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Abstract: According to the statistics of water transportation accidents, collision accidents are on the 

rise as the shipping industry has expanded by leaps and bounds, and the water transportation en-

vironment has become more complex, which can result in grave consequences, such as casualties, 

environmental destruction, and even massive financial losses. In view of this situation, high-preci-

sion and real-time ship trajectory prediction based on AIS data can serve as a crucial foundation for 

vessel traffic services and ship navigation to prevent collision accidents. Thus, this paper proposes 

a high-precision ship track prediction model based on a combination of a multi-head attention 

mechanism and bidirectional gate recurrent unit (MHA-BiGRU) to fully exploit the valuable infor-

mation contained in massive AIS data and address the insufficiencies in existing trajectory predic-

tion methods. The primary advantages of this model are that it allows for the retention of long-term 

ship track sequence information, filters and modifies ship track historical data for enhanced time 

series prediction, and models the potential association between historical and future ship trajectory 

status information with the current state via the bidirectional gate recurrent unit. Significantly, the 

introduction of a multi-head attention mechanism calculates the correlation between the character-

istics of AIS data, actively learns cross-time synchronization between the hidden layers of ship track 

sequences, and assigns different weights to the result based on the input criterion, thereby enhanc-

ing the accuracy of forecasts. The comparative experimental results also verify that MHA-BiGRU 

outperforms the other ship track prediction models, demonstrating that it possesses the character-

istics of ease of implementation, high precision, and high reliability. 

Keywords: ship trajectory prediction; AIS data; MHA-BiGRU; multi-head attention mechanism; bi-

directional-RNN structure; GRU 

 

1. Introduction 

In recent decades, as the shipping industry of China has grown by leaps and bounds, 

water transportation has been confronted with issues, such as an increase in ship traffic 

density, the frequency of water traffic accidents, and the increasing difficulty of maritime 

safety supervision, all of which pose obstacles to the sustainable growth of the shipping 

industry [1,2]. AIS data, whose primary information is spatiotemporal data consisting of 

ship location and time, provides ship trajectory data that can be used to analyze ship nav-

igation behavior in real time, as well as provide critical supplementary information in the 

process of collision avoidance [3,4]. The target ship trajectory can be predicted based on 

known historical location information using full analysis and deep mining of AIS ship 
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behavior data, which can provide a strong reference for the supervision of vessel traffic 

services (VTS), allowing for the timely detection and resolution of abnormal and non-

standard ship navigation problems [5,6]. Therefore, real-time and accurate ship trajectory 

prediction can contribute significantly to ensuring water traffic safety and enhancing the 

efficacy of water traffic guarantee. Methods for ship trajectory prediction can be broadly 

categorized into two types: kinematic modeling-based approaches and neural network 

modeling-based approaches, respectively [7]. 

Methods based on kinematic modeling are widely used in the ship trajectory predic-

tion industry, with the most common being the Gaussian process regression models (GP) 

and the Kalman filter (KF). With time as the independent variable, Anderson measured 

the trajectory as a one-dimensional Gaussian process. This method determines the poste-

rior distribution of the projected value by extracting the joint prior density and covariance 

matrix of the observed value and the anticipated value, as well as models smooth trajec-

tory estimation with the aid of dynamical systems [8]. Rong et al. regarded the shipping 

local as a Gaussian distribution and used GP modeling to forecast the route of a ship [9]. 

Jiang proposed constructing a polynomial Kalman filter to suit the nonlinear system based 

on the classic Kalman filter theory, compensating for the lack of track location data infor-

mation and sluggish update, and predicting the ship’s trajectory based on the longitude 

and latitude data [10]. These aforementioned methods function effectively when the ship’s 

navigation behavior state is somewhat steady. However, ship dynamics are typically sen-

sitive to distinct environmental excitations in different areas, which may result in a non-

stationary condition and render the prediction result less accurate in reality. 

The widespread usage of neural networks has ushered in a new stage in ship trajec-

tory prediction. Giulia et al. developed a radial basis neural network for the construction 

of a short-term vessel prediction [11]. Zhou et al. built a track prediction model based on 

a three-layer back-propagation (BP) neural network, the training and prediction results of 

which match the standards of the VTS for accuracy, real time, and universality. However, 

due to the fact that the hidden units of this model are fewer in number, its expressive 

capacity is constrained [12]. Liu et al. suggested a trace estimation method with support 

vector regression and used an enhanced differential evolution approach to optimize the 

parameters of this model [13]. However, these solutions cannot effectively overcome the 

problem of long-term sequence dependency. 

Due to AIS data being typically time series data, it is required to evaluate not only 

the present time step’s ship trajectory but also the previously observed trajectory data in 

order to anticipate future ship trajectory. A recurrent neural network (RNN) can be re-

garded as a representative neural network capable of predicting future data using time 

series information, despite gradient-vanishing and gradient-explosion problems [14,15]. 

To work out these gradient errors of RNN, long short-term memory (LSTM) introduces 

the memory unit and gate mechanism to replace the hidden layer unit in RNN [16]. Ad-

ditionally, then, Ger et al. optimized the LSTM by introducing a forget gate, which enables 

the LSTM to learn to reset itself [17]. The gated recurrent unit (GRU) is an excellent varia-

tion on LSTM, in that it only requires an update and reset gate to regulate the information 

flow [18]. Thus, due to their effectiveness in time series prediction, RNN and its variant 

models have been applied to the field of ship trajectory prediction in recent years. Ferran-

dis et al. established the LSTM method to predict the ship trajectory and solve the problem 

of the gradient vanishing and gradient explosion of RNN owing to rising data length [19]. 

Agarap utilized the GRU method for time series prediction and proved this method has a 

good performance and is suitable for time series forecasting [20]. The bidirectional recur-

rent neural network structure enables the output layer to receive complete past and future 

information for each point in the input sequence [21]. Gao et al. and Siami-Namini et al. 

created a bidirectional structure to improve contextual relevance based on the RNN 

method, which improves the accuracy of the ship trajectory prediction compared to RNN 

alone [22,23]. It is worth mentioning that Stateczny et al. proposed the optimum dataset 

method, which contributes to comparative navigation and provides a model for big data 
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set processing [24]. After the application of attention mechanism (AM) in the field of im-

age recognition, Vaswani et al. used this mechanism to replace the recurrent neural net-

work modeling, provided a model for machine translation, and then, it became prevalent 

in regression problems [25]. Cheng et al. implemented AM in the area of ship trajectory 

prediction, with the attention modes enhancing the AIS data characteristics extracted by 

each block and the attention module classifying these characteristics [26]. 

However, although these deep-learning approaches based on AIS data performed 

reasonably well at predicting ship trajectory, there are still a few issues with insufficient 

accuracy and real-time enforcement. The primary reason for these issues is that the ma-

jority of existing approaches for mining AIS data are relatively isolated and overlook ele-

ments such as AIS data characteristics and ship track sequence information. Thus, a high-

precision ship track prediction model based on a combination of multi-head attention 

mechanism and bidirectional gate recurrent unit (MHA-BiGRU) is developed to solve the 

issues mentioned above. The contribution of this model is briefly summarized below: 

Firstly, this model retains long-term ship track sequence information, filters and modifies 

ship track historical data for enhanced time series prediction, and models the potential 

association between historical and future ship trajectory status information with the cur-

rent state, thereby increasing forecast accuracy. Secondly, an MHA mechanism based on 

BiGRU is introduced, which not only calculates the correlation between the characteristics 

of AIS information but also actively learns cross-time synchronization between the hidden 

layers of the output and input ship track sequences and assigns different weights to the 

result based on the input criterion, thereby improving the accuracy and robustness of the 

overall model. Finally, the comparative experimental results in this paper verify that 

MHA-BiGRU, which fully exploits the advantages of bidirectional RNN, multi-head at-

tention mechanisms, and GRU, outperforms the other seven ship track prediction models, 

demonstrating that the MHA-BiGRU possesses the characteristics of ease of implementa-

tion, high precision, and high reliability. 

2. Materials and Methods 

Figure 1 depicts the framework of the proposed method, which consists of four com-

ponents: data processing, MHA-BiGRU model proposal, MHA-BiGRU model training, 

and comparison experiments. Specifically, data processing, which includes ship trajectory 

extraction, missing value recognition and completion, and data cleansing, is a crucial step 

in deep learning, as the processed data enable an improved model performance. An easy-

to-implement method that is suitable for quick and concise analysis is proposed by com-

bining the advantages of bidirectional RNN, multi-head attention mechanism, and GRU, 

which enables the improvement of prediction efficiency and accuracy of the ship trajec-

tory. Additionally, then, the structure, application principle, training method, and contri-

bution of the MHA-BiGRU are presented in a step-by-step manner. Finally, in order to 

demonstrate the effectiveness of the proposed method, some other prediction methods 

are compared in this paper. 
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Figure 1. Flowchart of the ship trajectory prediction method. 

2.1. AIS Data Processing 

The AIS is a critical component of modern ship navigation systems, which is installed 

and widely available for ships to reinforce the capacity to mark the location and identify 

targets. There are two major issues with trajectory prediction using AIS data: time interval 

inconsistency and measurement error. The former issue is caused by a variety of circum-

stances, including variability in the broadcast frequency and packet losses. The latter issue 

occurs when the received AIS data value does not match the true value of the sensor at 

the moment of measurement, and the deviation can be rather considerable [7,27]. These 

two issues may result in data loss, sparsity, and offset. Thus, processing data, such as ship 

trajectory extraction, missing value recognition and completion, and data cleaning, are 

vital stages in deep learning, as processed data enable model performance to be improved. 

AIS data are multidimensional and multiparametric in nature and are used to char-

acterize ship behavior, such as the direction, position, and speed of the ship, as they 

change over time [28]. Each ship was classified based on its Maritime Mobile Service Iden-

tification (MMSI). After that, the ships were sorted according to their timestamps. To han-

dle deficiency, deviation, and sparse AIS data from the original dataset, this section em-

ploys the following data processing techniques: ship trajectory extraction, deficiency 

value recognition, linear interpolation, and data cleaning. 

The method for extracting the ship trajectory is based on time intervals and naviga-

tion speed. When the time interval between the ship trajectory points reaches 6 h, or the 

ship navigation speed reaches 0, the ship trajectory points are identified as tangent points 

to the trajectory sequence. Each track point contains information about the longitude and 

latitude positions, as well as its navigation speed and direction of ships.  

Let the original data be =
1 2

{ , , , }
N

s p p p  and the time interval between 
i

p  and 
+1i

p  

be 
i

t . When 
i

t  exceeds 10 min, the linear interpolation method is used to complete 
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the missing value, with one deficiency value being completed every 5 min. If ( , )
j j

t p  is 

the deficiency data and ( , )
i i

t p  and ( , )
k k

t p  are the two data points closest to the defi-

ciency data, then the completed data can be shown as follows [29]: 

( )
−

= + −
−

* k i
j k j i

k i

p p
p p t t

t t
 (1) 

Additionally, to address the ship trajectory deviation and sparse data, set 
i

p  as the 

current track point. If the distance between the current track point pi and its adjacent track 

point
−1i

p , 
+1i

p  is greater than the threshold, the adjacent track point 
−1i

p , 
+1i

p  should be 

used as the observation point for linear fitting. When the track is too sparse and a signifi-

cant amount of data are missing, the sparse ship trajectory is removed and no longer used. 

2.2. Comparasion of GRU and LSTM 

To work out the gradient-vanishing and gradient-explosion problems of RNN, LSTM 

introduces a memory unit and a gate mechanism to replace the hidden layer unit in RNN 

[15,16]. The LSTM modifies the current state of the memory cell and determines the output 

content via the forget gate, input gate, and output gate, which correspond to the writing 

and reading of the ship track reading characteristic data sequence and the reset operation 

of the previous state, respectively, in this paper. GRU is a great variation of LSTM, in that 

it requires only an update and reset gate to govern the flow of information. As a result of 

its smaller parameters compared to LSTM, it is extremely easy to train and enables it to 

respond more effectively to the implications of this information on current time inputs 

[18,29]. The comparison of the LSTM and GRU neural network structures can be seen in 

Figure 2 [17,18], and then, the following describes the concrete calculation process for 

these two models: 

The following section details the precise calculation procedure employed by LSTM. 

The amount of memory cell information used at the previous moment is controlled 

by the forget gate (
t

f ).  

−
=  +

1
( [ , ] )

t f t t f
f σ W h x b  (2) 

The input gate (
t

i ) enables the control of the amount of information updated by the 

memory unit. ~C t  is a candidate vector produced by the tanh layer and will be added to 

the cell state. Additionally, then, it integrates the 
−1t

C  with the t
C  to update the cell 

units. 

−
=  +

1
( [ , ] )

t i t t i
i σ W h x b  (3) 

−
=  +

1
tan ( [ , ] )

t c t t c
C h W h x b  (4) 

−
= + +

1
Θ Θ

t t t t t
C f C i C  (5) 

The output gate ( t
O ) controls the amount of information output to the next hidden 

state. The output value is passed to the status value ( t
h ) of the next unit to complete the 

training procedure. 

−
=  +

1
( [ , ] )

t o t t o
O σ W h x b  (6) 

= Θ tanh( )
t t t

h O C  (7) 

The description of the concrete calculation process of GRU is as follows. 
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The reset gate ( t
r ) enables the determination of how to combine the new input infor-

mation with the previous memory. Additionally, when it is turned off, GRU cells can ef-

fectively forget the previous calculation and return to the state in which they are reading 

the first input sequence, so as to achieve the purpose of the reset. 

−
=  +

1
( [ , ] )

t r t t r
r σ W h x b  (8) 

The update gate ( t
z ) determines the activation status of GRU cells and the degree of 

update content. 

−
=  +

1
( [ , ] )

t z t t z
z σ W h x b  (9) 

The reset gate is applied to the
−1t

h vector, and the obtained result is multiplied by t
x

to form a splicing vector with t
x . The obtained result is transformed into a vector with 

elements between −1 and 1 through the tanh function, and the candidate hidden state 

value is obtained. Through the above steps, the final hidden layer output information can 

be obtained. 

−
=  +

1
tanh( [ Θ , ] )

t h t t t h
h W r h x b  (10) 

−
= − +

1
(1 )Θ Θ

t t t t t
h z h z h  (11) 

where [ ] represents the multiplication of two vectors,  means matrix multiplication, Θ
shows that each element in the matrix is multiplied accordingly, W and b are the weight 

item of corresponding gates and bias items, respectively, σ is the sigmoid activation func-

tion. 

Overall, as shown in Figure 2, GRU integrates 
t

f  and 
t

i  of the LSTM unit into t
z

, and it also integrates the hidden state and unit state of the LSTM with the t
r , which can 

be used to control the extent of ignoring the states information of the previous time, so as 

to master the flow of vessel trajectory information. Based on this, GRU preserves the most 

critical data in order to avoid information loss during long-term propagation. Because the 

structure of GRU is simpler than that of LSTM, fewer parameters must be taught, and it 

also offers the benefit of quick training speed throughout the training process. 

 

Figure 2. Comparison of LSTM and GRU neural network structures. 
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2.3. Application of Bidirectional RNN Structure 

The bidirectional recurrent neural network structure enables the output layer to re-

ceive complete past and future information for each point in the input sequence. To be 

more precise, the forward RNN learns from previous data, while the reverse RNN learns 

from future data, so that each time step makes optimal use of upper- and lower-related 

data. Additionally, then, these two outputs are spliced together as the final output of the 

whole bidirectional RNN [21,30].  

From this, BiGRU is a bidirectional RNN neural network that employs the GRU for 

each hidden node [31]. BiGRU divides GRU neurons into forward and backward layers 

that correspond to positive and negative time directions, respectively. 

As shown in Figure 3 [21,29], the current statement of the hidden layer of BiGRU is 

determined by current input t
x , the hidden layer statement output of the forward layer 

−1t
h  and the backward layer 

−1t
h . Since BiGRU can be regarded as two single GRU, the 

hidden layer state of BiGRU at time t can be obtained by the weighted sum of 
−1t

h  and 

−1t
h , which can be shown as follows: 

 

Figure 3. BiGRU structure. 
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−
=

1
GRU( , )

t t t
h x h  (12) 

−
=

1
GRU( , )

t t t
h x h  (13) 

= + +
t t t t t t

h w h v h b  (14) 

In conclusion, BiGRU enables the modeling of the potential association between his-

torical and future ship trajectory status information with the current state, hence increas-

ing forecast accuracy. 

2.4. Application of MHA Mechanism 

The attention-based model originated in the field of image recognition and can now 

be used in place of RNN in the area of machine translation. By assigning a different weight 

to each factor in the input sequence, the attention-based model highlights the most signif-

icant influencing factors, thereby increasing the model’s accuracy. It is expressed as fol-

lows [26]: 

=
1 2

( , ) ( * , * )
i i

f x y W x W y  (15) 

=

=
1

max( ( , )) *
n

i i
i

Attention soft f x y x  (16) 

Where 
i

x  represents the input sequence, It is mapped in the (0, 1) interval through the 

normalized exponential function, which is “weight”. Additionally, dot product attention 

is the weighted combination of 
i

x . 

With the attention-based model mechanism being widely used in image and natural 

language processing tasks, the multi-head attention (MHA) mechanism emerges as the 

situation requires [32]. An MHA is a combination of multiple self-attention structures. 

Using the query and kex’Iy, the MHA mechanism calculates the weight coefficient of the 

relevant value and then performs weighted summation. MHA works by performing a 

linear transformation on the query, key, and value and then inserting them into the zoom 

point to garner attention; this process is repeated a number of times. Additionally, each 

iteration’s linear transformation parameters W for Q, K, and V are unique; they are not 

shared. Rather than using simple maximum or average pooling, MHA is used to process 

the data from the BiGRU output layer, as demonstrated by the following formula: 

=( , , ) ( )
T

k

QK
Attention Q K V softmax V

d
 (17) 

=    
1 2 3

( , , ) ( ) o

h
MultiHead Q K V head head head head W  (18) 

Thus, the multi-head attention mechanism, which is a combination of multiple atten-

tion-based models, can be regarded as a weighting scheme for information, which can 

assign weights to the hidden layer of BiGRU, so that they can make more rational use of 

information sources when making predictions. 

2.5. MHA-BiGRU Model 

By combining the advantages of bidirectional RNN, multi-head attention mecha-

nism, and GRU, the MHA-BiGRU model is proposed as an easy-to-implement method 

suitable for quickly and succinctly analyzing ship trajectory. This model improves the 

prediction efficiency and accuracy of ship trajectory. This section introduces the MHA-

BiGRU model in a hierarchical fashion and demonstrates the benefits of this method. Fig-

ure 4 vividly illustrates the structure of the proposed model. 
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Figure 4. Schematic diagram of the MHA-BiGRU. 

The MHA-BiGRU model retains long-term ship track sequence information, filters 

and modifies ship track historical data for enhanced time series prediction via GRU, and 

models the potential association between historical and future ship trajectory status infor-

mation with the current state via the BiGRU structure, thereby increasing forecast accu-

racy. 

Additionally, then, in order to resolve the common problems associated with RNN, 

which include AIS data being relatively isolated and overlooking elements such as AIS 

data characteristics and ship track sequence information, it is essential to implement an 

MHA mechanism based on the BiGRU structure. Firstly, this method allows for the calcu-

lation of the correlation between AIS information characteristics, such as time, latitude, 

longitude, speed, course, and heading, and the critical of the global impact. That is, a 

weighted representation is obtained by using attention sort and then put into a feedfor-

ward neural network to obtain a new representation that takes into account the correlation 

between various parameters. 

Secondly, because the vector length is difficult to summarize with the complete track 

sequence information, and the information input after BiGRU will dilute the information 

of the previous vector to a certain extent, the accuracy of the fixed context vector response 

track data will gradually decrease. In addition, because the ship operation in the applica-

tion scenario changes dynamically with time, to address the aforementioned issue, the 

MHA mechanism can actively learn the degree of cross-time synchronization between the 

hidden layers of the output and input sequences and assign different weights to the result 
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based on the input criterion, thereby improving the accuracy and robustness of the overall 

model. 

3. Comparative Experiments and Results 

3.1. Experimental Dataset 

The following comparative experiments were performed using Python 3.7, Keras 

2.1.4, and Pytorch 4.0 in a software environment. The original AIS data for August were 

collected in the coastal waters near the port entrance of Lianyungang, China. In order to 

avoid overfitting, the original AIS dataset characteristics of MMSI, Time, Latitude, Longi-

tude, Speed, Course, and Heading were selected for deep learning. The experimental da-

taset was then created by completing data processing, including data extraction, missing 

value recognition and completion, data cleaning, and characteristics extraction from the 

original AIS dataset, which can be divided into the training set, the validation set, and the 

test set. Among them, the training set was utilized to train and determine the model’s 

weight, bias, and other parameters. The validation set was employed to validate the 

model’s performance and enhance its generalizability by adjusting the hyper parameters. 

After training, the test set was used to evaluate the final model [33]. The first 80% of this 

experimental dataset served as the training set, while the other 20% served as the test set. 

In order to accelerate the convergence of the model and enhance its precision, the maxi-

mum–minimum normalization was applied, so that all of the values are concentrated 

within the interval (0, 1). 

−
=

−

* min

max min

x x
x

x x
 (19) 

Figure 5 depicts the application of the sliding window method for data training in 

this experiment [34]. Through the sliding window, the final ship trajectory data for the 

current slider enable forecasting to be performed via sliding each unit until all of the data 

in the training set are traversed, thereby completing a training epoch. 

 

Figure 5. Model training over time, where the blue block represents the input training data and the 

green one represents the prediction result for each batch of input. 
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3.2. Hyper Parameters Setting 

Parameter design plays a crucial role for recurrent neural networks. In this experi-

ment, the Adam optimizer was chosen, which combines the benefits of the gradient de-

scent algorithm with adaptive learning rate and the momentum gradient descent algo-

rithm to not only adapt to sparse gradients but also mitigate the issue of gradient oscilla-

tion. The initial network learning rate was set to 0.002, and each training cycle’s learning 

rate was reduced adaptively [35]. The model performs better if the learning rate is gradu-

ally reduced. The training epoch ends when the loss value approaches 0, and the maxi-

mum training number is reached. Then, the MHA-BiRU was used to compare and validate 

the fundamental parameters, the number of units in the hidden layer and batch size in the 

network, in order to determine the optimal parameter combination. The selectable range 

of the former was {16, 32, 64, 128}, and the latter was {16, 32, 64, 128}. In particular, when 

the value of units in the hidden layer is large, the complexity of the model increases, and 

it is prone to overfitting, but when the value is small, the nonlinear fitting ability may be 

weakened. Additionally, when batch sizes are either oversized or undersized, the number 

of errors generated is excessive [36]. After several groups of hyper parameter selection 

comparative experiments based on MHA-BiGRU, the parameters selected in this experi-

ment are as shown in Table 1. In order to effectively compare the prediction effect, the 

choice of other methods’ parameters is consistent with the MHA-BiGRU. 

Table 1. The hyper parameters selection of comparative experiments. 

Model  Parameter Name Optimal Parameters 

MHA-BiGRU 

Hidden_size 32 

Batch_size 64 

Activation function Linear 

loss function Mean Squared Error 

Learning rate 0.0001 

3.3. Evaluation Index 

This experiment selected mean squared error (MSE) as the loss function of the pro-

posed model, allowing the overall error degree to be quantified. The more robust the 

model, the smaller the loss function. MAE and RMSE served as the evaluation indices for 

each method. The smaller the number, the more closely the predicted value matches the 

actual value, and thus, the more accurate the prediction. These methods of computation 

are illustrated below. 

=

= −
2

1

1
( , )

N

i

loss x y x y
N

 (20) 

=

= − 2

1

1
ˆRMSE ( )

m

i i
i

y y
m

 (21) 

1

1
ˆMAE ( )

m

i i

i

y y
m =

= −  (22) 

3.4. Results of Comparative Experiments 

3.4.1. Comparative Experiment Based on the Bidirectional RNN Structure 

BiGRU, BiLSTM, GRU, and LSTM were used in the bidirectional RNN structure com-

parison experiment to compare prediction results. The model with the lower loss on new 

data has superior generalization performance and can alleviate the issue of overfitting. 

The prediction accuracy of these methods is illustrated below: BIGRU is superior to GRU, 

and BiLSTM is superior to LSTM, as shown in Figure 6. 
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Figure 6. Comparative experiment loss value based on the bidirectional RNN structure. 

3.4.2. Comparative Experiment Based on the MHA Mechanism 

Figure 7 vividly show comparative experiment results based on the MHA mecha-

nism. The prediction accuracies of these algorithms are compared as follows: MHA-

BiGRU > BiGRU, MHA-BiLSTM > BiLSTM, MHA-GRU > GRU, MHA-LSTM > LSTM. The 

results of these comparative experiments show that the combination of the MHA mecha-

nism with both RNN and BiRNN is preferable to that without the MHA mechanism. 
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Figure 7. Comparative experiment loss value based on the MHA mechanism: (a) the combination 

of the MHA mechanism with RNN (b) the combination of the MHA mechanism with bidirectional 

RNN. 

3.4.3. Overall Comparative Experiments 

As illustrated in Figures 8–11 and Table 2, the prediction results of all eight methods 

on the test dataset perform well, and the ship trajectory prediction results are relatively 

accurate, demonstrating not only that the models were not fitted but also that all of these 

models can better deal with the problem of track prediction. The model with the lower 

loss value has the highest accuracy. As a result, the prediction accuracies of these algo-

rithms are listed in the following order: MHA-BiGRU > MHA-GRU > MHA-BiLSTM > 

BiGRU > MHA-LSTM > GRU > BiLSTM > LSTM. These results show that GRU can out-

perform LSTM in this comparison scenario, both in terms of efficiency and accuracy, re-

gardless of whether the model is combined with a two-way structure, the MHA mecha-

nism, or neither. In addition, MHA-GRU is superior to BiGRU, and MHA-LSTM is supe-

rior to BiLSTM, which may indicate that the MHA mechanism contributes more to the 

model’s accuracy and robustness than the bidirectional structure. 

Finally, and most importantly, the MHA-BiGRU model has the lowest loss, RMSE, 

and MAE values, indicating that its applicability, accuracy, and validity are superior to 

those of other comparison experiments. Additionally, as shown in Table 2 and Figures 10, 

MHA-BiGRU comes closest to the original ship’s path, which shows that this model’s pre-

diction is the most accurate in this comparison. 
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Figure 8. Loss value of overall comparative experiments. 

 

Figure 9. The comparative prediction results: (a) the predicted longitude (b) the predicted latitude. 
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Figure 10. Ship behavior prediction: (a) MHA-BiGRU (b) MHA-BiLSTM (c) MHA-GRU (d) MHA-

LSTM (e) BiGRU (f) BiLSTM (g) GRU (h) LSTM. 
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Table 2. RMSE and MAE value comparison among all models. 

 

Figure 11. RMSE and MAE value comparison among all models: (a) RMSE (b) MAE. 

Method 
RMSE MAE 

Longitude Latitude Overall Longitude Latitude Overall 

MHA-BiGRU 0.0150 0.0133 0.0142 0.0062 0.0058 0.0060 

MHA-BiLSTM 0.0185 0.0180 0.0182 0.0084 0.0089 0.0086 

MHA-GRU 0.0172 0.0154 0.0164 0.0076 0.0062 0.0069 

MHA-LSTM 0.0242 0.0320 0.0284 0.0107 0.0165 0.0136 

BiGRU 0.0190 0.0244 0.0218 0.0089 0.0134 0.0112 

BiLSTM 0.0238 0.0483 0.0381 0.0136 0.0263 0.0199 

GRU 0.0270 0.0364 0.0321 0.0142 0.0225 0.0183 

LSTM 0.0269 0.0570 0.0446 0.0132 0.0308 0.0220 
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4. Discussion 

By gradually demonstrating the benefits of bidirectional RNN, multi-head attention 

mechanism, and GRU, the comparative experiment results demonstrated that MHA-

BiGRU outperforms other models in terms of effectiveness and accuracy of ship trajectory 

prediction. 

4.1. The Contribution of the MHA-BiGRU Model 

The LSTM and GRU, excellent variants of RNN, have a gate structure that not only 

preserves long-term sequence information but also filters and modifies ship track histori-

cal data for enhanced time series prediction. Additionally, in comparison with LSTM, the 

prediction task with GRU can be accomplished with fewer model parameters, but it can 

perform similarly to LSTM [17–19]. This experiment finds that GRU can outperform LSTM 

in this comparison scenario, both in terms of efficiency and accuracy, regardless of 

whether the model is combined with a two-way structure, the MHA mechanism, or nei-

ther. Although GRU outperforms LSTM in this experiment, there is no final conclusion on 

which is better or worse and which must be chosen based on specific tasks and datasets. 

Gao et al. and Siami-Namini et al. proved that the use of a bidirectional structure to 

improve contextual relevance based on the RNN method improves the accuracy of ship 

trajectory prediction compared to RNN alone [23,24]. Whether combined with LSTM or 

GRU, this experiment further demonstrated that the bidirectional structure can improve 

the accuracy of ship trajectory prediction. As a result, this finding thoroughly demon-

strates that the bidirectional RNN structure can simulate the prospective relationship be-

tween past ship trajectory status information and future ship trajectory status information 

with current state in order to increase prediction accuracy. 

The MHA mechanism is frequently employed in image recognition and automatic 

translation. It was combined with a recurrent neural network in this experiment, from 

which significant conclusions are drawn. The most important results of the comparative 

experiments demonstrate the advantage of the MHA mechanism in combination with 

RNN and BiRNN. Additionally, when compared to bidirectional structures, the MHA 

mechanism contributes significantly more to the model’s accuracy and robustness. Thus, 

the MHA mechanism not only calculates the correlation between the characteristics of AIS 

information but also actively learns cross-time synchronization between the hidden layers 

of the output and input sequences, and it assigns different weights to the result based on 

the input criterion, thereby improving the overall model’s accuracy and robustness. 

Overall, the most crucial advantage of MHA-BiGRU is that it enables the preserva-

tion of long-term sequence information, filters and modifies ship track historical data for 

improved time series prediction, models the potential relationship between historical and 

future ship trajectory status information and the current state via a bidirectional structure, 

and highlights critical ship trajectory prediction information in AIS characteristics and 

time series dimension via an MHA mechanism. 

4.2. The Limitations and Future Development 

Experiments indicate that the MHA-BiGRU model has high prediction accuracy un-

der normal navigation conditions, as well as good applicability and track prediction reli-

ability. However, as the navigational status of each ship changes over time, the naviga-

tional status of other ships will have varying effects on the future course of the ship in 

inquiry. Additionally, the bad weather will impact the ship’s navigation, leading to an 

abnormal ship trajectory. Moreover, in addition to using AIS data for ship trajectory pre-

diction, it can also be supplemented with other system data, such as the radar system, to 

further increase the model’s accuracy. Thus, in order to further investigate whether the 

model can correct and avoid ship collisions under abnormal conditions, it is necessary to 

combine other ship spatial information and bad weather information to verify the model’s 

performance under abnormal circumstances. 
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5. Conclusions 

To improve the performance of vessel track prediction compared with some existing 

approaches, a high-precision method, which combines the advantages of bidirectional 

RNN, multi-head attention mechanism, and GRU is proposed in this paper. Through com-

parison experiments, the following conclusions can be drawn: 

1. GRU is a great variation of LSTM, in that it requires only an update and reset gate to 

govern the flow of information. As a result of its smaller parameters compared to 

LSTM, it is extremely easy to train and outperforms in terms of efficiency and accu-

racy in this experiment. 

2. Bidirectional RNN structure enables the modeling of the potential association be-

tween previous and future ship trajectory status information with the current state, so 

as to increase prediction accuracy. 

3. The MHA mechanism not only calculates the correlation between AIS information 

characteristics but also actively learns cross-time synchronization between the hidden 

layers of the output and input sequences, and it assigns different weights to the result 

based on the input criterion, improving the accuracy and robustness of the overall 

model. 

4. In general, all evaluation indicators show that the prediction accuracy of MHA-

BiGRU is higher than that of other comparative experiments, implying that the pro-

posed model can effectively improve ship trajectory prediction performance. 

In the future, it will be necessary to combine other ship spatial information and bad 

weather information to verify the model’s performance under abnormal conditions in or-

der to further investigate whether the model can correct and avoid ship collisions in ex-

treme circumstances. 

Author Contributions: Conceptualization, K.B. and J.B.; methodology, K.B., J.B., and Y.S.; software, 

K.B.; validation, J.B., W.Z., and Y.S.; formal analysis, K.B.; investigation, K.B. and J.B.; resources, 

Y.S.; data curation, J.B.; writing—original draft preparation, K.B.; writing—review and editing, K.B. 

and J.B.; visualization, W.Z. and Y.S.; supervision, M.G. and X.Z.; project administration, M.G. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the Fundamental Research Funds for the Central Public 

Welfare Research Institutes, grant number TKS20220306 and TKS20220304. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The datasets analyzed or generated in this study are available from 

the corresponding author upon reasonable request. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Perera, L.P.; Oliveira, P.; Soares, C.G. Maritime traffic monitoring based on vessel detection, tracking, state estimation, and 

trajectory prediction. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1188–1200. https://doi.org/10.1109/TITS.2012.2187282. 

2. Jiang, D.; Cheng, Z.Y.; Xue, J.; van Gelder, P.A. Towards a probabilistic model for estimation of grounding accidents in fluctu-

ating backwater zone of the Three Gorges Reservoir. Reliab. Eng. Syst. Saf. 2021, 205, 107239. 

https://doi.org/10.1016/j.ress.2020.107239. 

3. Praetorius, G. Vessel Traffic Service (VTS): A Maritime Information Service or Traffic Control System? Understanding Everyday 

Performance and Resilience in a Socio-Technical System under Change. Ph.D. Thesis, Chalmers University of Technology, Gö-

teborg, Sweden, 2014.  

4. Felski, A.; Jaskólski, K.; Banyś, P. Comprehensive assessment of automatic identification system (AIS) data application to anti-

collision manoeuvring. J. Navig. 2015, 68, 697–717. https://doi.org/10.1017/S0373463314000897. 

5. Yang, R.; Shi, G.Y.; Li, W.F. Ship track prediction model based on automatic identification system data and bidirectional cyclic 

neural network. In Proceedings of the 2021 4th International Symposium on Traffic Transportation and Civil Architecture 

(ISTTCA), Suzhou, China, 12 November 2021. https://doi.org/10.1109/ISTTCA53489.2021.9654726. 



J. Mar. Sci. Eng. 2022, 10, 804 19 of 20 
 

 

6. Wu, B.; Tang, Y.H.; Yan, X.P.; Soares, C.G. Bayesian Network modelling for safety management of electric vehicles transported 

in RoPax ships. Reliab. Eng. Syst. Saf. 2021, 209, 107466. https://doi.org/10.1016/j.ress.2021.107466. 

7. Gao, D.W.; Zhu, Y.S.; Zhang, J.F.; He, Y.K.; Yan, K.; Yan, B.R. A novel MP-LSTM method for ship trajectory prediction based on 

AIS data. Ocean Eng. 2021, 228, 108956. https://doi.org/10.1016/j.oceaneng.2021.108956. 

8. Anderson, S.; Barfoot, T.D.; Tong, C.H.; Särkkä, S. Batch nonlinear continuous-time trajectory estimation as exactly sparse 

Gaussian process regression. Auton. Robot. 2015, 39, 221–238. https://doi.org/10.1007/s10514-015-9455-y. 

9. Rong, H.; Teixeira, A.P.; Soares, C.G. Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean Eng. 

2019, 182, 499–511. https://doi.org/10.1016/j.oceaneng.2019.04.024. 

10. Jiang, B.; Guan, J.; Zhou, W.; Chen, X. Vessel trajectory prediction algorithm based on polynomial fitting kalman filtering. J. 

Signal Processing 2019, 35, 741–746. https://doi.org/10.16798/j.issn.1003-0530.2019.05.002. 

11. De Masi, G.; Gaggiotti, F.; Bruschi, R.; Venturi, M. Ship motion prediction by radial basis neural networks. In Proceedings of 

the 2011 IEEE Workshop On Hybrid Intelligent Models And Applications, Paris, France, 11–15 April 2011. 

https://doi.org/10.1109/HIMA.2011.5953967. 

12. Zhou, H.; Chen, Y.; Zhang, S. Ship trajectory prediction based on BP Neural Network. J. Artif. Intell. 2019, 1, 29–36. 

https://doi.org/10.32604/jai.2019.05939. 

13. Liu, J.; Shi, G.; Zhu, K. Vessel trajectory prediction model based on ais sensor data and adaptive chaos differential evolution 

support vector regression (ACDE-SVR). Appl. Sci. 2019, 9, 2983. https://doi.org/10.3390/app9152983. 

14. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. 

https://doi.org/10.1038/323533a0. 

15. Potter, C. RNN based MIMO channel prediction. In Differential Evolution in Electromagnetics. Evolutionary Learning and Optimi-

zation; Qing, A., Lee, C.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 4, pp. 177–206. https://doi.org/10.1007/978-

3-642-12869-1_8. 

16. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. 

https://doi.org/10.1162/neco.1997.9.8.1735. 

17. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–

2471. https://doi.org/10.1162/089976600300015015. 

18. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations 

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. 

https://doi.org/10.48550/arXiv.1406.1078. 

19. del Á guila Ferrandis, J.; Triantafyllou, M.; Chryssostomidis, C.; Karniadakis, G. Learning functionals via LSTM neural networks 

for predicting vessel dynamics in extreme sea states. arXiv 2019, arXiv:1912.13382. https://doi.org/10.1098/rspa.2019.0897. 

20. Agarap, A.F.M. A neural network architecture combining gated recurrent unit (GRU) and support vector machine (SVM) for 

intrusion detection in network traffic data. In Proceedings of the 2018 10th International Conference on Machine Learning and 

Computing, Association for Computing Machinery, New York, NY, USA, 26–28 February 2018. 

https://doi.org/10.1145/3195106.3195117. 

21. Agarap, A.F.; Grafilon, P. Statistical analysis on e-commerce reviews, with sentiments classification using bidirectional recur-

rent neural network (RNN). arXiv 2018, arXiv:1805.03687. https://doi.org/10.48550/arXiv.1805.03687. 

22. Gao, M.; Shi, G.; Li, S. Online prediction of ship behavior with automatic identification system sensor data using bidirectional 

long short-term memory recurrent neural network. Sensors 2018, 18, 4211. https://doi.org/10.3390/s18124211. 

23. Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings 

of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019. 

https://doi.org/10.1109/BigData47090.2019.9005997. 

24. Stateczny, A.; Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.; Motyl, W.; Wisniewska, M. Methodology for processing of 3D 

multibeam sonar big data for comparative navigation. Remote Sens. 2019, 11, 2245. https://doi.org/10.3390/rs11192245. 

25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. 

In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 De-

cember 2017. 

26. Cheng, X.; Li, G.; Ellefsen, A.L.; Chen, S.; Hildre, H.P.; Zhang, H. A novel densely connected convolutional neural network for 

sea-state estimation using ship motion data. IEEE Trans. Instrum. Meas. 2020, 69, 5984–5993. 

https://doi.org/10.1109/TIM.2020.2967115. 

27. Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.B. Exploiting AIS data for intelligent maritime navigation: A com-

prehensive survey from data to methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. 

https://doi.org/10.1109/TITS.2017.2724551. 

28. Sang, L.Z.; Wall, A.; Mao, Z.; Yan, X.P.; Wang, J. A novel method for restoring the trajectory of the inland waterway ship by 

using AIS data. Ocean. Eng. 2015, 110, 183–194. https://doi.org/10.1016/j.oceaneng.2015.10.021. 

29. Suo, Y.; Chen, W.; Claramunt, C.; Yang, S. A ship trajectory prediction framework based on a recurrent neural network. Sensors 

2020, 20, 5133. https://doi.org/10.3390/s20185133. 

30. Zhang, G.; Tan, F.; Wu, Y. Ship motion attitude prediction based on an adaptive dynamic particle swarm optimization algorithm 

and bidirectional LSTM neural network. IEEE Access 2020, 8, 90087–90098. https://doi.org/10.1109/ACCESS.2020.2993909. 



J. Mar. Sci. Eng. 2022, 10, 804 20 of 20 
 

 

31. Wang, C.; Ren, H.; Li, H. Vessel trajectory prediction based on AIS data and bidirectional GRU. In Proceedings of the 2020 

International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, 10–12 July 2020. 

https://doi.org/10.1109/CVIDL51233.2020.00-89. 

32. Nguyen, D.; Fablet, R. TrAISformer-A generative transformer for AIS trajectory prediction. arXiv 2019, arXiv:2109.03958. 

https://doi.org/10.48550/arXiv.2109.03958. 

33. Sun, L.; Zhou, W. Vessel motion statistical learning based on stored ais data and its application to trajectory prediction. In 

Proceedings of the 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017), 

Beijing, China, 25–26 March 2017. 

34. Zhang, L.; Zhang, J.; Niu, J.; Wu, Q.M.; Li, G. Track prediction for HF radar vessels submerged in strong clutter based on mscnn 

fusion with gru-am and ar model. Remote Sens. 2021, 13, 2164. https://doi.org/10.3390/rs13112164. 

35. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980v9. 

https://doi.org/10.48550/arXiv.1412.6980. 

36. Hu, Y.K.; Xia, W.; Hu, X.X.; Sun, H.Q.; Wang, Y.H. Vessel trajectory prediction based on recurrent neural network. Syst. Eng. 

Electron. 2020, 42, 871–877. 

 

 


