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Abstract: The self-balanced pressure arch theory is an important basis for excavation support in karst
caves, but it is difficult to quantify the empirical theory in coastal areas. In addition, the rheological
effects of karst strata could pose a hazard to engineering. Therefore, this study investigated the
rheological mechanism under the self-balanced pressure arch effect, and we proposed a mesoscopic
unit rheological model for clay minerals in a water-rich environment. With the discrete element
method (DEM), we realized the numerical modeling of the rheological model. Then, the proposed
model is validated by a case study of foundation excavation in the coastal karst area of China.
The mesoscopic mechanical characteristics of caves considering the influence of pressure arch are
analyzed. The results show that the self-balance of the caverns mainly lies in the mesoscopic mineral
strength and local stress. With the rheological controlled model, the final predicted convergent
deformation of the foundation has an error of less than 10% compared with the field monitoring data.
In this study, we can quantitively describe the self-balance effect of the pressure arch surrounding
the caves and reveal the rheological mechanism. The proposed model can be applied to similar
engineering with careful calibration and provide safety guidance.

Keywords: self-balanced pressure arches; coastal karst caves; DEM simulation; rheological model;
mesoscopic mechanics

1. Introduction

Coastal caves are pervasive in karst regions, which pose a potential threat to geotech-
nical engineering (e.g., rock mass collapse and creep deformation) [1,2]. The long-term
water–mineral interaction surrounding the caves may induce the dislocation and disintegra-
tion [3,4] of clay minerals in the rock mass, which may bring hazards to engineering [5,6].
The self-balance pressure arch theory suggests that the surrounding rock can form a self-
stabilizing pressure arch, but the mesoscopic mechanical mechanism is not yet clear, and
it is difficult to explain the rheological deformation of the caves under the arch pressure
effect with conventional analytical methods.

Sinkholes under coastal karst areas have attracted lots of attention for being potential
causes of sudden overburden collapse and also for a long-term continuous subsidence [1,2].
To date, plenty of work has been carried out to explain sinkhole development in coastal
areas, which highlighted the role of subrosion, both from mechanical and chemical behav-
ior [7–11]. When the sinkholes have formed, the engineering activities are highly affected
by the short-term and long-term stability of karst caves. The self-balanced pressure arch
theory is an important basis for underground engineering design and excavation sup-
port [12,13], and extensive research has shown that the pressure arch theory can provide
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prediction and guidance for collapse in tunnels, mines and shallow buried caves [14–17].
For instance, Al-Halbouni et al. [1] adopting the DEM to model geomechanical behavior
surrounding a single void space, revealing the bridge-shaped overburden accompanied
with the maximum shearing stress arch; their further research indicated that a stable com-
pression arch could be established in karstic depressions [18]. In terms of engineering
practice, Carranza-Torres et al. examined the support pressure and safety coefficient of
circular openings by presenting a closed-form solution [19,20]. These studies have shown
that pressure arches are important to the self-balance of the rock mass.

Sinkhole stabilization is dependent both on the short-term and long-term behavior.
The strength of material and state of compression arch are relevant to the short-term collapse
of sinkholes, while the creep process of material is relevant to long-term deformation. Note
that, different from inland caves, soft marine deposits such as clays and soft rocks are
primarily distributed in the south-east coastal region of China [21,22], which have higher
water content showing high compressibility and low strength. The excess pore water
pressure of soft marine clays dissipated slowly, causing low bearing capacity and long-term
large settlement [21–23].

To evaluate the engineering stability in coastal karts areas, the abovementioned two
factors need to be tackled.

Research on long-term deforming mechanisms in cavern areas is widely carried out,
and the theoretical and field studies have indicated that the disintegration and dislocation
of clay minerals induced by water are significant [3,4]. The mesoscopic deterioration could
accumulate to macroscopic deformation [24]. For example, the case study of water-bearing
caves showed that there is a non-linear damage effect in the surrounding rock [25]. In
addition, the caves’ deforming effect on the rock mass’s settlement has been investigated
by combining field monitoring data with numerical analysis [26,27]. Related numerical
simulation studies have also been carried out extensively to investigate the effects of
caverns on engineering carriers under different engineering conditions, revealing that
engineering disturbance and hydraulic action cause geohazards [28–30]. The clay minerals
in karst areas [31,32] are water sensitive, and are prone to experience long-term rheological
deformation. Therefore, the erosion–creep–collapse mechanism of caves in the karst area
is proposed [33]; the deformation of rocks in the karst area can be described by Burger’s
model in terms of its decay and deceleration creep phases [34].

However, there is little research on both evaluating the short-term and long-term
stability, so it is difficult to provide a practical guide to the engineering in coastal karst areas.
We are dedicated to evaluating the short-term collapse and long-term creep behavior of
coastal caves. In fact, from a mesomineral scale, we can quantitatively estimate the stability
of a self-balanced pressure arch. In this paper, we proposed a mesoscopic unit rheological
model to control the caves’ long-term deformation, and mineral bonds’ capability is adopted
to analyze the stability of pressure arch. The model is numerically applied through the
discrete element method (DEM). The validation is completed by a case study of foundation
excavation in the coastal karst area of China. The model can be used for geotechnical
deformation analysis in coastal cavern areas and can be easily extended for different
engineering conditions.

2. Contents and Methods
2.1. Numerical Modeling of Short-Term and Long-Term Deformation Surrounding Caves

In terms of the modeling cave, the continuum mechanics methods were adopted to
define a single sinkhole in an elastic or elastoplastic half space, which is typically used
to assess the safety of a singular cave [35,36]. However, according to the field detection,
there are always tens of caves in the karst area, and they are also in multi-scale [37,38].
These continuum-based approaches have difficulties in dealing with the voids’ collapse
and grains’ damage.

DEM modeling is nowadays increasingly used in geoscience numerical simulation
of discontinuous or large deformation problems [39]. Considering its advantages in sim-
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ulating rock or soil masses as an assembly of discrete grains, we adopt this method for
simultaneously taking short-term and long-term deformation into account. The short-term
collapse of sinkholes can be evaluated from the material strength, which is controlled by the
grains’ bonding strength [39]. The long-term time-dependent deformation can be assessed
with creep models between grains [40]. Therefore, we used Particle Flow Code (PFC), a
common numerical simulation software, to implement the numerical analysis.

2.2. The Mesoscopic Controlling Mechanism of Self-Balance Pressure Arches of Caves

The pressure arch theory suggests that a stable equilibrium stress arch will support
the caves after excavation. Figure 1 illustrates the mechanical patterns in the rock mass
with or without caves. The stresses in an ordinary homogeneous stratum are transferred
uniformly and show a similar pattern to the boundary stresses.
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Figure 1. Different force patterns with or without caves.

By contrast, the stresses around the cavern’s strata form a pressure arch to reach a new
balance. The concentrated forces around the cave are higher than those in a homogeneous
stratum, and local damage could occur if the strength limit of the geotechnical body
is exceeded.

This local damage can be explained at the mineral scale, where the cave stratum
consists of mineral grains and bonds. Bonds make the rock mass resistant to compressive,
tensile and shear stresses on a mesoscopic scale. Figure 2 illustrates different localized forces,
where shear, tensile and compressive stresses may be concentrated under disturbance due
to the anisotropic and non-homogeneous arrangement of the grains. It is generally accepted
that rock bonds are susceptible to damage under shear or tension while they are stable
under compression. Then, the strength criterion for the mineral bonds can be represented
by a strength curve in Figure 2, with damage occurring when the bond is stressed above the
shear or tensile ultimate strength. The accumulation of mesodamage can result in visible
damage. Therefore, the self-balance pressure arch is stable when the local microscopic
forces are within the bond strength.
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Suppose the caves are in a shallow depth. In that case, the surrounding rock is bearing
a minor pressure from the overlying geotechnical body, so the existence of the pressure arch
makes the actual excavation process more stable. However, many studies in engineering
practice have shown the existence of long-term rheological effects in the cavern area, so
it is difficult to consider the stability of the rock mass purely from the pressure arch. This
paper will further analyze the rheological mechanism of the geotechnical rock and soil
mass around the cavern.

2.3. Time-Dependent Deformation under Pressure Arches

The pressure arches cause a stress concentration around the cavern. Meanwhile, the
rainfall and groundwater influence the cavern area through rainfall inflowing and long-
term infiltration of groundwater. Figure 3 shows the water enrichment process in the
cavern stratum of karst area. The initial rainfall sinks into the cavern through joints and
retains some capillary water. The unit grain model shown in Figure 3 can be adopted to
analyze the mesoscale rheological mechanisms of the rock and soil in the karst region,
which consists of rock/soil skeletal particles, clay minerals, pores and pore water [41,42].
In the modeling process, we divide the grains into normal and creep grains. The creep
grains are counterparts to the clay minerals that provide time-dependent deformation (see
Figure 3). The difference between the weathered soil and the rock mass is the strength of
the bond between the skeletal particles.
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We conducted a force decomposition as a local force analysis, with the forces between
skeletal grains represented by ordinary forces and those between clay mineral contacts
represented by creep forces. In local porewater-rich environments, the clay mineral could
dislocate and disintegrate [3,4]. This deformation leads to stress readjustment, and damage
to non-clay minerals could occur when the local stress exceeds the bonding capacity. When
the abovementioned mesoscopic evolution cycles extensively, rheological deformation at
the macroscopic level can be monitored.

Based on the rheological mechanisms, this study adopted a relevant mathematical
model [40], which refers to the traditional creep element models. We reflect the physical
characteristics of rheology through different functional elastic and viscous elements.

Typically, the time-dependent mechanical behavior of rock or soils could result in a
macroscopic hazard, where one can observe a gradual deforming of engineering material.
Creep is considered as one of the common time-dependent behaviors. We can separate
the creep process into three single stages (e.g., attenuation creep, stable creep, accelerated
creep) [24], where the convergence value of attenuation creep is critical to the deformation
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control of engineering. Considering the good behavior of Burger’s model in the first two
stages (attenuation creep, stable creep) of creep, we adopted it in the long-term deformation
simulation [40]. Burger’s model combines the characteristics of the Kelvin and Maxwell
model [43,44]. Figure 4 shows the major components of Burger’s model. The details are
shown in Table 1, and the specific formula derivation is presented by Maheshwari [43].
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Type of Model Governing Equation Creep Equation

Maxwell model σ = E1εk + η1
.
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.
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E1
η1

E2
η2

σ = E0
..
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.
ε
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+ σ
η2

t + σ0
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(
1− e−

E1
η1

t
)

The linear elastic model is used to model the normal force between skeleton grains.
Figure 5 shows the creep-modified model for simulating the viscoelasticity deformation
of the rock mass surrounding the caves. The E3 is the linear elastic modulus of the linear
elastic model. We have conducted a detailed model derivation process in a previous study.
For easier understanding, we present the mathematical explanation herein.
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where
α1 =

η1 + η2

E1
+

η2

E2
,

α2 =
η1η2

E1E2
,

β1 = η2,

β2 =
η1η2

E1
.

For a parallel connection, as shown in Figure 5, the strain (εc) and stress (σc) of the
creep-modified model become

εc = ε = ε3, (2)

σc = σ3 + σ, (3)

σ3 = E3ε3, (4)

where ε3 and σ3 are the strain and stress of the linear model. By combining Equations (1)–(4),
the coupled model can be derived,

σc + α1
.

σc + α2
..
σc = E3ε3 + (β1 + α1E3)

.
ε3 + (β2 + α2E3)

..
ε3. (5)

At initial phase (t = 0, σ = σ0), Equation (5) becomes

..
εc +

(
β1 + α1E3

β2 + α2E3

)
.

ε3 +

(
E3

β2 + α2E3

)
εc −

σ0

β2 + α2E3
= 0. (6)

In addition, the initial conditions of strain, stress and creep rate can be described as

εc =
σ

E1
=

σ3

E3
,

σ0 = σ3 + σ,

εc =
σ0

E1 + E3
, (7)

.
εc =

σ

η1
+

σ

η2
=

(η1 + η2)E1σ0

(E1 + E3)η1η2
. (8)

Equation (5) can be rewritten as

..
εc + A

.
εc + Bεc = C (9)

where A, B and C are parameters related to the properties of the rock mass. By solving the
second-order non-homogeneous linear Equation (9), the roots of the eigenequation (i.e., λ1
and λ2) can be obtained,

λ1,2 =
A±
√

A2 − 4B
2

=
−
[
(η1+η2)E1E3
(E1+E3)η1η2

+ E1
η1

]
±
√
[ (η1+η2)E1E3
(E1+E3)η1η2

]
2
− 4 E1E2E3

η1η2(E1+E3)

2
. (10)

Then, the deformation (εc) can be obtained,

εc = C1eλ1t + C2eλ2t +
σ0

E3
. (11)

The coefficients of C1 and C2 in Equation (11) can be calculated when substituting
Equations (6)–(8) into (9), and we obtain

C1 =
(η1 + η2)E1E3σ0 + λ2E1η1η2σ0

(λ1 − λ2)(E1 + E3)η1η2E3
, (12)
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C2 =
(η1 + η2)E1E3σ0 + λ1E1η1η2σ0

(λ2 − λ1)(E1 + E3)η1η2E3
. (13)

2.4. The Discrete Element Analysis Method for Rheological Mechanisms under the Pressure Arches

From a mesoscale perspective, we can easy conduct the stability analysis for the
self-balance arches and the erosion process of groundwater. The discrete element method
(DEM) is a simulation method based on discrete mineral units, which is applicable to the
research of this paper. Different simulation scenarios are used for the rock and the soil,
where the common parallel bonded model (PBM) and Burger’s model are used for the
rock [40] (see Figure 6) and the PBM is replaced by a linear elastic contact model for the
soil [45] (see Figure 7). Both the PBM and the linear elastic contact model can be considered
linear elastic and applied to the models presented above.
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The parallel bonded model (PBM) [40] is used for modeling bonding failure of rock
grains based on the bonding parameters, i.e., shear strength σc, tensile strength τc, normal
stiffness kn, tangential stiffness ks and bonding radius R. That is,

∆Fn = kn A∆Un, ∆Fs = −ks A∆Us, (14)
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∆Mn = −ks J∆θn, ∆Ms = −kn I∆θs, (15)

where Fn and Fs are the normal and tangential forces, respectively. Mn and Ms are the
normal and tangential moments, respectively. Un, Us, θn, θs are the relative displacements
and rotation angles in the normal and tangential directions, respectively. A, I, J are the
area, moment of inertia and polar moment of the bonds section, respectively, which can be
described as

A = πR2, (16)

I =
1
4

πR4, (17)

J =
1
2

πR4. (18)

The maximum tensile stress and shear stress on the grain surface can be calculated
using the following equations:

σ =
−Fn

A
+
|Ms|R

I
, (19)

τ =
Fs

A
+
|Mn|R

J
. (20)

Mesoscopic damage of bonds occurs when σ ≥ σc or τ ≥ τc as shown in Figure 2. The
values of σc and τc determine the mechanical capacity of cementation, which is calibrated
according to the peak strength of the rock sample.

In the DEM, the mechanical model is composed of the granular unit and the contact
model. We show the representative unit in Figure 6, where the brown particles are skeletal
grains; the yellow particles are clay minerals; the blue contact is the Burger’s model and the
gray rectangular bond is the PBM. The loading analysis of a group of particles is presented
in Figure 6. The creep force and the PBM contact force act on the skeletal particles’ surface
in the normal direction, and a parallel force pattern is obtained after vector processing. This
force pattern is exactly the force pattern of the rheological element model described above.

For soils in the karst region, the rheological process is similar. The difference is that the
bonding force in soils is very weak compared to rocks, so the linear elastic contact model is
used in this paper instead of the PBM in rocks (see Figure 7), which results in a rheological
model for soils.

3. Results and Discussion
3.1. Case Study
3.1.1. Overview of the Selected Case Study

The selected engineering case is a foundation in the coastal karst area of southeast
China. The foundation field is in a subtropical coastal area with a maritime subtropical
monsoon climate, characterized by warm and rainy conditions, abundant light and long
summers. The site is a typical karst landscape, and the strata host many caves and are rich
in groundwater. Figure 8 illustrates the excavation of the foundation pit. The stratum in
the area consists of fill, medium to coarse sand, clay and limestone. The limestone stratum
is rich in cavities. Note that the locations and structures of sinkholes were determined by
borehole detection and ultrasonic detection. The model is a 2D case study, and the caves
are approximated using the geological longitudinal section profiles, which are provided by
the Beijing Municipal Engineering Design and Research Institute Co.
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3.1.2. Excavation Deformation Monitoring Data

The red dashed line in Figure 8 indicates the boundary pattern of the excavated pit.
The deformation monitoring was conducted after excavation. The displacements were
monitored by a Leica TS09 total station, a SOKKIA SDL1X level and a GT560 readout. In
total, 63 vertical displacements were monitored at the top of the slope, and the monitoring
data for selected sections are listed in Figure 9 in this paper. The settlement displacements
underwent a period of near uniform accumulation followed by a convergence phase.
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Figure 9. Vertical displacement monitoring data at the top of the slope.

3.1.3. Rock and Soil Parameters and the DEM Model

Extensive exploration work was carried out at the engineering investigation site.
Figure 10 shows the collected borehole samples with a sampling interval of 2.0 m, and
the testing process has included in situ testing and indoor testing. Standard penetration
tests with a spacing of 2.0 m for general clay, sand and chalk layers were conducted; static
probing or cross-plate shear tests were added for thick layers of soft soils. Indoor tests
were carried out on the rocks in 52 sets of compressive tests, and the test procedure was
carried out according to ISRM standards. The geotechnical parameters obtained are shown
in Tables 2 and 3.
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Table 2. Soil parameters of the foundation.

Soil Types Unit Weight (kN/m3) Modulus (MPa) Friction Angle (◦) Cohesion (kPa)

Filled soil 18.5 4.00 12.0 4.0
Medium coarse sand 20 4.00 12.0 4.0

Clay 20 7.00 18.0 20.0

Table 3. Rock parameters of the foundation.

Rock Types Uniaxial Strength (MPa) Saturated Strength (MPa) Modulus (MPa) Unit Weight (kN/m3)

Limestone 25 12 956 26

Some triaxial drained compression tests were carried out to calibrate soils’ mesoscopic
parameters, and the testing equipment adopted for this research is the TSZ10 Automated
Triaxial Instrument. It is an automatic servo compression instrument. The maximum
vertical and horizontal stresses applied to the specimen were 3000 kPa and 1500 kPa,
respectively. The vertical force was captured by a rigid load cell, and the error was limited
within 0.2 N. The lateral stresses were measured by pressure transducers. In addition, the
axial strain was captured by the upper and lower transducers with an accuracy of 0.0005%.
The testing procedures complied with the details from Lo Presti and Pallara et al. [46].
The prepared samples were adopted from layers “filled soil” and “silty clay”, which were
consolidated to 100, 200, 300 and 400 kPa. The axial stress increased with a strain rate of
0.01%/min, and the confining pressure increased to keep the lateral displacement constant.
The loading force was applied when the pore pressure had dissipated, and the test was
halted when the axial strain rose to 15%. The stress–strain curves from triaxial drained
compressions are presented in Figures 11 and 12.

The DEM parameters’ calibration is essential to the modeling results. In this paper, we
have calibrated the properties of modulus, strength and viscosity coefficients.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 30 
 

 

Table 2. Soil parameters of the foundation. 

Soil Types Unit Weight 
(kN/m3) Modulus (MPa) Friction Angle (°) Cohesion (kPa) 

Filled soil 18.5 4.00 12.0 4.0 
Medium coarse sand 20 4.00 12.0 4.0 

Clay 20 7.00 18.0 20.0 

Table 3. Rock parameters of the foundation. 

Rock Types Uniaxial Strength 
(MPa) 

Saturated Strength 
(MPa) Modulus (MPa) Unit Weight 

(kN/m3) 
Limestone 25 12 956 26 

Some triaxial drained compression tests were carried out to calibrate soils’ 
mesoscopic parameters, and the testing equipment adopted for this research is the TSZ10 
Automated Triaxial Instrument. It is an automatic servo compression instrument. The 
maximum vertical and horizontal stresses applied to the specimen were 3000 kPa and 
1500 kPa, respectively. The vertical force was captured by a rigid load cell, and the error 
was limited within 0.2 N. The lateral stresses were measured by pressure transducers. In 
addition, the axial strain was captured by the upper and lower transducers with an accu-
racy of 0.0005%. The testing procedures complied with the details from Lo Presti and Pal-
lara et al. [46]. The prepared samples were adopted from layers “filled soil” and “silty 
clay”, which were consolidated to 100, 200, 300 and 400 kPa. The axial stress increased 
with a strain rate of 0.01%/min, and the confining pressure increased to keep the lateral 
displacement constant. The loading force was applied when the pore pressure had dissi-
pated, and the test was halted when the axial strain rose to 15%. The stress–strain curves 
from triaxial drained compressions are presented in Figures 11 and 12. 

 
Figure 11. Stress–strain curves of “filled soil”. 

 Simulating results

       Test results
 100 kPa  300 kPa
 200 kPa  400 kPa

0 3 6 9 12 15
0

60

120

180

240

300

σ 1
–σ

3/k
Pa

Strain/%

Figure 11. Stress–strain curves of “filled soil”.
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Figure 12. Stress–strain curves of “silty clay”.

Before the calibration, we have to explain the general parameters’ selection process.
According to Figure 8, the boundary of foundation is 127 m × 40 m. As there is no severe
deformation, we select 150 m × 50 m as the model boundary to improve the calculating
efficiency. The grains’ size could affect both the deformation and calculating efficiency
according to the results published by Al-Halbouni et al. [1,18]. Based on the relevant studies,
in a general case, when the ratio of model length to grain size is greater than 68 [47] or the
number of grains is larger than 15,000 in a 3D model [48], the accuracy and efficiency would
be reasonable. In this paper, the number of grains is 27,863 after excavation, and the ratio
of model length to grain size is greater than 400, which falls within the requirement. Then,
the density of soils “filled soil”, “medium coarse sand” and “silty clay” are assigned as
1850 kg/m3, 2000 kg/m3 and 2000 kg/m3, respectively, according to Table 2. The damping
coefficient in the DEM modeling process plays a role in controlling calculating stability, so
we select this value as 0.5 according to a general searching of relevant studies [40,49]. The
ratio of normal to shear stiffness effects the Poisson ratio of the material, which is not so
important in this modeling scenario, and we select this as a general value of 1.2.

The abovementioned calibration is relevant to general parameters. Herein, we will
explain the specific mesoparameters’ calibration process of soils and rocks in the modeling
process. First, according to the obtained stress–strain curves in Figures 11 and 12, we need
to consider the calibration with a “trial and error” process. The practical procedure can be
described as follows:

(1) Select models’ modulus, friction angle, tensile and cohesion strength according to
the experience.

(2) Alter the modulus based on stress–strain curves or rock strength.
(3) Alter the tensile and cohesion strength according to rock strength.
(4) Change the friction angle according to soils’ ultimate stress in the stress–strain curves.
(5) Repeat (2)~(4) to obtain a reasonable result.

Note that, due to different properties between rock and soil, we select the PBM
for rock and the linear model for soil. For rock material, we calibrate the parameters
according to procedures (1), (2), (3) and (5), and we use (1), (2), (4) and (5) to calibrate the
soils’ parameters.

In the calibrating process of rock material, because of the shallow depth, we only need
to consider the modulus and strength, and the confinement is neglected. However, the soil
is calibrated using the linear model, which is much more sensitive to the confinement, so
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we conducted the overall calibration to soil. The calibration results of soil are presented
in Figures 11 and 12, where we can find a reasonable stress–strain curve restoration.
Additionally, the calibration result of rock with PBM is presented in Figure 13.
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Considering the time-dependent evaluation of sinkholes, we have adopted Burger’s
model to simulate the creep process. In Section 2.2, we have explained the coupling
mechanism, and the qualitatively equivalent model in Figure 5 formed a new solution for
this paper. The time-dependent calibration process is dependent on Equation (13), where
five parameters, E1, E2, E3, η1 and η2, determine the results. As the modulus parameters
E1, E2 and E3 are also relevant to the abovementioned calibration, we keep them constant
in the time-dependent calibration process, and the viscosity coefficients η1 and η2 are
considered here. The effects of changing E1, E2 and E3 are presented in the Discussion.
According to Equation (13), we can obtain the numerical mechanical curves by assigning
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some specific parameters (see Figure 14). It can be found from Figure 14 that the time-
dependent behavior of material using Burger’s model is sensitive to parameter η2, while
the influence of parameter η1 is negligible. Therefore, we can conduct a similar “trial and
error” repeating process to obtain a reasonable modeling result. Some deforming curves of
the foundation using different values of η2 are presented in the Discussion.
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The calibrated parameters’ results are listed in Table 4.
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Table 4. Mechanical and physical properties used in mesoscopic-scale analysis.

Parameters Used in DEM Elastic Analysis Value

PBM tensile strength (MPa) 30
PBM cohesion strength (MPa) 11

PBM modulus (GPa) 0.6
PBM friction angle (◦) 20

Linear elastic modulus of “filled soil” and “coarse sand” (MPa) 2
Friction angle of “filled soil” and “coarse sand” (◦) 20

Linear elastic modulus of “silty clay” (MPa) 2.5
Friction angle of “silty clay” (◦) 30

Ratio of normal to shear stiffness 1.2
Particle friction coefficient 0.57

Density of particles (kg/m3) 1850~2500
Mean particle radius (mm) 0.42

Damping coefficient 0.5

Parameters used in DEM time-dependent analysis

Kelvin viscosity coefficient (106) 1
Maxwell viscosity coefficient (106) 2.5

Kelvin modulus of rock (GPa) 0.6
Kelvin modulus of “filled soil” and “coarse sand” (MPa) 2
Kelvin modulus of “filled soil” and “coarse sand” (MPa) 2

Maxwell modulus of rock (GPa) 0.6
Maxwell modulus of “silty clay” (MPa) 2
Maxwell modulus of “silty clay” (MPa) 2

The DEM model was established based on the geological parameters. Figure 15
shows the initial state of the model, where we adopted the PBM coupled with Burger’s
model to simulate the limestone, and for the soil stratum, we used the linear contact
model coupled with Burger’s model. Three stress measurement points are arranged in the
model (see Figure 15). Note that all the sinkholes in this paper are modeled by deleting
grains, and the excavation of foundation was conducted when the calculating system was
balanced. The detailed 2D geological longitudinal section profile is provided by the Beijing
Municipal Engineering Design and Research Institute Co. We designed the numerical
model strictly according to the primitive geological profile, and the positions and shapes of
caves in this area are captured by intensive boreholes and ultrasonic detecting results. The
ground probing method is not the focus of this study, so we give the final geological profile
directly herein.
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3.2. The Mesoscopic Mechanical Characteristics under the Self-Balanced Pressure Arch

The pressure arches cause local stress concentrations, and this force may cause meso-
scopic damage. Based on the stress measurement circle in Figure 15, the convergent stress
values are presented in Figure 16. Note that the “Stress X” and “Stress Y” represent the
horizontal and vertical stress, respectively. These stresses were obtained using the measure-
ment circle in PFC. The strength of the cavern limestone stratum in this paper is 11.6 MPa,
while the monitored stresses are all less than 0.3 MPa (well below the strength of mineral
bonds), so the self-balanced arches in this case study remain stable.
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To study the effect of cavities, we compared the grains’ contact force chains after
excavation (see Figure 17). Without caves, the force chains of the rock mass are spread
throughout the whole stratum, and there is no obvious directionality showing a uniformly
distributed characteristic. When the cavity is present, the stresses around the rock are
adjusted, with vertical concentrations at two sides and lateral concentrations at the top and
bottom forming a pressure arch. In addition, the ratio and magnitude of tensile stresses
increased under the influence of the caves, which could cause local damage.

Additionally, we compared the deformation patterns in Figure 18. The top part of
Figure 18 shows the grains displacement without caves. It can be observed that there is an
overall flow tendency for the mineral grains, with a downward directional displacement
of the soil particles on both sides and an upward directional displacement in the middle
of the foundation. After considering the cavern, the overall displacement trend does not
change, but the stress arch affects the local displacement vector around the caves.
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3.3. The Displacement Results Considering Rheological Deforming

We obtained the time-dependent curve of the slope by numerical calculation. Figure 19
compares the simulation predictions with the monitoring results. Considering the heteroge-
neous distribution of grains, we repeated the modeling process with three different random
seeds. In the simulation result, we can find a linear dropping of curves before the conver-
gence stage, which coincides well with the field-monitored data. The final convergence
displacement is 4.2 mm for the left side and 5.0 mm for the right side, which are within 10%
error. The sudden increase in deformation in both observed time-series at about day 30 was
not captured in the modeling. When the excessive pore pressure of marine soft deposits has
completely dissipated, the time-dependent behavior turns into “elastic rebounding”, which
is an opposite process of “creep”. We can find these declining lines in Figure 14, which
represents the “elastic rebounding” process and is not considered in the models herein.



J. Mar. Sci. Eng. 2022, 10, 1315 19 of 29
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW  19  of  30 
 

 

 

(a) 

 

(b) 

 

(c) 

Figure 19. Predicted and monitored vertical displacement of the slope using different random 

seeds: (a) random seed 1; (b) random seed 2; (c) random seed 3. 
Figure 19. Predicted and monitored vertical displacement of the slope using different random seeds:
(a) random seed 1; (b) random seed 2; (c) random seed 3.



J. Mar. Sci. Eng. 2022, 10, 1315 20 of 29

3.4. Discussion for Short-Term Stability under Different Overlying Loadings

The scenario in this paper is a foundation excavation in a coastal karst area. The
long-term and short-term damage are governed by different mechanisms. To evaluate the
stability of foundation in karst areas, it is necessary to further discuss these factors.

In the selected case study, the rock mass can maintain stability due to the shallow
burial depth. To further quantify the stability of the pressure arch, a heavy structure
was placed above the foundation, and the mass was continuously increased from 700 t to
41,250 t (see Figure 20). Each weight was counted as a new phase, and the stresses were
also monitored. Figure 20a presents the stress values during the weight increase process,
and the mesoscopic damage is counted in Figure 20b.

The strength of the limestone in this paper is 11.6 MPa. The vertical stress near the
measurement circle gradually increases to 13 MPa during the rising of load, while the
horizontal stress increases slowly and remains within 2 MPa. We can find that the stress
exceeds the macroscopic strength of the rock from stage 4 to stage 5, causing a mechanical
failure. In Figure 20b, there is no mesoscale damage before stage 3; a small amount of
mesoscopic damage begins to sprout at stage 3; then, significant damage accumulation can
be detected near the caves at stage 4, and large-scale damage development appears at stage
5, at which point the self-balanced pressure arch effect is destroyed. These high-frequency
oscillations in stress curves at stage 5 indicate the mechanical failure of material.
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It can be found from Figure 20 that the sinkholes would collapse if the overburden
weight exceeded the ultimate strength of material. Therefore, if the strength of material
decreases, the probability of sinkhole collapse rises, which is the same as the conclusions
obtained by Al-Halbouni et al. [1,18].

3.5. Discussion for Caves’ Influence on Deformation under Different Rock Strengths

There is a minor influence of caves on the final settlement of foundation, but it does
not mean that the caves are negligible. In this paper, the selected case bedrock has a
relatively high saturated strength up to 10 MPa. To discuss the effect caused by the caves,
we conducted another three modelings with much lower strength parameters of rocks. In
our primitive study, the rock strength is around 12 MPa, and the calibrated parameters of
cohesion strength and tension strength are 30 MPa and 11 MPa, respectively. The capacity
of rock is high enough to resist a sudden collapse. In this section, the cohesion and tension
strength reduced to values under 3 MPa, with 0.4 MPa and 1 MPa in Figure 21, 0.8 MPa
and 2.0 MPa in Figure 22 and 1.2 MPa and 3.0 MPa in Figure 23. We can find from these
figures that the caved modeling condition shows a larger deformation in the long-term
behavior, which is the most obvious in Figure 21. In addition, Figure 21 illustrates a severe
collapsing of caves. However, with the strength increasing to 3.0 MPa in Figure 23, the
number of cracks and the deformation caused by the caves declined a lot.

3.6. Discussion for the Long-term Deformation under Different Viscosity Coefficients and
Elasticity Modulus

In Section 3.1.3, we describe the parameters’ calibration, and we found that the viscos-
ity coefficient of η2 is important to the final time-dependent evaluation. The well-calibrated
results are obtained, and we present the different results when changing η2 in Figure 24. It
can be found that a smaller value of η2 can cause a higher value of final time-dependent
deformation. The final value used in this case study is 2.5 MPa·s. The viscosity value
obtained is just for modeling in DEM calculation.

In Burger’s model, there are also elasticity elements with elasticity modulus of E1 and
E2. In the calibration process, we first determined the modulus and kept them constant
when calibrating the time-dependent behavior. In this part, we conducted the numerical
calculation based on Equation (13), and the time-dependent responses to different moduli
are presented in Figure 25. We can find that the overall curves fell with the increase in both
elasticity moduli E1 and E2.
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Figure 25. The numerical time-dependent response after altering elastic modulus: (a) E1; (b) E2.

4. Conclusions

1. This paper presented a DEM-based method to evaluate the short-term and long-term
stability of coastal karst caves. The long-term settlements of sinkholes are mainly
dependent on viscosity, and the short-term collapsing only appears in weak bedrocks,
which causes a much larger final deformation.

2. The local stress concentration surrounding caves brings potential risk to the local
zones. If the bedrock has a relatively high strength, the presence of caves has little
influence on the final modeling. In this study, when the value of rock strength reduced
by 90%, the short-term and long-term behaviors of sinkholes were affected extensively.
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3. The modeling proposed in this paper can predict long-term deformation after founda-
tion pit excavation, and the prediction error is less than 10%. The modeling process
can be calibrated from geological borehole data and applied to other geotechnical
engineering practices in coastal karst areas.
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