cos ϕ + mw2R sin α

m
.
vy = Ff sin ϕ−mw2R cos α− Fy

Ic
.

w = B(Fo − Fi)/2− B(Ro − Ri)/2−Mc

(2)

where m and Ic epresent the mass of the vehicle in water and the moment of inertia around
the mass center, respectively.

According to motion analysis, the model relationship can be expressed as follows:{ .
x = R(x) q
.
q = f (Fo, Fi, q)

(3)

where x = [x, y, θ]T represent the position and path angle in geographic coordinate system;
q = [vx, vy, w]T represent the velocity and angular velocity in the motion coordinate system;
R(x) is the conversion matrix between the motion coordinate system and geographic
coordinate system.

The motion state can be obtained at any time according to Equation (3); however,
because of the discontinuity in the motion measurement, the discrete time model can be
used to replace the continuous time model.{ .

x(t) = (x(t + 1)− x(t))/∆t
.
q(t) = (q(t + 1)− q(t))/∆t

(4)

where ∆t is the interval of discrete time, t and t + 1 represent the adjacent sampling
movements around the motion state of the vehicle.

Combining Equations (1)–(4), the motion state of the vehicle at time k + 1 can be
expressed as follows: {

x(t + 1) = x(t) + R(x(t))q(t)∆t
q(t + 1) = q(t) + f (Fo(t), Fi(t), q(t))∆t

(5)

where sediment resistance, hydrodynamic resistance, current interference and resistance
torque were determined by the environment in which the vehicle was located, while the
mass and the moment of inertia are related to the structural design. Therefore, the position
and velocity of DSLV at time t + 1 can be obtained according to the position, velocity, and
driving force at time t, which is described as follows:

x (t + 1) = g1(x(t), y(t), θ(t), vx(t), vy(t), w(t), Fo(t), Fi(t))
y (t + 1) = g2(x(t), y(t), θ(t), vx(t), vy(t), w(t), Fo(t), Fi(t))
θ (t + 1) = g3(x(t), y(t), θ(t), vx(t), vy(t), w(t), Fo(t), Fi(t))
vx(t + 1) = g4(x(t), y(t), θ(t), vx(t), vy(t), w(t), Fo(t), Fi(t))
vy(t + 1) = g5(x(t), y(t), θ(t), vx(t), vy(t), w(t), Fo(t), Fi(t))
w (t + 1) = g6(x(t), y(t), θ(t), vx(t), vy(t), w(t), Fo(t), Fi(t))

(6)

The nonlinear mapping relationship between the motion states and driving force can
be established according to Equation (6). In following sections, the black-box modelling
method and the data-driven model will be realised, and the time series prediction of the
motion state can be achieved under typical driving forces.

3. Black-Box Modelling Method
3.1. Support Vector Regression

SVM is a machine learning algorithm based on the statistical learning theory created
by Vapnik, which can complete the generalised linear classification of high-dimensional
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supervised learning with limited samples [18]. SVM is an excellent classifier with spar-
sity and robustness and has been successfully applied to numerous engineering cases of
nonlinear regression estimation. To solve the non-separability of lower-dimensional data,
the kernel function was introduced to obtain a higher-dimensional nonlinear mapping of
lower-dimensional samples, which allows for nonlinear SVM classification and avoids data
dimension disasters.

To investigate universality, supposing separable datasets {(xi, yi), i = 1, 2, · · · , l} are
given as training samples, the vectors xi = (xi1, xi2, · · · , xiD)

T is the column vector of the
i-the training sample, where l is the number of training samples, D is the dimension of the
input sample vectors, and yi = ±1, which is denoted as the class label of the predicted result.
If the samples in the same category can be divided into the same side by the hyperplane
wxi + b = 0, the SVM classification is abstracted as the relationship of Equation (7).{

wxi + b ≥ 1, yi = 1
wxi + b ≤ −1, yi = −1

(7)

where w and b are the weight coefficient matrix and linear bias, respectively. Then, the
classification problem can be expressed abstractly as solving an optimisation function
that maximizes the sample interval yi(wxi + b), and is a convex optimisation problem, as
described in Equation (8). {

min
w,b

1
2‖w‖

2

s.t. yi(wxi + b) ≥ 1
(8)

According to Equation (8), a hyperplane wxi + b = 0 with the largest margin can be
obtained, while the prediction of motion state needs to introduce an insensitive loss factor
ε based on SVM. Considering the datasets’ linear inseparability in higher-dimensional
space, the slack factors ξi and ξ∗i are introduced to the optimisation problem. Then, SVR is
formulated as a convex optimisation problem, which is described in Equation (9).

min
w,b

1
2‖w‖

2 + C
l

∑
i=1

(ξi + ξ∗i )

s.t.


yi − (wφ(xi) + b) ≤ ε + ξi
wφ(xi) + b− yi ≤ ε + ξ∗i
ξi ≥ 0, ξ∗i ≥ 0

(9)

where the penalty coefficient C is used to constrain the slack variable factors, aiming to
prevent the factors ξi and ξ∗i from being too large and reducing the modelling accuracy.

The most commonly used method is to combine the constructed Lagrangian function
to transform the constrained function into an unconstrained function based on the convex
optimisation problem [19]. In this case, the dual problem can be defined as a maximized
quadratic programming problem, as described in Equation (10).

max
α,α∗

[
− 1

2

l
∑

i=1

l
∑

j=1
(αi − α∗i )(αj − α∗j )K(xi, xj)−

l
∑

i=1
(αi + α∗i )ε +

l
∑

i=1
(αi − α∗i )yi

]

s.t.


l

∑
i=1

(αi − α∗i ) = 0

0 ≤ αi ≤ C , 0 ≤ α∗i ≤ C

(10)

where K(xi, xj) = φ(xi) · φ(xj) denotes the kernel function, φ(x) denotes the higher di-
mensional feature mapping of the sample x, α and α∗ denote the Lagrangian coefficient
vectors, which can be calculated using the sequential minimal optimization (SMO) to solve
quadratic programming problems.
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According to Karush–Kuhn–Tucker (KKT) conditions [20], the solution to Lagrange
function can be expressed as Equations (11) and (12).

w∗ =
l

∑
i=1

(αi − α∗i )φ(xi) (11)

b∗ =
1
N

{
∑
αi

[
yi −∑

xi

(αi − α∗i )K(xi, xj)− ε

]
+ ∑

αj

[
yi −∑

xj

(αj − α∗j )K(xi, xj) + ε

]}
(12)

where N is the number of support vectors, and the regression function established in the
higher-dimensional feature space:

f (x) = w∗φ(x) + b∗ =
l

∑
i=1

(αi − α∗i )K(xi, x) + b∗ (13)

where f (x) is the motion-predicted value, and the linear combination of intermediate nodes
is similar to that of the neural network. The structure of SVR modelling and prediction is
displayed in Figure 5.
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The selection of a kernel function affects the model generalization because SVR is
a kenel-based algorithm [21]. Generally, kernel functions are linear function, d-order
polynomial function, sigmoid function with parameters k and θ, and Radial Basis Function
(RBF). Among them, RBF, as described in Equation (14) and applied in this paper, is the
most commonly used.

K(xi, x) = exp(−‖x− xi‖2

2σ2 ) (14)

where σ represents the Gaussian kernel bandwidth, and if its value is excessively large or
small, it leads to overfitting or underfitting.

3.2. Particle Swarm Optimisation

The basic idea of PSO is that particles are initialised in the feasible region, and the
potential result is represented by the particle position. In each iteration, the position and
velocity will be updated with a certain law [22]. The fitness calculated by the fitness
function is used to describe the advantages and disadvantages of the solution to determine
whether the algorithm has obtained the optimal value.

Suppose initial particles are described as matrix x = (x1, x2, · · · , xn) in D-dimensional
feasible region, the abstract position of the i-th particle in space is expressed as a vector
xi = (xi1, xi2, · · · , xiD)

T , in which xi can be considered as a potential solution. Next,
fitness is also solved by the fitness function according to the vector xi. Furthermore, the
velocity of the i-th particle is represented by a vector vi = (vi1, vi2, · · · , viD)

T , and the
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vector pi = (pi1, pi2, · · · , piD)
T and vector pg = (pg1, pg2, · · · , pgD)

T are represented as the
individual and group optimal values, respectively.

The velocity and position of the particles are iterated as follows:

vk+1
id = wvk

id + c1r1(pk
id − xk

id) + c2r2(pk
gd − xk

id) (15)

xk+1
id = xk

id + vk+1
id (16)

where w is the inertia weight coefficient, d = 1, 2, · · · , D,i = 1, 2, · · · , n, and k represents
the number of iterations of the current algorithm, c1 and c2 are nonnegative acceleration
constant factors, and r1 and r2 are random numbers distributed between 0 and 1.

Furthermore, parameter w was named the inertia weight coefficient, which reflects the
particles’ ability to inherit the previous speed. A large inertia weight is conducive to the
global search of particles, and the local search ability’s excellent performance depends on a
smaller weight. Then, a linearly decreasing inertia weight coefficient was adopted in this
paper. The specific equation is as follows:

w(k) = wstart + (wstart − wend)

[
2k

Tmax
−
(

k
Tmax

)2
]

(17)

where wstart and wend represent the inertia weight at beginning and maximum iterated
number, respectively, Tmax is the maximum iterated number, and the comprehensive
performance of PSO is the best when inertia weight wstart = 0.9 and wend = 0.4.

3.3. SVR Optimised by PSO

Machine learning based on kernel function can achieve a nonlinear mapping of high-
dimensional feature spaces, while hyperparameter combinations have not been compre-
hensively theoretically studied. In this section, the PSO with an extremely powerful
multiparameter optimisation ability was used to resolve hyperparameter optimisation,
and we focused our modelling and prediction on time series with a strong generalisation
ability between driving forces and motion states. The flowchart of PSO–SVR modelling
and prediction framework is displayed in Figure 6.
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An accurate motion model is established based on obtaining hyperparameter com-
binations, including penalty coefficient C, loss factor ε and Gaussian kernel σ. The main
research ideas of this framework are as follows.

Step 1. Obtain training and testing datasets

The virtual prototype including hydrodynamic resistance Fd, current interference Ff
and nonlinear seafloor sediments was established, and the 2:1 scaled test prototype was
developed in combination with its conceptual prototype (in Section 4); next, we considered
the motion states x and q, which were obtained under Fo and Fi as original datasets.

To improve model prediction accuracy and smooth the training procedure, the scat-
tered and large-span datasets should be normalised. The following linear mapping formula
was used to map the data in the interval [0, 1]:

x′ =
xi − xmin

xmax − xmin
, i = 1, 2, 3 · · ·N (18)

where x′ is the mapped value, xi is the i-th input data, xmin and xmax are the minimum and
maximum values of the original data, respectively, and N is the total number.

The N datasets were divided into two sample groups after normalization with the K
and N-K-1 numbers based on a given ratio. Because the two groups of samples obtained
are one-dimensional arrays, and the i-th data and +1-th data of the two sample groups were
referred to as input samples and output samples, respectively, as displayed in Figure 6 to
form training and testing datasets with time series characteristics. These datasets were
used to complete the black-box modelling and time series prediction.

Step 2. Initialise particle population

Before iterative optimisation, the population size sizepop, the maximum iteration
number maxgen, and the deterministic boundary should be initialised, and the random
value and limit boundary of the particle velocities vi and positions xi should be given.
Among them, the parameters of penalty coefficient C, loss factor ε, and gaussian kernel σ
in the framework were set as the three-dimensional parameters of position x.

Step 3. Calculate the fitness value of the particles

The fitness value in the PSO represents the relative distance between the current
particle position and the final food position. In this model framework, we set the mean
square error (MSE) between the observed and predicted values of l samples of the motion
states as the abstract fitness value. The equation for MSE was as follows:

MSE =
1
l

l

∑
i=1

(observationi−predictioni)
2 (19)

Step 4. Update particles position and velocity

The initial group consists of particles with a random position and random velocity;
the fitness value of each particle was described in Equation (19). When the particle updated
the position each time, the fitness value was calculated once. If the fitness value of the new
position of the particle was better than its personal historical optimal value, the personal
optimal value Pbest was updated. If the fitness value of the new position of the particle was
better than the group optimal value, then the new group optimal Gbest could be recorded.

Step 5. Assessing the convergence of hyperparameters

According to the update principle in step 4, the particles’ velocities vi and positions
xi were updated until the termination condition was satisfied. In this model framework,
we set the group optimal fitness value to fitnessGbest less than the deterministic boundary
and the number of iterations ipop beyond the maximum given value sizepop as the criterion
for the convergence; next, we finally obtained the hyperparameter combination of the
PSO–SVM model.
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4. Validation of the Algorithm

To verify the predictive ability of the black-box model based on the proposed PSO-SVR,
the data obtained from the virtual prototype and the scaled test prototype were combined
to confirm the rationality and provide the theoretical method and data support. The virtual
prototype is affected by complex factors, including hydrodynamic resistance, current
interference, and seafloor sediment. During the simulation, the seafloor environment
should be restored as much as possible to obtain accurate motion information with constant
and variable driving forces. Finally, the nonlinear mapping relationship between the driving
force and motion state was established, and the time-series prediction and robustness of
the model were verified by the 2:1 scaled test prototype.

4.1. Hydrodynamic Resistance and Current Interference

Before the simulation motion of the virtual prototype is realised, analysing and calculat-
ing the hydrodynamic resistance Fd and the current interference Fc described in Equation (2)
are critical factors in simulating a realistic seafloor environment to establish a precise black-
box model. When DSLV moves on the seafloor, the incompressible fluid around it produces
a hydrodynamic resistance dominated by friction resistance, its numerical results are closely
related to its fluid density, wet surface area, and relative velocity, and the direction of hydro-
dynamic resistance is opposite to its relative motion. The parameter influence relationship
can be described as follows:

Fd =
1
2

ρCdSv2
c (20)

where ρ is the density of 4500 m seawater with 1047 kg/m3, S is the prototype wet surface
area with 1.77 m2, and Cd is the resistance coefficient of the conceptual prototype.

As displayed in Figure 7a, to satisfy the CFD method requirements, the DSLV 3D
model was simplified as follows: (1) on the basis of ensuring the shape characteristics, the
functional components carried by the vehicle were removed to reduce the finite-element
model complexity; (2) the complex structure was simplified to improve mesh quality for
model analysis, including the frame, track wheels, and auxiliary installation structure.
Figure 7b displays the 3D model computational domain of the vehicle. To ensure the
expansion of the water flow, the design size of the flow field is 2 L in the front and 4 L in
the rear (where L represents the body length), and the DSLV was close to the lower wall to
simulate the seafloor.
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The hydrodynamic resistance dF  versus the velocities of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 
and 0.4 m/s were calculated using the RNG k–ε turbulence model in software Fluent. Fig-
ure 8 displays the calculated results of the resistance and the fitted curve of Equation (20). 
The resistance coefficient dC  was identified by the least square with a value of 0.981. 

Figure 7. Pretreatment of computational fluid dynamics (CFD): (a) full-scale simplified model;
(b) computational domain.

The hydrodynamic resistance Fd versus the velocities of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and
0.4 m/s were calculated using the RNG k–ε turbulence model in software Fluent. Figure 8
displays the calculated results of the resistance and the fitted curve of Equation (20). The
resistance coefficient Cd was identified by the least square with a value of 0.981.
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the shoe structural shape, vehicle driving speed, sediment layered structure, and sediment 
components, influence the mechanical characteristics of seafloor sediments. Therefore, 
while evaluating the vehicle mechanical model and sediments, the nonlinear mechanical 
form was provided. The nonlinear sediment was simulated using relevant research [5,25], 
while the sediment simulation parameters were selected as in Table 1 based on the de-
scription in commercial software RecurDyn [26], and the vehicle motion state on the sea-
floor may be restored to the highest possible degree.  

Re
si

st
an

ce
(N

)

Figure 8. Hydrodynamic resistance calculation results: (a) Velocity nephogram of DSLV at vc = 0.25 m/s;
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Ocean observation data in the South China Sea confirm that the current velocity at
the surface and subsurface is typically the strongest, and the velocity of the current near
the middle layers and seafloor considerably decreases [23]. Then, the analysis process
complexity was simplified on the basis of ensuring the most realistic restoration of the
current interference on the seafloor. The current interference Fc can be regarded as a
constant value in the virtual prototype simulation process [9]. Combined with the current
observation in the South China Sea and the hydrodynamic simulation results in Figure 8b,
the current interference of the DSLV while crawling on the seafloor was set to 25 N.

4.2. Simulation of the Virtual Prototype

In addition to hydrodynamic resistance Fd and current interference Fc, the vehicle
motion state is affected by complex nonlinear mechanical properties, such as the friction
loss of the crawler system, the rubber track winding elastic resistance, and the interaction
resistance between the crawler and sediments during crawling on the seafloor. The struc-
tural model described in Figure 9 was simplified according to the vehicle’s basic structural
and design parameters. The crawler systems, including the spocket, road wheel, idler,
carrier roller, and track shoe, were established in combination with the actual movement.
The buoyancy, hydrodynamic resistance, and current interference generated by the vehicle
were considered in the virtual simulation prototype.
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Figure 9. Structural model and crawler system of the DSLV virtual prototype.

When the DSLV travels on the seafloor sediments, it causes a typical elastic–plastic
deformation, with the elastic deformation dominating [24]. Various parameters, such as
the shoe structural shape, vehicle driving speed, sediment layered structure, and sediment
components, influence the mechanical characteristics of seafloor sediments. Therefore,
while evaluating the vehicle mechanical model and sediments, the nonlinear mechanical
form was provided. The nonlinear sediment was simulated using relevant research [5,25],
while the sediment simulation parameters were selected as in Table 1 based on the descrip-
tion in commercial software RecurDyn [26], and the vehicle motion state on the seafloor
may be restored to the highest possible degree.
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Table 1. Sediment parameters of the simulation model of DSLV.

Parameter Value

Terrain Stiffness (kc ) 0.4171
Terrain Stiffness (kb ) 0.012

Exponential Number (n) 0.7
Cohesion (c) 0.00172

Shearing Resistance Angle 29
Shearing Deformation Modulus (k) 25

Sinkage Radio 0.05

The study of the black-box model was based on the motion state under various driving
forces. The goal was to validate the generalisation abilities of the algorithm framework
proposed in this paper by considering both constant and variable driving forces. Figure 10a
displays the motion trajectories when the inner and outer crawler drive functions were set
to STEP (Time, 0, 0, 0.01, 50) and STEP (Time, 0, 0, 0.01, 80), respectively. When the driving
forces were at a constant value, due to the influence of nonlinear sediments’ mechanical
properties and lateral current interference, the DLSV formed a lateral helical motion with a
certain radius. Figure 10b displays the motion trajectory when the inner and outer crawler
driving forces were set to STEP (Time, 0, 0, 0.01, 50) + STEP (Time, 0.1, 0, 20, 30) and STEP
(Time, 0, 0, 0.01, 100) + STEP (Time, 0.1, 0, 20, 30), respectively. When the driving forces
were variable value, the DSLV makes a spiral motion with an increasing radius because the
variable driving forces’ influence was greater than that of the nonlinear disturbance.
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The state quantities x(t), q(t) were obtained when the driving force was constant and
variable, respectively, and the six variables described in Equation (6) were modelled and
predicted according to the flowchart displays in Figure 6. According to the simulation
experiments, the smoothed sample datasets were sampled at intervals, and the i-th data
and the i+1-th data were combined to obtain a time series dataset. The first 70% of the
motion simulation data were used as the training datasets to establish the black-box model
of the variables in the time series, and the last 30% of the motion simulation data were used
as the testing datasets to verify the prediction accuracy of the variables in the time series. In
the process of optimising the SVR model’s hyperparameters using the PSO algorithm, we
set the population size to 500, the maximum number of iterations to 50, and the minimum
and maximum range of the search boundary to [0, 0, 0.01] and [10, 10, 0.7], respectively.
The training and prediction results of each state quantity in the constant driving force in
180 s are displayed in Figure 11.
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Figure 11. Results of training and prediction of constant driving force. (a) Results of training
and prediction of position and yall angle; (b) Results of training and prediction of velocity and
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According to the same research idea, the DSLV motion state characteristics when the
aforementioned variable driving force was within 0–20 s, and the large driving force after
20 s, were analyzed, the training and prediction results of each state quantity in 120 s were
as displayed in Figure 12.
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According to the training and prediction results of the constant driving force displayed
in Figure 11 and variable driving force displayed in Figure 12, due to the nonlinear sliding
of the seabed sediment, the measurement noise of angular velocity w leads prediction
deviations. The other prediction results of the black-box model established by the PSO-SVR
were basically consistent with the simulation results. In Tables 2 and 3, the evaluation
parameters of prediction accuracy, including MSE and determination coefficient R2, clearly
indicate that the black-box model can accurately predict the information for various DSLV
motion states, which lays the foundation for motion model analysis for further research on
intelligent control.

Table 2. Prediction accuracy results for constant driving force modes.

State Quantities x (m) y (m) θ (◦) vx (m/s) vy (m/s) w (rad/s)

MSE 0.0394 0.0301 0.0174 0.0269 0.0337 0.0254

R2 0.9305 0.9751 0.9520 0.9703 0.9381 0.5351

Table 3. Prediction accuracy results for variable driving force modes.

State Quantities x (m) y (m) θ (◦) vx (m/s) vy (m/s) w (rad/s)

MSE 0.0942 0.0104 0.0109 0.0174 0.0204 0.0286

R2 0.9982 0.9935 0.9722 0.9904 0.9946 0.7348

4.3. Experiment of Scaled Test Prototype

To verify the effectiveness of the black-box model, a 2:1 scaled test prototype, as
displayed in Figure 13a, was developed in our laboratory, to integrate the chassis drive
system, syntactic foam, control and communication systems. The crawler chassis was
driven by DC 110-V brushless motors, and its precise speed regulation and position status
feedback rely on hall elements and magnetic encoders. In the motor of the test prototype,
a gear reducer was used to achieve a high torque instead of speed, and the maximum
torque adjusted by the reducer can reach 170 Nm. During the movement process, the
main controller utilised CAN bus communication to realise the setting of driving forces
and the acquisition of position feedback, and sent the driving of the motors and the
position information obtained by GPS and magnetic encoders to the remote monitoring
terminal through the radio modem for the training and prediction of the black-box model.
Furthermore, the syntactic foam used in the test prototype exhibited excellent pressure-
tolerant and low water absorption, and its excellent machinability can be used for further
appearance optimisation. Figure 13b displays the remote monitoring terminal used to
redcord motion state, which includes a monitoring computer, radio modem, and power, to
successfully realise remote control and data analysis.

Using the scaled test prototype developed in our laboratory, the comprehensive
motion, on the nonlinear sand sediment near the sea, under the driving force of multi-state
periodic switching, was performed to verify the generalisation and predictability of the
proposed model framework. Figure 13c–e displays the various testing stages, in which the
inner and outer crawler drives are set to STEP (Time, 0, 0, 0.01, 50) + STEP (Time, 25, 0,
26, 30) and STEP (Time, 0, 0, 0.01, 80) + STEP (Time, 25, 0, 26, −30), and two reciprocating
cycles were set, respectively. Figure 14 displays the results of the scaled test prototype
motion state x(t) and q(t) in 100 s, of which 70% were selected as the training datasets
and 30% as the testing datasets. The results revealed the prediction data of the established
PSO-SVR model were consistent with the scaled prototype testing, and the MSE and R2 in
Table 4 illustrates that the model has outstanding prediction and fitting abilities.
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Table 4. Results of prediction accuracy of scaled test prototype.

State Quantities x (m) y (m) θ (◦) vx (m/s) vy (m/s) w (rad/s)

MSE 0.0091 0.0032 0.0988 0.0285 0.0492 0.0115

R2 0.8850 0.9960 0.9805 0.9909 0.8892 0.8351

5. Conclusions

We designed a DSLV in which tracked chassis and conventional underwater robot were
combined for the scientific exploration of benthic organisms regarding the life habits of time
series and distribution of sites-series. Based on the relationship between the kinematics
and dynamics of the DSLV, the input and output physical quantities of the black-box
motion model under the time series were clearly detailed. Next, the high-dimensional
nonlinear mapping relationship between the driving force and the corresponding motion
state was established using the proposed PSO-SVR model. Eventually, the black-box
model framework was verified using the data of a virtual prototype simulation. To verify
the effectiveness of the proposed model, we developed a 2:1 scaled test prototype in
the laboratory to research the motion state of the DSLV under multi-state driving forces.
The results show that the MSE and the correlation coefficient R2 were close to 0 and 1,
respectively, which revealed that the nonlinear motion of the DSLV can be represented by
the proposed model, and the motion model can satisfy the actual requirements of scientific
research. In the future, we hope that the whole system can be deployed in deep sea of
4500 m, and that the DSLV motion characteristics can be verified. Furthermore, we hope to
propose a more accurate model to correct the current effect, and to define the comparison
metrics to evaluate the model, such as by using Bayesian methods or PSO with local social
groups to optimise the SVR. We also hope to extend the results of this research to the design
of motion controllers and trajectory-tracking controllers.
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