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Abstract: In order to further explore more efficient identification algorithms that can solve the
ship motion identification modeling problem, a novel identification algorithm for 3-DOF ship ma-
neuvering modeling is proposed in this paper. Based on the recursive least-squares method, the
proposed algorithm combines multi-innovation and nonlinear innovation techniques that focus on
the innovation’s processing. In addition, its convergence capability is theoretically demonstrated.
The identification algorithm shows good accuracy and convergence that is verified by a simulation
experiment on a container ship. Furthermore, another simulation experiment using the full mission
ship handling simulator demonstrates its generalization capability.
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1. Introduction

Ship mathematical models are the basis of ship maneuverability, ship motion control,
and navigation simulation. In 2002, the International Maritime Organization (IMO) adopted
the resolution of MSC.137(76) “Standards for Ship Maneuverability”. The test of ship
maneuverability is described as follows: “scale model tests and/or computer predictions
using mathematical models can be performed to predict compliance at the design stage [1]”.
It is stipulated that mathematical models and computer simulations can be used to study
ship maneuverability. Therefore, it is of great theoretical and practical significance to
establish an accurate ship mathematical model. The process of establishing a mathematical
model of ship motion is called ship motion modeling [2].

Ship motion is a complex process affected by multivariable coupling, multifactor
interference, complex fluid dynamics, random uncertainty, etc. [3]. At present, the main
modeling methods of ship motion include model tests, empirical formulas, mechanism
modeling, and system identification. However, the economic and time costs of ship model-
ing tests are high, the modeling accuracy of the empirical formula method is low, manual
debugging is cumbersome, and the application of mechanical modeling requires extensive
computing resources and manual experience [4]. As an important branch of modern control
theory, system identification has become an important method to establish the mathemati-
cal model of the controlled plant. The system identification method has the advantages of
being simple, efficient, easy to operate, and can realize online modeling, especially in ship
motion modeling, and thus has gradually become an important research method of ship
motion modeling.

Among the ship identification modeling algorithms, the least-squares (LS) method, as
a basic algorithm, has a wide range of applications [5,6]. However, LS has overfitting and
matrix inverse problems, with the main limitations being the implementability and compu-
tation complexity of matrix inverse. The recursive least-squares (RLS) [7] algorithm avoids
matrix inversion and can realize online identification. Its core idea is to use the current
error (innovation) to modify the estimated value of the previous moment, then provide a
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P-type learning rate [8] and dynamic forgetting factor λ [9] to adjust the weight of a single
innovation and multi-innovation algorithm (MI) [10] to reuse multiple innovations [11], etc.
and improve the identification accuracy and convergence speed. Thus, it can be seen that
the processing of innovation may be further improved with this kind of algorithm. The
Kalman filter (KF) is also widely used in the identification of ship models, and algorithms
such as the extended Kalman filter (EKF) [12] and untracked Kalman filter (UKF) [13] have
emerged. These algorithms have good identification effects for nonlinear systems, but there
are also problems with parameter drift and dynamic cancellation. Support vector machine
(SVM), as a new generation of machine learning theory, has also been used in ship model
identification with typical ε-SVM, least squares support vector machine (LS-SVM), etc. [14].
These algorithms have complete theoretical derivation, strong generalization capabilities,
global optimality, and other characteristics [15]. However, the training time of SVM can be
very long when there is a large amount of data. In addition, the selection of kernel function
and its parameters depends on experience, which is relatively random [16]. A Neural
network (NN) is a kind of artificial intelligence algorithm that is similar to the human brain.
Its remarkable characteristic of good nonlinear function approximation ability provides an
effective way for the identification of nonlinear ship dynamics, moreover, it is easier for the
algorithm to achieve online identification [17], but the neural network faces the problem of
having a large number of ship calculations. In addition, in recent years, a class of improved
multi-information (MI) [18] and nonlinear innovation [19,20] algorithms have emerged,
which have improved the identification accuracy and convergence speed by processing
the innovation (error information) based on some traditional identification algorithms.
To sum up, in this paper, we focus on nonlinear multi-innovation technology based on
the RLS algorithm and prove its identification effect and generalization capability using
simulation experiments.

This paper is organized as follows: Section 2 introduces the MMG model of the ship,
which is used as an identification object and to produce identification data; Section 3
describes the novel identification algorithm, namely, the nonlinear multi-innovation recur-
sive least-squares(NMI-RLS) algorithm; Section 4 demonstrates the convergence of this
algorithm; Section 5 is the simulation and analysis, where the identification effect of the
algorithm is verified and its generalization capability is demonstrated; and Section 6 is
the conclusion.

2. Ship Maneuvering Model

The MMG model is a set of systematic, comprehensive, and commonly used ship
motion models proposed by the Japan Towing Tank Commission (JTTC) [21]. From a
physical perspective, the MMG model decomposes the hydrodynamic force and torque
acting on the hull into those acting on the hull, propeller, and rudder, and considers the
interaction among them. A four-degree-of-freedom (4-DOF) mathematical model of ship
motion is established to describe the motion of a ship without considering the heave
and pitch. The MMG model is usually used in autopilot design, simulation experiments,
ship anti-roll, collision avoidance, and dynamic positioning (DP) controller design [22].
Accuracy is sufficient when studying the above problems. Figure 1 shows the coordinate
system used in this article. Consider the coordinate system O-XYZ fixed on the earth, where
the O-X-Y plane coincides with the static water surface and the O-Z axis is straight down.
In addition, consider the horizontal body-fixed coordinate system O-XYZ. The x-axis is
the bow direction, the y-axis is transverse, and the z-axis is vertical downward. The x-y
plane also coincides with the static water surface. Therefore, the origin O is located in the
middle of the ship on the still water surface [23]. In fact, the accuracy of the 3-DOF model
is sufficient in collision avoidance, course control, path-following, and track keeping. The
main purpose of this paper was to verify the effectiveness of the proposed identification
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algorithm. Therefore, the 4-DOF model was simplified to 3-DOF, which was adopted as the
research object. The 3-DOF mathematical descriptions were as follows:

(m + mx)
.
u− (m + my)vr = XH + Xp + XR

(m + my)
.
v + (m + mx)ur = YH + Yp + YR

(Izz + Jzz)
.
r = NH + Np + NR

(1)


.
x = u cos(ψ)− v sin(ψ)
.
y = u sin(ψ) + v cos(ψ)
.
ψ = r cos(ϕ)

(2)
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Figure 1. Coordinate systems for ships motion. 

In Equations (1) and (2), u, v denote surge velocity and lateral velocity, r denotes yaw 
rate, m denotes ship mass, mx denotes added masses of the x-axis direction, my denotes 
added masses of the y-axis direction, Izz is for the inertia of the ship about the x-axis, while 
Jzz is for the added moment of inertia about the x-axis. XH,P,R, YH,P,R denote forces and NH,P,R 
denotes the moment acting on the ship. (x, y) is the position of the ship, and ψ denotes the 
heading. 

Then, based on previous research, the hydrodynamic forces and moments can be 
given as the identification model. 
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Figure 1. Coordinate systems for ships motion.

In Equations (1) and (2), u, v denote surge velocity and lateral velocity, r denotes yaw
rate, m denotes ship mass, mx denotes added masses of the x-axis direction, my denotes
added masses of the y-axis direction, Izz is for the inertia of the ship about the x-axis, while
Jzz is for the added moment of inertia about the x-axis. XH,P,R, YH,P,R denote forces and
NH,P,R denotes the moment acting on the ship. (x, y) is the position of the ship, and ψ
denotes the heading.

Then, based on previous research, the hydrodynamic forces and moments can be given
as the identification model.

(1) Hydrodynamics force and moments
XH = Xuuu2 + Xuuuu3 + Xvvv2 + Xrrr2 + Xvrvr + Xuv2 uv2 + Xuvruvr + Xur2

YH = Yuvuv + Yurur + Yuuru2r + Yuuvu2v + Yvvvv3 + Yrrrr3 + Yvrrvr2+
Yvvrv2r + Yv|v|v|v|+ Yv|r|v|r|++Yr|v|r|v|Yr|r|r|r|
NH = Nuvuv + Nurur + Nuuru2r + Nuuvu2v + Nvvvv3 + Nrrrr3+
Nvvrv2r + Nvrrvr2 + Nr|r|r|r|+ N|v|v|v|v + N|r|v|r|v + N|v|r|v|r

(3)

Therefore, in this study, the following hydrodynamic derivatives will be identified:
XH : Xuu, Xuuu, Xvv, Xrr, Xvr, Xuvv, Xuvr, Xurr;
YH : Yuv, Yur, Yuur, Yuuv, Yvvv, Yrrr, Yvrr, Yvvr, Yv|v|, Yv|r|, Yr|v|, Yr|r|;
NH : Nuv, Nur, Nuur, Nuuv, Nvvv, Nrrr, Nvvr, Nvrr, Nr|r|, N|v|v, N|r|v, N|v|r.

(2) Propeller forces and moments
XP = (1− tp)T
YP = 0
KP = 0
NP = 0

(4)

T = ρn2Dp
4kT(JP) (5)
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In Equations (4) and (5), tp, ρ, n, Dp denote thrust deduction fraction, water density,
propeller revolution, and propeller diameter, respectively.

kT(JP) = a0 + a1 JP + a2 JP
2 (6)

In Equation (6), a0, a1, a2 are constant, Jp = (1− wp)u/nDP, wp denotes wake fraction
at the propeller position in maneuvering motions.

(3) Rudder force and moment (XR, YR, KR, NR)
XR = −(1− tR)FN sin(δ)
YR = −(1− aH)FN cos(δ)
NR = −(xR + aHxH)FN cos(δ)

(7)

FN =
1
2

ρVR
2 AR fα sin(αR) (8)

fα = 6.13λR/(2.25 + λR) (9)

In Equations (7)–(9), VR, AR, λR, αR, Cb denote current velocity, rudder profile area,
aspect ratio, the effective angle of current, and block coefficient, respectively.

tR = 0.2168 + 0.00539Cb − 0.1755Cb
2

aH = 0.6784− 1.3374Cb + 1.8891Cb
2

xR ≈ −0.5L
xH = −(0.4 + 0.1Cb)L
zR ≈ zH = 0.4d

(10)

For the convenience of identification, the Equations (1)–(10) were rewritten as follows:

Zu(V, t) := (m + mx)
.
u−

(
m + my

)
vr,

Zv(V, t) :=
(
m + my

) .
v + (m + mx)ur,

Zr(V, t) := (Iz + Jz)
.
r, V = [u, v, p, r]T

(11)

ϕu(V, t) =
[
u2, u3, . . . , T

(
Jp
)
,−FN sin δ

]T ∈ R8×1,
ϕv(V, t) = [uv, ur, . . . , |r|r,−FN cos δ]T ∈ R12×1,
ϕr(V, t) = ϕv(V, t)

(12)

ϑu = [Xuu, Xuuu, . . . , CP, CRu]
T,

ϑv =
[
Yuv, Yur, . . . , Y|r|r, CRv

]T
,

ϑr =
[

Nuv, Nur, . . . , N|r|r, CRr

]T
,

CP = 1− tP, CRu = 1− tR, CRv = 1 + aH ,
CRr = xR + aHxH

(13)

Zi(V, t) = ϕT
i (V, t)ϑi + ωi(t), i = u, v, r (14)

In Equation (14), Zi(V, t), ϕi(V, t) are the output scalar and the information vectors
that consist of the measured ship manicuring motion variables at a time, ωi(t) is the
noise term.

3. Parameter Identification Algorithm Using Nonlinear Multi-Innovation

The least-square (LS) method is a mature application in system identification, which
is simple and reliable and has good identification abilities. However, in general, least
squares face overfitting and matrix-inversion problems. Matrix inversion, in particular, is a
problem as not all matrices are invertible and the matrix inversion calculation is large. In
addition, the LS method is unable to realize online identification. Therefore, the recursive
least-squares (RLS) algorithm was developed, which is an improved algorithm of LS, and it
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became one of the most common identification algorithms. The general application of its
identification algorithm [11] is as follows:

θ̂(t) = θ̂(t− 1) + P(t)ϕ(t)e(t)
e(t) = Z(t)− ϕT(t)θ̂(t− 1)
P−1(t) = P−1(t− 1) + ϕ(t)ϕT(t)

(15)

In Equation (15); θ̂(t) is the estimated value of θ at time t;P(t) is covariance matrix;
e(t) is the innovation scalar for each iteration. Initial values of identification parameters
and covariance matrix were set as:

θ̂(0) = 1n/p0
P(0) = p0 ∗ I

(16)

here, p0 > 1 and constant, generally is 106; 1n is a column vector of length n with all elements
1; I is a unit diagonal matrix.

From the perspective of parameter recursive identification, P(t)ϕ(t) is a gain matrix in
Equation (15), which revises the innovation e(t), e(t) is the error between the actual output
Z(t) and the estimated value ϕT(t)θ̂(t− 1) produced by the identification parameters of the
previous moment. Therefore, the whole recursion process only uses the input and output
data at the current time t, which can be regarded as the single innovation least-squares
method. In order to increase the efficiency of old innovation and improve the accuracy
and convergence of RLS, the innovation scalar e(t) in Equation (15) was extended to a
multi-innovation vector E(l, t) with length l. As shown in Equation (17):

E(l, t) =


e(t)

e(t− 1)
...

e(t− l + 1)

 =


Z(t)− ϕ(t)Tθ

Z(t− 1)− ϕ(t− 1)Tθ
...

Z(t− l + 1)− ϕ(t− l + 1)Tθ

 (17)

Similarly, the information vector and output vector were also extended to:

Z(l, t) = [Z(t), Z(t− 1), . . . , Z(t− l + 1)]T ∈ Rl×1,
Φ(l, t) = [ϕ(t), ϕ(t− 1), . . . , ϕ(t− l + 1)] ∈ Rn×1 (18)

and then substituting the extended matrix into Equation (15), we can obtain:

E(l, t) = Z(l, t)−ΦT(l, t)θ̂(t− 1) (19)

Then, Equation (19) can be improved by multi-innovation, and we can obtain the
multi-innovation recursive least-squares (MI-RLS) as shown:

ϑ̂(t) = ϑ̂(t− 1) + L(t)
[
Z(l, t)−ΦT(l, t)ϑ̂(t− 1)

]
,

L(t) = P(t− 1)Φ(l, t)
[
Il + ΦT(l, t)P(t− 1)Φ(l, t)

]−1,
P(t) = P(t− 1)− L(t)ΦT(l, t)P(t− 1)

(20)

According to the authors’ previous research [19,20], the nonlinear innovation is a kind
of improved algorithm based on innovation. In this paper, the MI-RLS was improved by
the idea of nonlinear, as shown below:

Z(l, t) = N ∗ E(l, t) = N ∗
[
Y(l, t)−ΦT(l, t)θ̂(t− 1)

]
(21)
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Here, N denotes the nonlinear function, which is applied to decorate the multi-innovation,
in this paper, this nonlinear function is f (e) = sin(ωe). To sum up, Equation (20) was finally
transformed into (NMI-RLS):

θ̂(t) = θ̂(t− 1) + P(t)Φ(l, t)Z(l, t)
Z(l, t) = sin(ω(Y(l, t)−ΦT(l, t)θ̂(t− 1)))
P−1(t + 1) = P−1(t) + Φ(l, t + 1)ΦT(l, t + 1)

(22)

as for covariance matrix P, which can also be expressed in another form:

P(t + 1) = P(t) +
[P(t)Φ(l, t + 1)][P(t)Φ(l, t + 1)]T

1 + ΦT(l, t + 1)P(t)Φ(l, t + 1)
(23)

4. Convergence Analysis of the NMI-RLS

Let θ̃k(t) =
_
θ k(t) − θ, here the superscript “~” represents the error between the

estimated value and the actual value, and the superscript “∩” represents the estimated
value. k is the number of iterations [8]. Then,

θ̃k(t)− θ̃k−1(t) =
_
θ k(t)−

_
θ k−1(t) =

Pk−1(t)Φk(l, t)
1 + Φk

T(l, t)Pk−1(t)Φk(l, t)
Zk(l, t) + Φk(l, t)

_
Zk(l, t) (24)

and let
χk(t) =

1
1 + Φk

T(l, t)Pk−1(t)Φk(l, t)
(25)

according to Equations (18)–(23), then

Pk(t)Φk(l, t) = χ(t)Pk−1(t)Φk(l, t) (26)

Zk(l, t) = Yk(l, t)−Φk
T(l, t)

_
θ k−1(t) = −Φk

T(l, t)θ̃k−1(t) (27)
_
Zk(l, t) = −χk(t)Φk

T(l, t)θ̃k−1(t) (28)

Substituting Equations (27) and (28) into Equation (24), we can obtain:

θ̃k(t) = Pk(t)P−1
k−1(t)θ̃k−1(t)− χk(t)Φk(t)Φk

T(l, t)θ̃k−1(t) (29)

Define the Lyapunov function:

Vk(t) = θ̃k
T(t)P−1

k (t)θ̃k(t) (30)

then:
Vk(t)−Vk−1(t) =

θ̃k
T(t)P−1

k (t)θ̃k(t)− θ̃k−1
T(t)P−1

k−1(t)θ̃k−1(t) =
A + B

(31)

in Equation (31):
A = −χk(t)θ̃k−1

T(t)Φk(l, t)Φk
T(l, t)θ̃k−1(t) (32)

B = −χ2
k(t)θ̃

T
k−1(t)Φk(l, t)ΦT

k (l, t)
{

2P−1
K − 1(t) + [2I − P−1

k ]Φk(l, t)ΦT
k (l, t)

}
θ̃k−1(t) (33)

According to Equation (32), we can know A ≤ 0. As long as B ≤ 0, the convergence of
the algorithm can be proven according to Lyapunov’s law. In Equation (24), we can see

0 < λ(Pk(t)) < λ(Pk−1(t)) < · · · λ(P0(t)) < λ(P0) = P0 (34)

is the biggest eigenvalue of Pk(t), then

B = −χ2
k(t)θ̃

T
k−1(t)Φk(l, t)ΦT

k (l, t)
{

2P−1
k−1 + [2− P−1

0 ]Φk(l, t)ΦT
k (l, t)

}
θ̃k−1(t) (35)
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because P0 is a big positive constant, so B < 0, and

Vk(t)−Vk−1(t) = A + B < 0

Above all, the convergence capability of NMI-RLS was demonstrated.

5. Simulations and Analysis

In this paper, a set of simulation experiments were designed to verify the effectiveness
and generalization capability of the proposed algorithm. First, a group of ship maneuver-
ability tests were performed with predefined MMG models of a container ship containing
disturbance (wind and wave) to generate identification data, and then the identification
results were obtained by the proposed identification algorithm and identification data. The
identification results were used to carry out similar maneuverability tests to verify the
validity of the algorithm. Second, similar simulations were conducted on an “Own-ship
1” (OS 1) in the full mission ship handling simulator to further verify the generalization
capability of the proposed algorithm.

5.1. Disturbance

In order to increase the credibility of simulation experiments, disturbances (wind and
wave) were added to simulate the actual sea condition. The forces and moments produced
by wind, which (XA, YA, NA) can be expressed as [24]:

XA = (1/2)ρa AXVA
2CXA(θA)

YA = (1/2)ρa AYVA
2CYA(θA) fA(φ)

NA = (1/2)ρa AYVA
2LCNA(θA) fA(φ)

(36)

here
θA= tan−1(vA/uA)
VA

2 = uA
2 + vA

2

uA = u + UW cos(θW − ψ)
vA = v + UW sin(θW − ψ)

(37)

Here, ρa, AX, AY denote the air density, front, and side profile areas of the ship
above water, respectively. VA, UW denote the relative and absolute wind velocity, θA,
θW are the relative and absolute wind direction. CXA, CYA, CNA are aerodynamic force
coefficients expressed as a function of θA. fA(φ) denotes the correction coefficient ex-
pressed as fA = −0.355φ + 1 [23]. The forces and moments produced by waves, which
(XW, YW, NW, KW) are expressed as

XW = ρgH2
1/3LCXW(U, TP, χ0)

YW = ρgH2
1/3LCYW(TP, χ0)

NW = ρgH2
1/3LCNW(TP, χ0)

(38)

here H1/3, g denotes the wave height and gravitational acceleration. CXW, CYW and CNW
denote steady force coefficients in waves. which can be expressed as:

CXW(U, TP, χ0) = 2
∫ π
−π G(θ)dθ

∫ ∞
0 CXW(U, TP, χ0)

Sζζ (ω)

H2
1/3

dω

CYW(TP, χ0) = 2
∫ π
−π G(θ)dθ

∫ ∞
0 CYW(ω, χ0)

Sζζ (ω)

H2
1/3

dω

CNW(TP, χ0) = 2
∫ π
−π G(θ)dθ

∫ ∞
0 CNW(ω, χ0)

Sζζ (ω)

H2
1/3

dω

(39)

Sζζ(ω) is the wave spectrum, and G(θ) is the wave direction distribution function.
According to Equations (36)–(39), the simulation experiments of this paper introduce

the wind and wave under the fifth sea state as shown in Figure 2.
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sponding wind-generated wave.

5.2. The Effectiveness of the Proposed Algorithm (NMI-RLS)

In this section, we identify a known container ship to illustrate the effectiveness of
proposed algorithm. To be specific, in the reference [18], a container ship was used in
the simulation with the known model structure and parameters as shown in Table 1. In
addition, a kind of multi-innovation least squares (MILS) was proposed. In this paper, we
used the container ship and the MILS as comparative simulation experiments.

Table 1. The particulars of container ship.

Particulars of Container Ship

Length between perpendiculars L (m) 175.0
Breadth B (m) 25.4

Designed draught D (m) 8.5
Volume of displacement ∇ (m3) 21,222.0

Block coefficient Cb 0.559
Height from keel to transverse metacenter KM (m) 10.39

Rudder area AR (m2) 22.04
Aspect ratio Λ −0.51

Propeller diameter D (m) 6.53

First, the container ship was employed to simulate the zig-zag test to produce motion
data (identification data) as shown in Figure 3. Subsequently, we used the MILS method
(proposed in reference [18]) and the nonlinear MI-RLS method (proposed in this paper) to
evaluate the parameters of the container ship.
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As shown in Figure 3a, the zig-zag simulation experiments included the known
model (red line), the MILS-based (dashed line), and the nonlinear MIRLS-based (green
line) identified models. In the whole stage of simulations, the trajectory error of the
MILS-based identification model response was always bigger than that of the nonlinear
MIRLS-based identification model response, especially in the final stage, the trajectory error
is significantly different.

Furthermore, the motion variables of the container ship under three different models
(known, MILS, and nonlinear MI-RLS) are shown in Figure 3b, which included the rudder
angle δ, the heading ψ, the longitudinal speed u, the lateral speed v, and the yaw rate r.
Based on that, during the whole process, the green line is mostly between the red line and
the dashed line. This demonstrates that the performance of the nonlinear MI-RLS method is
better than the MILS method. In order to increase the reliability of simulation experiments
and facilitate repetitive experiments, the final identified parameters (nonlinear MI-RLS) are
given in Table 2.

Table 2. Identified hydrodynamic derivatives.

Parameter Identification for the Hydrodynamic Force

Xuu = −1.7269 Yuv = 1.2316 Nuv = 0.0149
Xuuu = 1.7265 Yur = 2.0764 Nur = −0.1533
Xvv = 4.0798 Yuur = −2.0740 Nuur = 0.1525

Xrr = −1.4597 Yuuv = −1.2372 Nuuv = −0.0142
Xvr = −1.5504 Yvvv = 2.3357 Nvvv = −0.0126

Xuvv = −3.2796 Yrrr = 0.0369 Nrrr = −0.0183
Xuvr = 1.5436 Yvrr = 0.1787 Nvrr = −0.0695
Xurr = 1.4738 Yvvr = 0.2364 Nvvr = −0.0054

Y|v|v = −0.4871 N|v|v = −0.0089
Y|r|v = −0.0634 N|r|v = 0.0017
Y|v|r = −0.2374 N|v|r = −0.0121
Y|r|r = −0.0139 N|r|r = 0.0056

5.3. The Generalization Capability of the Proposed Algorithm

Full mission ship handling simulators have been developed for more than 20 years
and have high-precision mathematical models with 6-DOF. The simulators are in full
compliance with the STCW 2010, as shown in Figure 4. In particular, the full mission
handling simulator has been approved by DNV (class A) and CCS. In this section, we chose
a ship “own-ship 1” (OS 1) in the simulator. Then, a turning test and zig-zag test were
conducted in the simulator and the trial data (identification data) were downloaded. It is
noted that the ship model in the simulator is unknown. The ship model parameters are
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identified using the trial data by the proposed nonlinear MI-RLS algorithm as shown in
Table 3.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 13 
 

 

Table 2. Identified hydrodynamic derivatives. 

Parameter Identification for the Hydrodynamic Force 
1.7269uuX = −  1.2316=uvY  0.0149=uvN  
1.7265uuuX =  2.0764=urY  0.1533= −urN  
4.0798vvX =  2.0740= −uurY  0.1525=uurN  
1.4597rrX = −  1.2372= −uuvY  0.0142= −uuvN  
1.5504vrX = −  2.3357=vvvY  0.0126= −vvvN  
3.2796uvvX = −  0.0369=rrrY  0.0183= −rrrN  

1.5436uvrX =  0.1787=vrrY  0.0695= −vrrN  
1.4738urrX =  0.2364=vvrY  0.0054= −vvrN  
 | | 0.4871= −v vY  | | 0.0089= −v vN  

 0.0634= −r vY  0.0017=r vN  

 0.2374= −v rY  0.0121= −v rN  

 0.0139= −r rY  0.0056=r rN  

5.3. The Generalization Capability of the Proposed Algorithm 
Full mission ship handling simulators have been developed for more than 20 years 

and have high-precision mathematical models with 6-DOF. The simulators are in full com-
pliance with the STCW 2010, as shown in Figure 4. In particular, the full mission handling 
simulator has been approved by DNV (class A) and CCS. In this section, we chose a ship 
“own-ship 1” (OS 1) in the simulator. Then, a turning test and zig-zag test were conducted 
in the simulator and the trial data (identification data) were downloaded. It is noted that 
the ship model in the simulator is unknown. The ship model parameters are identified 
using the trial data by the proposed nonlinear MI-RLS algorithm as shown in Table 3. 

 
Figure 4. Full Mission Ship Handling Simulator. 

Table 3. Identified hydrodynamic derivatives. 

Parameter Identification for the Hydrodynamic Force 
0.1374= −uuX  59.1666= −uvY  22.5966=uvN  
0.1375=uuuX  26.7604=urY  5.6630= −urN  
0.2321=vvX  26.7489= −uurY  5.6549=uurN  
0.0077=rrX  59.1594=uuvY  22.5931= −uuvN  
0.3094=vrX  29.5338=vvvY  10.4279= −vvvN  
0.1937= −uvvX  0.0383=rrrY  0.3289= −rrrN  
0.3339= −uvrX  0.0830= −vrrY  0.2950= −vrrN  

Figure 4. Full Mission Ship Handling Simulator.

Table 3. Identified hydrodynamic derivatives.

Parameter Identification for the Hydrodynamic Force

Xuu = −0.1374 Yuv = −59.1666 Nuv = 22.5966
Xuuu = 0.1375 Yur = 26.7604 Nur = −5.6630
Xvv = 0.2321 Yuur = −26.7489 Nuur = 5.6549
Xrr = 0.0077 Yuuv = 59.1594 Nuuv = −22.5931
Xvr = 0.3094 Yvvv = 29.5338 Nvvv = −10.4279

Xuvv = −0.1937 Yrrr = 0.0383 Nrrr = −0.3289
Xuvr = −0.3339 Yvrr = −0.0830 Nvrr = −0.2950
Xurr = −0.0061 Yvvr = −13.4274 Nvvr = 3.1337

Y|v|v = −0.0610 N|v|v = −0.1388
Y|r|v = 0.0323 N|r|v = 0.0048

Y|v|r = −0.0130 N|v|r = −0.0260
Y|r|r = −0.0139 N|r|r = 0.0878

As shown in Figure 5, the trial experiment and identified model simulation are com-
pared. It is clear that the turning circle generated by the identified model was smaller than
that of the trial experiments. Because the disturbance in the simulation experiment and the
simulator experiment was random, discrepancies have appeared between the trial results
and the identified model, and with the increase of experiment time, these discrepancies will
accumulate and become larger. However, in the initial stage, the error is minute. Figure 5b
gives the longitudinal speed u, the lateral speed v and the yaw rate r and we can see that
they are similar to each other. From the turning test simulation, the effectiveness of the
proposed identification algorithm is satisfactory.

In order to make the generalization capability of the identification algorithm con-
vincing, a zig-zag test was carried out to further verify the effectiveness of the proposed
algorithm. As shown in Figure 6a, we see that the trial experiments and the identified
model simulation had similarities, on the other hand, as shown in Figure 6b, the motion
variables of the ship under the two different conditions also had good fitting properties. In
general, a good generalization capability of the proposed algorithm was shown through
the above two groups of comparative experiments.
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6. Conclusions

In this paper, a nonlinear MI-RLS identification algorithm for the ship is proposed.
Based on a traditional MILS identification algorithm, we employed a nonlinear function to
decorate it. The convergence of the algorithm was theoretically demonstrated. Furthermore,
we conducted an identification simulation using a container ship to verify the effectiveness,
and another experiment in the full mission ship handling simulator to show generalization
capability. The results obtained were satisfying in both tests. However, there were also some
flaws in the proposed algorithm—we only identified a 3-DOF ship motion model, which
could not be employed in roll control problems. Future studies will focus on this matter.
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