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Abstract: An accurate mathematical model is a basis for controlling and estimating the state of an
Autonomous underwater vehicle (AUV) system, so how to improve its accuracy is a fundamental
problem in the field of automatic control. However, AUV systems are complex, uncertain, and
highly non-linear, and it is not easy to obtain through traditional modeling methods. We fit an
accurate dynamic AUV model in this study using the long short-term memory (LSTM) neural
network approach. As hyper-parameter values have a significant impact on LSTM performance,
it is important to select the optimal combination of hyper-parameters. The present research uses
the improved Q-learning reinforcement learning algorithm to achieve this aim by improving its
recognition accuracy on the verification dataset. To improve the efficiency of action exploration, we
improve the Q-learning algorithm and choose the optimal initial state according to the Q table in each
round of learning. It can effectively avoid the ineffective exploration of the reinforcement learning
agent between the poor-performing hyperparameter combinations. Finally, the experiments based
on simulated or actual trial data demonstrate that the proposed model identification method can
effectively predict kinematic motion data, and more importantly, the modified Q-Learning approach
can optimize the network hyperparameters in the LSTM.

Keywords: autonomous underwater vehicle; model identification; long short term memory;
hyperparameter optimization; reinforcement learning; Q-learning

1. Introduction

The ocean occupies most of the earth’s surface and is an important area for commer-
cial activities, scientific research, and resource extraction, and its impact is critical to all
aspects [1,2]. Over the past half-century, oceanographic research has shown that the oceans
and seafloor are critical to understanding the planet. Exploring the marine environment
provides valuable knowledge for many areas of science and engineering. AUVs have
been widely used in marine engineering due to their unique advantages. Autonomous
underwater vehicles (AUVs) equipped with various sensors have broad applications in
scientific, military, and commercial missions, such as deep-sea exploration, cable/pipe
tracking, feature tracking, and more [3].

AUVs are complex nonlinear coupled systems, and it is challenging to model them
accurately [4,5]. Therefore, studying the non-linear mechanism of AUV systems and finding
mathematical methods that can accurately express them have become the focus of AUV
research, which has essential educational and economic value [6–9]. Neural network models
have recently been widely used in AUV system model identification. In the identification
networks, recursive structures are adapted to acquire dynamic information and improve the
communication between neurons [10]. The experimental results show that the method can
fit the AUV system. The weight values of the network were tuned using a hybrid algorithm
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of the genetic algorithm (GA) and the error backpropagation algorithm (BP) [11]. Moreover,
the neural network with the hybrid learning algorithm improves the learning speed of
convergence and identification accuracy. An approximation of the lumped disturbance and
estimation of the parametric uncertainty is achieved by a dynamic neural network [12].
The Bayesian network is used to construct a state observer for robot control when both the
actuator and sensor models are used [13]. A multi-scale attention-based long short-term
memory (LSTM) model is adopted to identify the ship’s non-linear model under different
ocean conditions. The experiment results show that the LSTM model has higher prediction
accuracy than the traditional support vector regression (SVR) and radial basis function
(RBF) model [14]. Ref. [15] also shows that the LSTM method has a high quality of time-
series prediction and has important practical applications. Therefore, this study uses an
LSTM neural network approach for AUV system identification.

Neural networks have good non-linear mapping ability and have been widely used
in system identification, especially in non-linear systems [16–18]. The value of the neural
network hyperparameters can significantly affect its performance [19]. However, its value
has no theoretical guidance, and different systems often require different values. There-
fore, it is of great practical significance to study a method for automatic optimization of
hyperparameters of system identification algorithm [20,21].

In response to the above problems, some optimization methods of neural network
model structure based on reinforcement learning have been proposed. Meta-modeling
based on reinforcement learning enables automated generation of high-performing convo-
lutional neural network (CNN) architectures for a given learning task [22]. A novel multi-
objective reinforcement learning method is proposed for hyperparameter optimization to
solve the limitations in the actual environment, such as latency and CPU utilization [23].
A context-based meta-RL approach is used to maximize the accuracy of the validation
set [24]. It can tackle the data-inefficiency problem of hyperparameter optimization. The
above methods have proved the effectiveness of reinforcement learning in hyperparameter
optimization. If the hyperparameter optimization problem of a neural network is regarded
as a reinforcement learning problem of continuous state-action space, such as deep Q
network (DQN) [25] or proximal policy optimization (PPO) [26], the algorithm needs to go
through hundreds or even thousands of times of learning to ensure convergence. When
the computing resources are minimal, it is not suitable for the situation where the search
space of parameters is ample or the performance evaluation of the algorithm is very ex-
pensive. Therefore, the Q-learning [27] algorithm is selected in this paper to solve the
hyperparameter optimization problem of the LSTM neural network.

Our main objective in this paper is to identify the AUV model and optimize hy-
perparameters using an improved Q-learning LSTM neural network method. The main
contributions of this paper lie in the following three points: (1) We adopt the LSTM method
to identify the AUV dynamic model and conduct an in-depth analysis of its principle;
(2) Reinforcement learning framework to solve the hyperparameter optimization problem
of the LSTM method; (3) The method’s effectiveness in this paper is verified by verifying
the actual AUV dataset.

The rest of the paper is organized as follows: Section 2 provides the AUV’s hydrody-
namic model and force analysis. Section 3 describes in details of the proposed method. The
experimental results are presented and discussed in Section 4. Finally, Section 5 gives the
main conclusions and discusses future work.

2. AUV Model Analysis
2.1. AUV Hydrodynamic Model

This research focuses on the "Sailfish" 210 AUV developed by the Underwater Vehicle
Laboratory of Ocean University of China (Qingdao, China), as shown in Figure 1. The cabin
structure comprises four sections: the bow, the navigation cabin, the electronic energy cabin,
and the propulsion system cabin. A unified electrical and mechanical interface is used
between the cabins, which is beneficial for us to configure different loads for the AUV for
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different task requirements. The bow is generally equipped with an underwater acoustic
communication machine; the navigation cabin includes attitude and heading reference
system (AHRS), global positioning system (GPS), doppler velocity log (DVL), etc. The
electronic energy cabin includes batteries, industrial computer systems, etc.; the propulsion
system cabin mainly includes steering gear and thruster motors. The experiments carried
out in this paper are based on the "Sailfish" 210 AUV platform, which has a maximum
speed of 5 kn (2.5 m/s). The parameters are shown in Table 1.

Table 1. The parameters of the AUV model.

Definition Symbol Unit Numerical Value

Mass m kg 73
Diameter d mm 210
Length l m 2.2

Center of gravity xG, yG, zG mm 0, 0, 0.02
Center of buoyancy xB, yB, zB mm 0, 0, 0
Moment of inertia Ix, Iy, Iz kg·m2 0.4, 24.5, 24.5

The general motion of the AUV was described with two coordinate systems, body-fixed
reference frame (G− xyz) and earth-fixed reference frame (E− ξηζ) [28]. AUV translational
and rotational motions are described in six degrees of freedom (6DOF) as follows:

η = [ηT
1 ηT

2 ]
T , η1 = [η ξ ζ]T , η2 = [φ θ ψ]T

v = [vT
1 vT

2 ]
T , v1 = [u v w]T , v2 = [p q r]T

τ = [τT
1 τT

2 ]
T , τ1 = [X Y Z]T , τ2 = [K M N]T

(1)

where η1 and η2 refer to the position and orientation of the AUV with respect to the earth-
fixed reference frame, υ denotes the translational and rotational speeds with respect to the
body-fixed reference frame, τ1 and τ2 refer to the external forces and moments with respect
to the body-fixed reference frame. A diagram of the AUV coordinate system is shown in
Figure 1.
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Figure 1. AUV body-fixed and earth-fixed coordinate systems.

Translational velocities [u v w] are converted from linear velocities [ξ̇ η̇ ζ̇] by T1:

T1 =

 cos ψ cos θ cos ψ sin θ sin φ− sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ− cos ψ sin φ
− sin θ cos θ sin φ cos θ cos φ

 (2)
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Then,  ξ̇
η̇
ζ̇

 = T1

 u
v
w

 (3)

The angular rates
[
φ̇ θ̇ ψ̇

]
are converted to the rotational velocities [p q r] by T2:

T2 =

 1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 (4)

Thus,  φ̇
θ̇
ψ̇

 = T2

 p
q
r

 (5)

The general motion is described in (G− xyz) by Equation (6), where the first three
equations describe the translation and the last three describe rotation:

m[(u̇− vr + wq)− xG(q2 + r2) + yG(pq− ṙ) + zG(pr + q̇)] = ∑ X
m[(v̇− wp + ur)− yG(r2 + p2) + zG(qr− ṗ) + xG(qp + ṙ)] = ∑ Y
m[(ẇ− uq + vq)− zG(p2 + q2) + xG(rp− q̇) + yG(rq + ṗ)] = ∑ Z
Ix ṗ + (Iz − Iy)qr + m[yG(ẇ + pv− qu)− zG(v̇ + ru− pw)] = ∑ K
Iy q̇ + (Ix − Iz)rp + m[zG(u̇ + wq− vr)− xG(ẇ + pv− uq)] = ∑ M
Iz ṙ + (Iy − Ix)pq + m[xG(ṙ + ur− pw)− yG(u̇ + qw− vr)] = ∑ N

(6)

where:
m: AUV mass.
xG, yG, zG: the position of centre gravity of the AUV.
Ix, Iy, Iz: the moment of inertia of the AUV.
u, v, w: velocities along the x-axis, y-axis, and z-axis of the AUV.
p, q, r: roll angular velocity, pitch angular velocity and yaw angular velocity.
u̇, v̇, ẇ, ṗ, q̇, ṙ: linear acceleration and angular acceleration.
∑ X, ∑ Y, ∑ Z, ∑ K, ∑ M, ∑ N: external force and moment.

2.2. The Dynamical Principles AUV Model Identification

The dynamic model mathematically describes the essential law of the interaction
between the AUV and the environment, which can well reflect the state transition of the
AUV under the action of force. This paper will realize the AUV model identification based
on the dynamic model. The external force (moment) exerted on the AUV mainly includes
gravity and buoyancy, hydrodynamic force, rudder force, thrust force, etc. [29]. The force
analysis and model identification principle are detailed below.

2.2.1. The Static Force

The static force of the AUV is generated by the gravity P and buoyancy B. The center
of buoyancy and center of gravity coordinates in the body-fixed frame are (0, 0, 0) and
(0, 0, ze). The component of the static force in the earth-fixed frame is (0, 0, P− B), which
can be obtained by converting it to the motion coordinate system by Equation (7):

X = −(P− B) sin(θ)
Y = −(P− B) cos θ sin φ
Z = −(P− B) cos θ cos φ
K = −ph cos θ sin φ
M = −ph sin θ
N = 0

(7)
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where p is the underwater full displacement of AUV and h represents the depth of AUV.

2.2.2. Hydrodynamic Force

The hydrodynamic forces of AUV are usually divided into inertial hydrodynamic
forces and viscous hydrodynamic forces, and the interaction between the two is ignored.
In infinitely deep, wide and still water, the hydrodynamic forces of the AUV depend only
on its motion and is a function of motion parameters u, v, w, p, q, r, u̇, v̇, ẇ, ṗ, q̇, ṙ. According
to the idea of Taylor expansion, the hydrodynamic forces (XH , YH , ZH) and the moments
(KH , MH , NH) are expanded to obtain the expression of the hydrodynamic forces:

XH = [Xqqq2 + Xrrr2 + Xrprp] + [Xu̇u̇ + Xvrvr + Xwqwq] + [Xu|u|u|u|+
Xvvv2 + Xwww2]

YH = [Yṙ ṙ + Yqrqr + Yṗ ṗ + Ypq pq + Yp|p|p|p|] + [Yv̇v̇ + Yvqvq + Ywrwr+

Ywpwp] + [Yrur + Yv|r|
v
|v|
(
v2 + w2)1/2|r|+ Ypup] + [Y0u2 + Yvuv+

Yv|v|v
(
v2 + w2)1/2] + Yvwvw

ZH = [Zq̇ q̇ + Zrrr2 + Zpp p2 + Zrprp] + [Zẇẇ + Zvrvr + Zvpvp] + [Zquq+

Zw|q|
w
|w|
(
v2 + w2)1/2|q|] + [Z0u2 + Zwuw + Zw|w|w

(
v2 + w2)1/2]+

[Z|w|u|w|+ Zww

∣∣∣∣∣w(v2 + w2)1/2
∣∣∣∣∣] + Zvvv2

KH = [K ṗ ṗ + Kṙ ṙ + Kqrqr + Kpq pq + Kp|p|p|p|] + [Kpup + Krur + Kv̇v̇]+

[Kvqvq + Kwpwp + Kwrwr] + [K0u2 + Kvuv + Kv|v|v|v|
(
v2 + w2)1/2]+

Kvwvw
MH = [Mq̇ q̇ + Mrrr2 + Mq|q|q|q|+ Mpp p2 + Mrprp] + [Mẇẇ + Mvrvr+

Mvpvp] + [Mquq + M|w|qq
(
v2 + w2)1/2] + [M0u2 + Mwuw+

Mw|w|w
(
v2 + w2)1/2] + [M|w|u|w|+ Mww

∣∣∣∣∣w(v2 + w2)1/2
∣∣∣∣∣] + Mvvv2

NH = [Nṙ ṙ + Nqrqr + Nr|r|r|r|+ Nṗ ṗ + Npq pq] + [Nv̇v̇ + Nwrwr + Nvqvq+

Nwpwp] + [Nrur + N|v|rr
(
v2 + w2)1/2 + Npup] + [N0u2 + Nvuv+

Nv|v|v
(
v2 + w2)1/2] + Nvwvw

(8)

2.2.3. Thrust

The thrust generated by the propeller is calculated as follows:

XT = (1− t)ρn2D4KT (9)

where r: the propeller rotational speed; D: the propeller diameter; t: thrust derating factor;
ρ: the water density; and KT : dimensionless thrust coefficient. KT is a function related to
the advance ratio J = u(1−w)

nD , which can be approximated as:

KT = k0 + k1 J + k2 J2 (10)

where k0, k1, k2 are a constant coefficients.
n = u(1−w)

DJ can be obtained from the advance ratio formula, and the relevant variables
are substituted into Equation (9), the functional relationship between thrust and speed can
be obtained with the following equation:

XT =
1
2

ρL2u2(aT + bT + cT) (11)
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where L is the body length, aT = µk2, bT = µk1
/

J, cT = µk0
/

J2, µ = 2(1− t)(1− w)2D2
/

L2.

2.2.4. Rudder Force

This paper discusses the underactuated underwater robot, whose rudder force comes
from a pair of horizontal and vertical rudders mounted on its tail. When the rudder
moves at speed V and angle of attack α, it will be subjected to two parts of force: lift force
perpendicular to the direction of the water flow, and the resistance along the direction of
the water flow, the calculation formula is as follows:

L = 1
2 CLρARV2

D = 1
2 CDρARV2 (12)

where CL is the lift coefficient, CD is the drag coefficient, and AR is the cross-sectional area
of the rudder.

2.2.5. The Principle of Identification

Felse = [Xelse, Yelse, Zelse, Kelse, Melse, Nelse]
T is used to represent static force, thrust force,

rudder force, and disturbance force. Then, using the superposition principle, we can obtain
the AUV force expression:

F = FH + Felse (13)

Bring Equation (13) into Equation (6), and simplify the equation of motion, we can
obtain:

EẊ = Fvis + Felse (14)

where:
X = [u, v, w, p, q, r]T (15)

E =



m− Xu̇ 0 0 0 mzG −myG
0 m−Yv̇ 0 mzg 0 mxG −Yṙ
0 0 m− Zẇ myG −mxG − Zq̇ 0
0 −mzG myG Ix − K ṗ 0 0

mzG 0 −mxG −Mẇ 0 Iy −Mq̇ 0
−myG mxG − Nv̇ 0 0 0 Iz − Nṙ

 (16)

Fvis = [Xvis, Yvis, Zvis, Kvis, Mvis, Nvis]
T is non-inertial hydrodynamic force.

It can be seen from the above analysis that the acceleration of the AUV is recorded as
the combined action of the non-inertial hydrodynamic force and other forces except the
hydrodynamic force, denoted as Ẋ = f (u, v, w, p, q, r, n, δr, δs). Further, the acceleration
results from the non-inertial hydrodynamic force Fvis = fH(u, v, w, p, q, r), the thrust force
FT = fT(u, n), and the rudder force FL/D = fδ(u, δr, δs).

Based on the above analysis of the AUV model, the AUV states are denoted as
Xt = [x, y, z, φ, θ, ψ, u, v, w, p, q, r], then the state changes can be expressed as ∆Xt =
f1(φ, θ, ψ, u, v, w, p, q, r, n, δr, δs). The historical data of AUV implies the causal relation-
ship of its dynamic model and has the characteristics of a hidden Markov model, which
can be used to build an AUV data-driven model.

3. AUV Model Identification Method

AUV system identification is essentially a mathematical modeling method. Its primary
purpose is to build its mathematical model, which can be used in many aspects, such as
controller involvement, system prediction, and system simulation. We can see from the
above that the AUV system is a complex and uncertain, highly nonlinear system, and it
is not easy to obtain an accurate dynamic model. We aim at this problem by adopting a
data-driven model identification method based on LSTM neural network. Further, the Q
method is used to optimize its hyperparameters to improve the learning efficiency of the
LSTM neural network.
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3.1. Fundamentals of System Identification

Identification based on a neural network means that the neural network is directly
used to learn the mapping relationship between input and output. The learning criterion
minimizes the error between the network’s output and the system’s actual output. From
the above, the goal of learning is to minimize the objective function of error [30], which is
as follows:

E =
1
2
(y(t)− yn(t))2 (17)

where, yn(t) is the output of the neural network at time t, and y(t) is the actual output
of the system at time t. Neural networks can fit any function with arbitrary precision.
In principle, the desired output will be obtained as long as there is enough training data
and input.

Since the environment is full of time-series information, the information before and
after them is related to a certain extent. For example, AUV’s position and attitude data
are all data sequences that change with time. Additionally, the LSTM [31,32] is good at
processing this kind of data information. Its basic structure is shown in Figure 2.

1th -

1tc -

tx

s

s

tanh s

tanh

tc

th

Cell state

Input

Forget

 gate
Input gate

Output gate

Cell state

Output

New 

information

tC¢

tf

ti

tO

Figure 2. The structure of the LSTM neural network.

The network structure introduces a cell state which contains all the information at
the last moment. When new information is encountered, a series of operations will be
taken to choose between the old and new information. Coupled with the introduced
“memory-forgetting” mechanism, the processing of long-term series data can be realized.
The structure mainly includes input, forget, and output gates. The input are ht−1 and xt,
the output is ht, and the cell states are ct−1 and ct.

The forget gate controls the time dependence and effects of previous inputs and
determines which states are remembered or forgotten. The output of the forget gate is:

o f = σ(w f xt + u f ht−1)Ct−1 (18)

The input gate is also called the selection memory stage. It is to decide the degree of
consideration for the current moment. The calculations for each part are as follows:

it = σ(wixt + uiht−1)
Ct
′ = tanh(wcxt + ucht−1)

Ct = ftCt−1 + Ct
′it

(19)
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The output gate determines the final output information. The computational procedure
is summarized as follows. {

Ot = σ(woxt + uoht−1)
ht = Ot tanh(Ct)

(20)

The above is the basic principle of the neural network LSTM, which uses the gated
state to selectively memorize the input information to meet memory needs, while forgetting
the long-term sequence information.

3.2. Identification Principle and Process

After the actual test of AUV, we can obtain the dataset required for model identification.
After removing the invalid data, an input and output model is established according to
the navigation control instruction information of the AUV and its posture information.
According to Equation (14), we can obtain:

ẋ =
dx
dt

=



x4
x5
x6

E1F1
E2F2
E3F3
x10
x11
x12

E4F4
E5F5
E6F6



(21)

where,


x1 = x, x2 = y, x3 = z, x4 = u, x5 = v, x6 = w, x7 = φ, x8 = θ, x9 = ψ,

x10 = p, x11 = q, x12 = r
F = F(φ, θ, ψ, u, v, w, p, q, r, n, δr, δs)

. The sub-

scripts of the matrices En and Fn represent the row and column of the matrix, respectively.
Next, the learned AUV dynamic model can be expressed as:

P(x′t, u′t) : (x′t, u′t)→ (y′t+1 − y′t)=∆y′t (22)

where u′t is comprised of the thruster command nt and rudder angle commands (δrt , δst).
The structure of the LSTM-based AUV model is shown in Figure 3. The input elements

of the input layer is x′inpt
= [x′t, u′t], and the output of neural network is x′outt

= [∆y′t]. The
attitude and speed information of the next moment can be obtained by using the control
instruction, attitude and speed information of 20 sets of time-series data. The learned model
can be optimized according to the set loss function. More details of network architectures
are described below.

To avoid inconsistencies due to different relative scale sizes of different features, we
normalize the data as follows:

f : x → x′ =
x− xmin

xmax − xmin
(23)

where x, x′ ∈ R, xmin = min(x), xmax = max(x).
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Figure 3. One-step AUV dynamic model based on LSTM.

Model evaluation criteria are mainly used to evaluate the accuracy of the recognition
model. In this study, the mean square error between the output of the neural network and
the actual output is used as the evaluation index, as follows:

MSE =
1
N

N

∑
n=1

[d(n)− y(n)]2 (24)

where d(n) is the output of the neural network, y(n) is the system’s actual output, and N is
the number of datasets calculated at one time.

For the system identification of the AUV in this study, the model is trained by min-
imizing the error M = 1

|D| ∑
(I,∆y′)∈D

1
2 ||(∆y′t −O)||2, where O = P(I), the training dataset

D consists of input–output training pairs I : (x′, u′) → O : (∆y). The multi-step error is
adopted to test the effectiveness of the learned dynamic model, as shown in Equation (25).

MH =
1
|DH | ∑

(O′ ,u′ t ,∆y′)∈DH

1
H

H

∑
h=1

1
2
||(∆y− P((O′4−12, u′t)))||2 (25)

where O′4−12 represents the desired input data (φ, θ, ψ, u, v, w, p, q, r) from the first four
columns of the output data O′ obtained in the previous step. Additionally, the training
dataset DH consists of input–output data pairs I : (O′4−12, u′)→ O : (∆y). To sum up, the
learned multi-step model can update the AUV state (x, y, z, φ, θ, ψ, u, v, w, p, q, r) in a cyclic
manner using only action instructions u′.

3.3. Hyperparameter Optimization for Identification Algorithm
3.3.1. MDP Modeling of LSTM Hyperparameter Optimization Problems

The performance of the LSTM algorithm is highly dependent on hyperparameters.
Moreover, different tasks often require different hyperparameter configurations. To achieve
high-precision identification of the AUV system, we adopt reinforcement learning to
optimize the hyperparameter configuration of the LSTM network.

Reinforcement learning is one of the many categories of machine learning methods in
which the best/suboptimal strategy is determined by interacting with dynamic environ-
ments [33]. A Markov Decision Process (MDP) includes five elements: M = 〈S, A, R, T, γ〉:
where:
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S: the set of possible states.
A: the set of actions generated by the policy.
R: reward model.
T: dynamics model, the probability of reaching the next state with the current state and action.
γ: discount factor (between 0 and 1).

Figure 4 shows the basic structure of reinforcement learning. In this way, the agent
learns how to map states to actions. At time t, the agent receives state st and produces
action at, then transitions to the next state st+1 and obtains reward rt. The process does
not stop until the final condition is reached. To improve the optimization efficiency, the
hyperparameter optimization of the LSTM neural network is regarded as a reinforcement
learning problem with discrete state space and discrete action space. Then, the above
elements are designed for this problem.

a
t
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Evironment

action

t
r

t
s

state reward

1+t
r

1+t
s
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Evironment
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r

t
s

state reward

1+t
r

1+t
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Figure 4. The basic structure of reinforcement learning.

Action space: The hyperparameters to be optimized and the candidate values of each
hyperparameter are determined according to the LSTM network model structure. We
concentrate on the number of neurons Nn1 and Nn2 in the hidden layers, batch size Nb and
time step Nts in this study, while other settings are determined empirically. Therefore, the
hyperparameters to be optimized and their candidate values are shown in Table 2.

Table 2. The optimized hyperparameters and variation ranges.

Hyperparameter Variation Range

The number of neurons (1) (50, 100, 150, 200)
The number of neurons (2) (50, 100, 150, 200)

Batch size (8, 16, 32, 64)
Time step (5, 10, 15, 20)

State space: In this paper, the current hyperparameter configuration a of the network
is taken as the state s at time t. Then, the state space S is the same as the action space A,
that is, (Nn1, Nn2, Nb, Nts).

Reward: It can be seen from the previous analysis that the error of identification
decreases with a decreasing output error. So we define the immediate reward as the root
mean square error of test sets with Equation (26).

r = − 1
Nt

Nt

∑
n=1

[dt(n)− yt(n)]
2 (26)

where Nt is the number of datasets, dt, and yt present the output of network and the real
output on the testing set, respectively.

3.3.2. Hyperparameter Optimization Method

The hyperparameter optimization problem of the LSTM neural network is defined as
a reinforcement learning problem with discrete state space and action space. Reinforcement
learning methods for value function or policy approximation through neural networks,
such as DQN, are also suitable for solving reinforcement learning problems with discrete
action spaces. However, this kind of algorithm needs much learning to ensure convergence,
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and it is not suitable for these methods when the computing resources are very limited.
Thus, the Q-Learning algorithm is selected in this paper to solve the problem.

Q-Learning is a temporal difference algorithm designed to solve the reinforcement
learning problem. The optimal action policy π∗ : st → at can be obtained by maximizing
the action value Q function Q(st, at), which reflects the long-term impact of an action. The
Q function is updated according to Equation (27):

Q(st, at) = (1− α)Q(st, at) + α

[
rt + γ max

at+1
Q(st+1, at+1)

]
(27)

where 0 < α < 1 is a learning rate, 0 < γ < 1 is the discount factor.
The structure of the LSTM hyperparameter optimization method based on Q-Learning

is shown in Figure 5. The hyperparameter optimization process is as follows: first, the
Q-value table is initialized with zeros, and the initial hyperparameter configurations (that
is, initial state s0) are randomly selected in the action space. Then, the action at is chosen
according to the e-greedy selection rule. Next, we perform the new action at and the system
acquires a new state st+1 and reward rt+1. Finally, the Q-value table is updated according
to the formula. The round ends when the termination conditions are met.

Q ...

..
.

...

..
.

Calculate reward

Delay

Update

Calculate the current state
ts

Q table

1s

ts
1ts +

ns

1a ta 1ta + na ( , )Q s a

ta

1ts +

ts

t
r

1 1
( , , )

t t ts sr + +

LSTM

greedye -

Figure 5. The Structure of hyperparameter optimization method based on Q-Learning.

To improve the optimization efficiency of hyperparameters, we improve the above
methods. In each round of learning, in addition to randomly selecting the initial state
in the first round, the agent selects the current best hyperparameter configuration as the
initial state to start optimization. It can effectively avoid the ineffective exploration of the
reinforcement learning agent between the poor-performing hyperparameter combinations.

3.4. Identification Algorithm

After introducing the model identification method based on LSTM and the hyperpa-
rameter optimization method based on improved Q-learning, we can obtain the complete
process and framework of the method in this paper. The algorithm flow of hyperparameter
optimization for the LSTM method of AUV model identification based on Q-Learning is
shown in Table 3.
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Table 3. AUV Model Identification Algorithm.

AUV Model Identification Algorithm

Given a training datasets, including input and output datasets
do for episode in 1 to count

Network initialization: Initialize neural network hyperparameters
do for t in 1 to T

Choose optimized hyperparameters
Calculate network output
Calculate the error between the true output and the output of the network
Update neural network
Update Q table

end for
end for

Figure 6 shows a detailed system model identification block diagram. Offline models
can be obtained by offline training through real historical data. During the actual sailing,
the system will regularly check the accuracy of the learned dynamics model. If the error is
greater than σ pre-determined empirically and does not meet the requirements, the model
will be retrained based on new real-time data.

Figure 6. Block diagram of AUV model identification.

4. Results

In order to verify the effectiveness of the proposed method, numerous experiments
have been performed. The experiments were divided into two parts based on simulation
data (see Section 4.1) and real data (see Section 4.2). Simulations were run on the model
described in Section 2. The real data were acquired by the Sailfish AUV.

4.1. Results on Simulation Data

First, the validity of AUV system identification based on the LSTM neural network is
verified. A set of hyperparameters is randomly set for the LSTM neural network, and a
system identification experiment is carried out for the above AUV simulation system. In
total, 4990 input and output data pairs are used for model identification, of which 4000 sets
of data are used as training sets to train the LSTM neural network. The other 990 sets of
data are used as validation sets to test the recognition effect of the model. The number of
training is set to 100.

The change curve of the loss function during training is shown in Figure 7. As shown
in the figure, the loss curve converges during training, and the value of the loss function
decreases with iterations. From the perspective of the convergence of the loss curve, the
application of the LSTM neural network can effectively realize the identification of the
AUV system.
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Figure 7. The result of loss before optimization.

After 100 times of training, the validation dataset is brought into the network model
to test. After calculation, the squared sum of the output error is 8.490711, and the mean and
variance of the absolute value of the error are 0.1761263 and 0.0145471, respectively. We
can see that the output of the LSTM network model can fit the actual output of the system
after 100 times of training. However, the error between the network output and the real
output is large. The fitting curve between the network output and the real output will be
shown in the comparison results of different methods later.

The large output fitting error of the above LSTM neural network model is because
the hyperparameter settings of the model are not suitable. The identification accuracy is
greatly affected by the network hyperparameter settings. Inappropriate hyperparameter
settings may even lead to non-convergence. In order to achieve high-precision system
identification, a reinforcement learning algorithm is used to optimize the selection of the
hyperparameters of the above neural network.

Data were divided into training and test sets during each test, yielding a training set
of 4000 and a test set of 990. The proposed method was performed for 100 episodes. To
demonstrate the optimization performance of the method, we compare the results of five
different stages (proc1-0th episode, proc2-25th episode, proc3-50th episode, proc4-75th
episode, and proc5-100th episode).

We can see from the above results that the five optimized LSTM neural network models
can make the loss curve converge quickly, shown in Figure 8. It can be also noticed that
the convergence speed increases as the episode increases, and this method has prominent
optimization characteristics.

The statistical results of the output errors of the five groups of LSTM neural network
models on the validation set are recorded in Table 4. In order to make the trend of MSE
more apparent, it is enlarged 1000 times and displayed in Figure 9. As can be seen from
the graph, the MAE, MSE and RMSE of the error of making predictions on the validation
set decrease as the number of episodes increases. The above results also demonstrate the
performance of the method from a statistical point of view.
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Figure 8. Loss results at different stages.

Table 4. Results of LSTM neural network hyperparameter optimization.

Episode Hyperparameter
Combination

Mean
Absolute

Error

Mean Squared Error Root Mean
Square
Error

0 (50, 50, 8, 10) 0.001784 7.167763× 10−6 0.002677
25 (100, 100, 32, 15) 0.001693 7.037789× 10−6 0.002652
50 (100, 150, 8, 20) 0.001503 6.737789× 10−6 0.002302
75 (150, 50, 32, 15) 0.001304 6.397751× 10−6 0.002129
100 (50, 100, 8, 10) 0.001277 4.396948× 10−6 0.002096
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Figure 9. Error results at different stages.

In order to further illustrate the advantages of this method, we compared the effect
of the method before and after optimization with the commonly used DR algorithm.
We compare the prediction results on the validation set optimized after 0 episodes and
100 episodes with the results predicted by the DR algorithm. The fitting curves of the
network output and the real output of the AUV’s position, linear velocity, angle, and
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angular velocity are shown in Figures 10–13, respectively. It can be seen from the figure that
the optimized LSTM model makes the output of the 12 variables of the identification model
have better agreement with the actual system output. In order to more clearly reflect the
effectiveness of the method proposed in this paper, the MAE, MSE, and RMSE indicators
of the prediction error are shown in Table 5. Compared with the unoptimized approach
and DR, our method shows superior performance, with less MAE (28.42%, 29.13%), MSE
(38.66%, 38.96%), and RMSE (21.70%, 25.81%). It can be seen that the deviation between the
output of our method and the actual system is smaller than that of the other two methods.

0 20 40 60 80 100
Time(s)

220
230
240
250
260
270

ξ(
m
)

0 20 40 60 80 100
Time(s)

110
115
120
125
130
135

η(
m
)

0 20 40 60 80 100
Time(s)

24.0
24.5
25.0
25.5
26.0

ζ(
m
)

Real
Unoptimized
DR
Optimized

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

219.0
219.5
220.0
220.5
221.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

110.6
110.8
111.0
111.2
111.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time(s)

24.10
24.12
24.14
24.16

Figure 10. Identification result of AUV position.

Figure 11. Identification result of AUV velocity.
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Figure 12. Identification result of AUV angular velocity.
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Figure 13. Identification result of AUV attitude angle.

Table 5. Error comparison of different methods.

Method MAE MSE RMSE

Unoptimized 0.001784 7.167763× 10−6 0.002677
DR 0.001802 7.203546× 10−6 0.002825

Optimized method 0.001277 4.396948× 10−6 0.002096

4.2. Results on Real Data

The AUV dataset is required for training and validating the LSTM neural network
model identification method. Therefore, the experiments of data collection should be
carried out first. The experiments were carried out on the Sailfish AUV, as shown in
Figure 14.

The actual data includes the sensor’s noise in the acquisition process, and it is more
difficult to obtain an accurate model than the simulation. Therefore, the method performed
200 episodes. The experimental dataset is divided into training and testing sets, yielding a
training set of 4000 and a test set of 990. From the loss curve of the LSTM neural network
in the training process, this method has prominent learning characteristics, as shown
in Figure 15.

Figure 14. Sailfish AUV platform during the experiment.
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Figure 15. The training loss curve of the proposed LSTM neural network.

The fitting curve between the network output and the real output is shown in
Figures 16–19. The calculated MSE of the output error is 550.830181, and the MAE and
RMSE values are 6.250734 and 23.469771, respectively. We can see that the LSTM neural
network obtained by optimization can fit the system’s actual output and achieve high-
precision recognition of AUVs. In order to illustrate the superiority of the method, it is
compared with the commonly used dead reckoning (DR) method. The results are shown
in Table 6, the proposed method provided 64.90% higher MAE, 64.20% higher MSE, and
37.76% higher RMSE than the DR method.

Figure 16. Identification result of AUV position.
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Figure 17. Identification result of AUV velocity.

Figure 18. Identification result of AUV angular velocity.

Figure 19. Identification result of AUV attitude angle.

Table 6. Error comparison of different methods.

Method MAE MSE RMSE

Proposed method 6.250734 206.830181 23.469771
DR 17.808035 550.071027 37.705304

Due to the small prediction bias for the AUV motion state, It turns out, yet again, that
the proposed method has high predictive power. Therefore, the proposed identification
method is of great significance to the actual navigation control of AUV.

5. Conclusions

Aiming at the identification problem of the AUV system, this paper adopts a neural
network hyperparameter optimization method based on Q-Learning. This method has
been experimentally verified, and the conclusions can be summarized as follows:
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1. The LSTM framework has the characteristics of natural Markovization, which can
model time series data with high precision. It is found that the historical data of AUV
implies the causal relationship of its dynamic model and has the characteristics of a hidden
Markov model. The experimental results also show that the adopted method can predict
the AUV model well.

2. Optimally selecting hyperparameters can significantly improve the efficiency of
LSTMs in specific tasks. It is concluded that the improved Q-learning method can make
the LSTM neural network realize the high-precision identification of the AUV system.

3. The offline training in the system model identification framework can reduce online
learning time and ensure the security of the initial online use. The online learning model
can also ensure its validity.

4. The proposed method has high model identification accuracy and has certain
application prospects. We can apply this method to fault diagnosis of AUV, design of the
model-based controller, and other aspects.

However, the hyperparameter optimization method only considers recognition accu-
racy. Our method can potentially be improved in the convergence speed. Moreover, the
performance of the LSTM and the improved Q method used in this paper still has certain
limitations. We will improve the identification method and optimization method later.
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