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Abstract: A fully iterative ‘two-way’ fluid-structure interaction (FSI) tool of a commercially available
composite windsurfer fin was developed, which was then used to investigate the normally hidden fin
behaviour for a range of typical sailing conditions. The ‘two-way’ FSI analysis gave significantly better
insights into the fin behaviour than the simpler ‘one-way’ non-iterative analysis. The tool also indicated
that hydro-elastic tailoring, via simple reinforcement ply rotations, can produce large changes in tip
twist. This gives an opportunity for both improved passive control and higher speeds, without deviating
from a hydrodynamically optimal plan form. Inexpensive cantilever tests appear to be sufficient to make
qualitative comparisons between the sailing responses of fins with different layups.
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1. Introduction

Windsurfing is a relatively new sailing sport (with roots in the early 1960s [1]) which
has rapidly developed equipment capable of extremely high sailing speeds (over 50 knots [2])
and has now become an Olympic sport. The innovative application of advanced fibre com-
posites has been central to this development, and the sport has always been at the vanguard
of the introduction of such materials (e.g., carbon fibre foils and spars, ultra-lightweight
sandwich construction and novel sail materials) into the wider marine industry.

The fin, or ‘foil’, is equally as important as the other two constituent parts of a
windsurfer—the ‘rig’ (sail, boom and mast) and the board. In fact, the fin can be viewed
as the mirror image of the rig, whose lateral side force it is designed to oppose [3,4], the
marked size difference between the fin and rig (as hydrofoil and aerofoil, respectively)
simply a consequence of the disparity between the densities of air and water. As the wind
strength increases the sailor will need to select a smaller sail from their ‘quiver’ of sails,
and due to the requirement for hydro-aerodynamic balance will simultaneously select
a correspondingly smaller fin. Further, since more challenging conditions (in terms of
sea-state and/or wind strength and/or stability) require more control from the fin, the
sailor will often also have the choice of a selection of different fin types.

The driving force of high-level competition very quickly evolved fin design from
the early simple un-reinforced plastic ‘skegs’ into the current high-performance carbon-
composite ‘lateral hydrofoils’ with highly efficient foil sections and planforms. This evo-
lution has resulted in various basic fin designs, each with attributes fitting the ‘niche’
of the intended sailing discipline—from control-biased wave sailing, through slalom, to
speed-biased course racing. Control is usually achieved via ‘twist-off’ (wash-out) at the fin
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tip to progressively reduce angles of attack at high loadings, and is normally realised via
aft-swept planforms and aft rake to give the typical ‘dolphin fin’ shape of the wave fin. The
hydrodynamically more efficient upright course racing fins with elliptical planforms result
in better lift to drag ratios at the expense of more sudden, and hence uncontrollable, stall
behaviour. Slalom fins tend to aim at a compromise between these two extremes.

The importance of the fin in terms of the overall hydro-aerodynamic force balance
means that a professional, or even fairly accomplished, sailor can immediately and acutely
feel the effects of even apparently very small changes to the fin design. In fact, despite some
scientific interest in the subject, mostly in the 1990s [3–11], the development of modern fins
has been achieved via empirical ‘on-the-water’ testing of new ideas, facilitated by the fact
that as a small component, prototypes are relatively easily fabricated. This approach is
perhaps not surprising given the complexity of the problem in terms of fluid flow, complex
anisotropic composite structural deformations and the hydro-elastic interaction between
the two, which has made this empirical approach far more attractive, productive and
certainly economical than comprehensive mathematical modelling attempts.

However, this has led to a situation where whilst it is generally known which fin
designs give good results, it is not exactly known why. There are many, and often anecdotal,
theories within the windsurfing community, based to a greater or lesser degree on the
perceived physics of the problem, but these are very difficult to prove or otherwise given
that it is not easy to see how the fin actually responds to the water flow under the board.
Hence, the current work develops a design tool using modern fluid structure interaction
(FSI) hydro-elastic numerical analyses in Section 2, which is then used to investigate the
expected response of the fin to a range of typical sailing conditions in Section 3, thus starting
to ‘de-mystify’ the mechanisms behind the performances of different fin designs.

Such a tool would also then be invaluable in the design of improved performance fins,
allowing preliminary investigation of different designs before selecting a small number of
candidate fins for manufacture and (still essential) final on-the-water testing. An important
advantage of fibre composite materials is that the lay-up may be tailored to the loading
paths, and this has already been achieved by the industry with the use of unidirectional
(UD) plies to take the main cantilever type loadings, and of ±45◦ bidirectional plies to
resist twisting moments. However, this aspect could be further exploited via hydro-elastic
tailoring of the lay-up to encourage passive control twist, thus removing the dependency
of twist characteristics on the planform shape and allowing the design of a ‘best of both
worlds’ high lift to drag ratio upright fin with the high control of a swept-back wave fin
(see Section 4).

Finally, the windsurfing fin is simply a hydrofoil at 90◦ to the water surface, and
hence any studies of it are relevant to other types of hydrofoil with different orientations.
The inexorable advance of the ‘foiling revolution’ throughout the various water sports
communities is no overstatement. Nowadays, all manner of craft from surfboards, through
sailing dinghies, production yachts and America’s Cup boats, to large circumnavigating
‘speed machines’ are now flying above the water surface at previously almost unimaginable
sailing velocities. This has only been made possible with the use of extremely high specific
stiffness carbon composites. Similarly, the blades of composite tidal turbines, and ship and
motor-boat propellers are, of course, all rotating foils.

2. Numerical Model
2.1. Structural Analysis

The first step towards developing the design tool was to build a structural model in
order to be able to assess the fin’s behaviour under hydrodynamic loading.

2.1.1. Geometry and Lay-Up

This study concerns an actual production fin, a 37 cm Slalom fin manufactured by
F-Hot fins Ltd. (Colchester, UK), a leading supplier to world class competitive sailors, the
planform and proprietary section geometries of which are shown in Figure 1.



J. Mar. Sci. Eng. 2022, 10, 1371 3 of 23

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 3 of 24 
 

 

2.1.1. Geometry and Lay-Up 
This study concerns an actual production fin, a 37 cm Slalom fin manufactured by F-

Hot fins Ltd. (Colchester, UK), a leading supplier to world class competitive sailors, the 
planform and proprietary section geometries of which are shown in Figure 1. 
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The port and starboard side plies are hand laid up using epoxy resin separately in a 
split female aluminium mould, and after application of a thin layer of epoxy/carbon short 
fibre paste to fill any central voids, the two flanged sides of the mould are bolted together. 
The fin is then left to cure as a single piece at 50 °C for 24 h. The exact layup schedule is 
commercially sensitive information, but each side consists of 5 full face outer layers of 
±45° bi-directional and 0° UD carbon, followed by 9 and 5 plies of 0° UD carbon and E-
glass tapes, respectively (where ply angles are defined with respect to the trailing edge). 
These tapes vary in width and length from 50 to 70 mm, and from 140 to 240 mm, respec-
tively. 

The structural numerical model of the fin used the ABAQUS finite element analysis 
(FEA) software [12]. The fin input geometry was taken from the IGES files used for the 
CNC production of the two mould halves, which were then combined using Rhino CAD 
software [13] into a single geometry input file. Thickness measurements taken over the 
surface of an actual fin supplied by the manufacturer confirmed the accuracy of this ge-
ometry input file. In order to define the varying internal ply structure, and to allow mesh-
ing of the model, the fin’s 3D internal space was partitioned into various segments corre-
sponding to areas of the fin with specific numbers of plies (Figure 2). 
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2.1.2. Elements, Mesh and Boundary Conditions 
Shell elements were preferred over solid elements to model more precisely the com-

plex fin geometry, and to reduce computational expenses. However, a continuum shell 
element was used since conventional shell elements would not be capable of defining the 
inner epoxy/carbon paste filled volumes with geometrical thickness. Specifically, the 
SC8R general-purpose, 8-node, hexahedral, first-order, reduced-integration, continuum 
shell element was used. This element accounts for finite membrane strains, arbitrary large 
rotation, and allows for changes in thickness, making it suitable for this large-strain/dis-
placement analysis [14]. 

Figure 1. Slalom fin (and mould) geometry.

The port and starboard side plies are hand laid up using epoxy resin separately in a
split female aluminium mould, and after application of a thin layer of epoxy/carbon short
fibre paste to fill any central voids, the two flanged sides of the mould are bolted together.
The fin is then left to cure as a single piece at 50 ◦C for 24 h. The exact layup schedule is
commercially sensitive information, but each side consists of 5 full face outer layers of ±45◦

bi-directional and 0◦ UD carbon, followed by 9 and 5 plies of 0◦ UD carbon and E-glass
tapes, respectively (where ply angles are defined with respect to the trailing edge). These
tapes vary in width and length from 50 to 70 mm, and from 140 to 240 mm, respectively.

The structural numerical model of the fin used the ABAQUS finite element analysis
(FEA) software [12]. The fin input geometry was taken from the IGES files used for the
CNC production of the two mould halves, which were then combined using Rhino CAD
software [13] into a single geometry input file. Thickness measurements taken over the
surface of an actual fin supplied by the manufacturer confirmed the accuracy of this
geometry input file. In order to define the varying internal ply structure, and to allow
meshing of the model, the fin’s 3D internal space was partitioned into various segments
corresponding to areas of the fin with specific numbers of plies (Figure 2).
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2.1.2. Elements, Mesh and Boundary Conditions

Shell elements were preferred over solid elements to model more precisely the complex
fin geometry, and to reduce computational expenses. However, a continuum shell element
was used since conventional shell elements would not be capable of defining the inner
epoxy/carbon paste filled volumes with geometrical thickness. Specifically, the SC8R general-
purpose, 8-node, hexahedral, first-order, reduced-integration, continuum shell element was
used. This element accounts for finite membrane strains, arbitrary large rotation, and allows
for changes in thickness, making it suitable for this large-strain/displacement analysis [14].

The various composite layups in each partition of Figure 2 were defined as ABAQUS
‘composite sets’ since this allows the laminate mesh to subdivide through the laminate thickness.

The SC8R element required hexahedral meshing, and since it is a first-order reduced-
integration element, ‘hour-glassing’ (where elements distort uncontrollably in such a way that
the strains calculated at the integration point are all zero [15]) must be avoided by making the
mesh sufficiently fine. Therefore, the linear hourglass control option was also enabled.
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A nominal global mesh size of 4 mm was selected via a mesh sensitivity study, resulting
in 13,824 elements. As can be seen in Figure 2, zones of mesh refinement were introduced
at the leading and trailing edges due to the increased curvature in these areas.

The fin is mounted into the bottom of the board via a male wedge-shaped ‘head’
(in orange in the photo of Figure 1) that is pulled very tightly into a reciprocal female
wedge-shaped ‘fin box’ embedded into the board. A vertical bolt passing through the
board into a threaded bolt embedded in the fin head pulls it up into the fin box giving a
very tight fit. This arrangement, together with lateral ‘floors’ which reinforce the fin box
against rotations within the board, result in an extremely stiff cantilever type mounting
arrangement. Hence, the base of the FEA modelled fin foil section was restricted here with
boundary conditions preventing both translation and rotations in all directions.

As further detailed in Section 2.1.3, for validation of the structural model, single point
loads were applied to one side of the fin only. For the FSI analyses of Section 2.3 the pressure
loadings on both faces obtained from the CFD model were applied.

2.1.3. Material Properties and Structural Model Verification

As is common for marine composites, the materials used here are not the well-
documented and regulated factory impregnated ‘pre-pregs’ as used within the aerospace
industry, and so material properties may not be simply obtained from laminate data sheets.
In fact, due to the small scale of this particular sector of the marine industry, these fins are
hand laid up and there are no (expensive) material properties testing programmes. Hence,
not only are there no available material properties data, but also the estimation of them is
hampered by a lack of information on the ratio of fibres to resin, the fibre volume fraction
(FVF), in the finished laminate, which is required to estimate them. Hence, the engineering
approach described below was developed.

The laminator (with 40 years of experience) categorised the layup as one with a higher-
than-normal resin ratio to ensure durability of the fins to impacts. Measurements of the
weights of fibres and resin used in the manufacture of a fin were taken, giving an FVF
estimate of 0.4 from the known densities of the materials used, which corresponded with the
lower ranges of FVF for hand laid up marine composites to be found in the literature [16,17].

Next, knowing the fibres and resin used in the fin, experimentally obtained library
elastic material property values (Young’s Modulus, E, Poisson’s Ratio, ν and Shear modulus,
G; each in all three orthotropic directions) for equivalent hand laid up woven and UD
carbon, and UD E-glass were obtained from the material property library of another FEA
software, ANSYS (Canonsburg, PA, USA) [18]. However, these library values were for
laminates of higher FVF (from 0.5 to 0.65) than of those considered here (0.4) and so these
library properties were adjusted for these differences in FVF using the generalised rule
of mixtures (ROM) equations [19]. For example, for longitudinal stiffness, E1, for two
laminates ‘A’ and ‘B’ equivalent in all respects except for FVF (Vf):

E1,c = η0ηLE1, f Vf + Em

(
1 − Vf

)
(1)

and

E1,c,B =
η0ηLE1, f Vf ,B + Em

(
1 − Vf ,B

)
η0ηLE1, f Vf ,A + Em

(
1 − Vf ,A

) × E1,c,A (2)

where the subscripts c, f and m refer to composite, fibre and matrix resin, respectively, and
η0 = 1.0 for UD and 0.5 for woven reinforcements, and ηL = 1.0 (since fibre lengths > 10 mm).

This semi-empirical approach, rather than direct ROM estimation of the material prop-
erties directly from the fibre and resin properties, was used since the use of experimentally
obtained base values ensured that irregularities introduced via hand lay-up and other
factors not considered by ROM were inherently included.

These values were then verified using a corresponding set calculated using the Chamis
set of semi-empirical equations [20–22] directly from the resin and fibre material properties
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and a typical hand lay-up void fraction of 0.05 [23,24]. This gave values very close to the
previously calculated ‘ROM adjusted FVF’ data in all cases, thus increasing confidence in
the material property input data.

To verify the FEA model, experimental force-deflection data from a simple cantilever
loading of the fabricated fin was used. Two-point loading cases, both at 1

4 chord from
the leading edge, were performed; one at 40% and one at 80% span from the fin base [25]
(Figure 3). These two different cases with differing ratios of shear and bending influence, al-
lowed a more rigorous validation of the FEA model. A calibrated, displacement-controlled
servo-hydraulic test rig with load cell and displacement transducer outputs was used for
these tests.
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Figure 3. Experimental fin tests [24].

After further discussions with the manufacturer and observations of the lamination
process, it was noted that the plies were not laid up in the mould with the fibres exactly
straight along the fin span but were curved to some degree. This occurred due both to
natural fibre movements during the rolling stage of hand layup, and to the need to fit the
plies into the mould with its curved leading edge plan shape. Even a slight curvature
of the plies in the laminate is known to decrease the stiffness in the fibre direction [25].
Measurements of the fibres in the plies as they were laminated estimated this fibre ‘waviness’
to be of the order of 2.5 mm amplitude in a wavelength of 10 cm, giving a Young’s modulus
reduction of a factor of 0.25 according to [26] (in their). This reduction was applied to all
UD and woven longitudinal and woven transverse Young’s modulus, E, values, resulting
in the material properties given in Table 1.

Table 1. Ply material properties.

UD Epoxy/e-Glass UD Epoxy/Carbon Woven
Epoxy/Carbon

E1 (Pa) 2.23 × 1010 5.66 × 1010 2.84 × 1010

E2 (Pa) 7.90 × 109 5.11 × 109 2.84 × 1010

E3 (Pa) 7.90 × 109 5.11 × 109 5.54 × 109

ν12 0.29 0.31 0.04
ν23 0.40 0.42 0.30
ν13 0.29 0.31 0.30

G12 (Pa) 4.12 × 109 3.26 × 109 3.30 × 109

G23 (Pa) 3.50 × 109 3.08 × 109 2.70 × 109

G13 (Pa) 4.12 × 109 3.26 × 109 2.70 × 109

Using these material properties inputs (derived via careful consideration of the actual
fabrication process used rather than simply via ‘calibration’ to fit the numerical to the exper-
imental results) for the FEA model resulted in very good predictions of the fin experimental
test values (Figure 4), especially given the inherent variability of the hand layup process
used, thus providing a validation of the numerical structural model. The small variation
between numerical and experimental results, together with this inherent variability and
the unavoidable experimental errors, do not allow any confident interpretation of the fact
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that the 40% and 80% span experimental results are stiffer and more flexible than the FEA
predictions, respectively.
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2.2. Computational Fluid Dynamics Analysis

The analyses performed here used a previous study as a starting point [27], and
uses Star-CCM+ [28] since this software can both analyse accurately turbulent fluid flow
around wing shaped geometries [29], and also integrates seamlessly with ABAQUS FEA
software for FSI analyses. The same geometric model as used in this study for the FEA was
used, with just the very leading edge needing to be slightly rounded in order to eliminate
numerical singularities in the CFD analysis. However, this extremely localised geometry
change would not affect the FEA results.

A simple rectangular prism fluid domain (of dimensions 16 × 10 × 8 fin base chord
lengths, respectively) with the fin base located on the upper face (centred laterally, 6 base
chord lengths from the inlet face) was constructed (Figure 5a). The boundary condition
types assigned were ‘Wall’ for the fin surface, ‘Pressure Outlet’ for the outlet aft face,
and finally ‘Velocity Inlet’ for the inlet, lateral faces and bottom face, where there are
unperturbed flow conditions. In practice, the fin base is inserted into the flat underside of
the board, which would hence cover part of the upper face of the fluid domain. However,
since the boundary layer at the board is less than 1 cm thick and after confirmatory tests to
ensure that this would not affect results, the board was not modelled and the whole upper
face was modelled as a ‘Velocity Slip Wall’; forcing zero vertical velocities to represent the
water-air interface and hence significantly reducing computational time and complexity.
The ‘Velocity Inlet’ flows were assigned to give the required angle of attack to the fin in
each case.
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The ‘Automated Mesh’ feature of Star-CCM+ was used to mesh the domain, with
increasingly fine volumes of refinement (VORs) from the outer domain to the fin surface
(Figure 5b–d) to accurately model the flow whilst saving computational expense. Since the
analysis of the flow of the boundary layer is especially important, a prism layer that closely
followed the fin profile was used next to the fin surface (Figure 5e). ‘Surface Remesher’,
‘Polyhedral Mesher’ and ‘Prism Layer Mesher’ were used for the fin surface, VORs and prism
layers, respectively. The mesh parameters used are given in Table 2.

Table 2. Mesh parameters.

Base size 50 mm
Domain relative cell size 150%
VOR 3 relative cell size 50%
VOR 2 relative cell size 10%
VOR 1 relative cell size 3%
Number of prism layers 25
Prism layer thickness 2 mm
Prism layer stretching 1.17
Wall y+ ≈1
Number of xells ≈ 3 × 106

The following physical continuum models were chosen for all CFD simulations [27]:

• Three-dimensional analysis
• Steady and segregated flow
• Constant density
• Turbulent flow solving the Reynolds-averaged Navier–Stokes equations
• K-ω, SST (menter) turbulence model
• γ−Reθ transition model
• Low y+ wall treatment
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The fluid assumed for all simulations was 35 g/kg salinity seawater at 20 ◦C, of density
(ρ) 1024.9 kg/m3 and dynamic viscosity (µ) 1.077 × 10−3 Pa·s [30]. Residuals convergence
criteria (at 10−4) were used to give solutions that required around 180 computational hours
each running in 18 parallel cores, giving a wall time of 10 h.

2.3. FSI Analysis

The extremely light and stiff carbon composite construction of windsurfing fins has
allowed the fabrication of foils with hydrodynamically efficient fine chord profiles that
would not be possible with other economically viable material systems. However, these
fins are subject to extremely high loads and deflections can be very large, and hence a
simple ‘one-way’ analysis (where CFD loads assuming a completely rigid fin are applied
once to the structural model to give the structural response) may well not be sufficient in all
cases. A full ‘two-way’ iterative FSI, analysis that then takes this first deformed geometry
and re-evaluates the CFD loadings for iterative re-application to the structural model until
convergence is achieved, will more closely model such a hydro-elastic case. However, a
one-way FSI will be far less expensive (both computationally and in terms of technical
resources, time and finances) which is critical for the typically very small fin producer, as
well as for the huge majority of other marine composite fabricators. Hence, it is important
to know when and where the simpler one-way FSI may be safely used with sufficient
accuracy, over the full two-way analysis.

The FEA and CFD models of Sections 2.1 and 2.2 were connected via the Simulia
Co-Simulation Engine (CSE), which enables fully automatic communication between the
two for import and export of field properties and mesh information. The CSE required that
the same fin surface was present and with the same name in both CFD and FEA solvers. In
this region, displacements are exported from FEA to CFD solvers, and pressures and wall
shear stresses exported in the opposite direction [15]. The lack of a prescribed unit system
in ABAQUS requires that special care be taken to ensure that the same units are used in
both solvers.

Since fin deflections were expected to be significant, an iterative dynamic implicit
approach was used, where fields are exchanged multiple times per coupling step until
an overall equilibrium is achieved prior to advancing to the next step. This iterative
coupling scheme allows one analysis to lead, which (as is highly recommended [31]) was
the structural (ABAQUS) solver. A constant coupling step size of 0.1 s for both FEA
and CFD solvers, allowing both analyses to advance in parallel, was used after tentative
experimentation (guided by previous experience) showed this value to give good solution
convergence for the present steady-state problem. Especially for operating conditions with
higher fin deflections and pressures, and at the start of each simulation, ramping of the
pressure field was also required for solution convergence. The same residual convergence
criteria used for the CFD analysis (Section 2.2) were also used for the FSI analyses.

3. Parametric Study

The behaviour of the fin under a range of typical sailing conditions was next inves-
tigated using the developed FSI analysis tool. These conditions may be represented by
combinations of two main parameters, velocity and angle of attack (AoA). To bypass the
extremely complex task of identifying the specific velocity and AoA on all points of sailing
for all of the possible weather and sea states, a parametric study of all permutations of a
range of sensible velocities and AoAs was completed. The CFD analysis indicated that stall
occurred at around 8◦ AoA, and a reasonably typical upper velocity limit of 35 knots was
assumed. Hence, a test matrix of five levels of velocity (10, 15, 20, 25, 30 and 35 kn) at three
levels of AoA (2, 4 and 6◦) was studied.

Multiple fin responses must be considered to describe fully fin behaviour under differ-
ent sailing conditions. Aero-hydrofoil theory and the accumulated empirical conclusions
of decades of the sport have led to the conclusions that (a) ‘lift’ (in the lateral, opposing
sail side force sense) and drag forces, and (b) twist (thus varying the local tip AoA) and
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tip (cantilever) deflection, are important in terms of performance and control, respectively.
Hence, this parametric study investigates these four responses.

Further, a two-way FSI may well produce more refined results than a one-way FSI
(especially as the fin is increasingly ‘loaded up’ at higher velocities and/or AoAs, and
deflections increase), but this will come at considerably increased cost, time, software
and expertise requirements that may well be prohibitive for the windsurfing industry.
Conversely, since just a single computation of the pressure field over the fin is required for
the one-way FSI, this may be an affordable option, if its accuracy is acceptable. Hence, under
exactly which conditions, and for which fin responses, the advantages of a more expensive
two-way FSI over a one-way FSI are not significant was also investigated.

3.1. Results

The results of the parametric study in terms of the responses lift force, drag force, tip
twist and tip deflection are shown in Figures 6–9, respectively.
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3.2. Discussion

It is important to remember in the context of the discussions below that the CFD
derived loads in the one-way and two-way analyses assume the un-deformed and deformed
fin geometries, respectively.

3.2.1. Lift

As expected, Figure 6 shows lift force increasing with velocity and (base chord) AoA,
for both one-way and two-way analyses. It is also clear from Figure 6 that the two-way
analysis predicts more lift force than does the one-way analysis, and that this difference
increases monotonically with velocity. The tip wash-in (increased AoA) predicted by the
two-way analysis for most cases (Figure 8) could account for some increase in lift force
over that predicted by the one-way analysis (which assumes an un-deformed fin with
zero wash-in). However, this figure, together with Figure 10, show that this does not fully
explain the higher two-way predicted loads since lift force continues to increase even as tip
twist drops off at the highest velocities for the two-way analysis.
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Figure 10. Lift force vs. tip twist.

For the one-way analysis, the lift coefficient, CL in Equation (3), is relatively constant
with increasing Reynold’s number, Re, (Figure 11), as might be expected from classical
aerofoil theory, and the fact that the CFD of the one-way analysis only considers the
un-deformed fin geometry.

CL =
2L

ρv2 A
(3)

where L is lift force, ρ fluid density, v the flow speed and A the surface area of the fin.
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However, for the two-way analysis, the lift coefficient increases with Reynold’s number
(Figure 11). Again, the wash-in tip twist seen by the two-way analysis CFD (but not the
one-way CFD) in Figure 8 could account for some of this increase in CL, but again this
figure and Figure 12 show that this does not fully explain the continuing increase in CL as
tip twist drops off at higher velocities.
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Figure 13 shows that, as expected, the variation of lift coefficient with AoA is linear
in all cases for the sub-stall AoAs considered here. The one-way analysis (CFD loads
assuming an un-deformed fin) gives an AoA lift slope (CL/α) that is almost independent of
velocity, and which is accurately predicted using the simple Prandtl equation:

CL
α

=
2π

1 + 2
AR

(4)

where: α is in radians and AR is aspect ratio sSpan2/surface area = 372/300 = 4.56)
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However, Figure 13 shows the two-way analysis lift slope increasing with velocity, as
shown more clearly in Figure 14.
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Replotting the tip twist data of Figure 8, as in Figure 15, shows that there is also a
roughly linear increase in wash-in (negative twist angle) with angle of attack at each velocity,
and that the slopes of this plot also increase with velocity.
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Furthermore, plotting the ‘wash-in slopes’ of Figure 15 against the equivalent lift
slopes of Figure 13 (and Figure 14), as in Figure 16, shows the strong correlation between
the two, indicating some degree of causality.
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The above discussion strongly indicates that the trends seen in the lift are in some way
related to the variation in the tip twist, but identifying exactly which mechanism(s) are at
play here requires further studies to be undertaken, since these mechanisms may well be
complex and interacting. For example, although given the available data here this can only
currently be hypothesised, the slightly reduced tip wash-in rotations seen at the highest
velocities may reduce the tip vortex and hence increase lift. Further, investigation of the
whole fin deformation (such as twist of the chord sections at various points along the span
and any distortions leading to camber) is ongoing.

3.2.2. Drag

Drag force also increased with both velocity and AoA (Figure 7), as expected, but drag
coefficient tended to decrease with velocity (Figure 17), which could be due to a reduction
in skin friction drag (which dominates these streamlined chord sections) with increasing
Reynold’s number [32]. In addition, the pronounced drop in drag coefficient for both 6◦

AoA cases at a Reynold’s number of around 1 million is typical of a reduction in the form
drag component (which would be more significant at this higher AoA) as flow becomes
more turbulent and hence boundary layer separation is hence delayed [33].
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Except for the lowest velocity and AoAs of 2 and 4◦, the two-way drag coefficient
is consistently higher than that of the one-way analysis. As was seen for lift forces, this
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could again be due to the higher tip angles of attack (wash-in) seen by two-way (but not
the one-way) analysis, but again there does not seem to be a simple correlation between CD
and tip twist angle (Figure 18). Again, further study is required to investigate the physical
mechanism(s) behind this behaviour, which may be complex and interacting.
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3.2.3. Tip Twist

Here, it must be noted that the current FEA model has been developed using con-
tinuum shell elements and validated experimentally under cantilever bending and that
further work is underway to use recent experimental twist results to evaluate a modified
FEA using solid elements. However, as will be discussed in Section 4, current results appear
to mirror those obtained by previous studies.

For the one-way analysis, wash-in (negative twist) increases with both velocity and
AoA (Figure 8). The two-way analysis also gives more wash-in at higher AoA at all
velocities, but these values are lower than the one-way analysis predictions in all cases.
As mentioned in the previous sections, for each AoA, as velocity increases the two-way
wash-in increases, maximises and then decreases, even becoming wash-out (positive twist,
reduced local AoA) for 2◦ AoA at 35 kn.

This tip twist may be due to two distinct mechanisms:

1. Hydrodynamic torsional moments between the section shear centre [34,35] and the
centre of pressure

2. Structural bend-twist coupling due to planform sweep and/or laminate layup
(see Section 4)

Both effects will vary along the span due to the (stepwise) varying lay-up and local
AoA (from twist and/or finite wing effects), and are also likely to interact, leading to an
extremely complex problem to solve, or even interpret, analytically. However, the two-way
FSI analysis solves this problem numerically, predicting the behaviour shown in Figure 8.

Nevertheless, it is possible to gain some insight into the origins of the twist behaviour seen:

(i) The main UD carbon stiffening plies are shown as darker shaded areas in Figure 2,
indicating that the structural shear centre is significantly aft of the 1

4 -chord line of the
fin for the majority of its span. Since the fin foil section is symmetrical, the centre of
pressure will be fairly close to the 1

4 chord (for most of the span), leading to an overall
hydrodynamic wash-in (negative twist, AoA increase) moment. However, at the tip,
finite wing effects may produce a local hydrodynamic wash-out (positive twist, AoA
decrease) moment [36].

(ii) The aft-swept fin planform (due to the aft-swept leading edge) produces a wash-
out (positive twist, AoA decrease) bend-twist coupling effect [3,34]. The symmetric,
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balanced layup of nominally 0◦ UD and ±45◦ biaxial reinforcements theoretically
gives no bend-twist coupling. However, since the plies are laid up with respect to the
trailing edge, the plies are angled slightly forward with respect to the 1

4 chord line
and hence some degree of laminate induced wash-out (positive twist, AoA decrease)
bend-twist coupling is also possible.

It is not possible from the data available to quantify the various torsional effects
described above, but some useful qualitative deductions may be made:

• Hydrodynamic wash-in effects appear to be dominant, except at high velocity and
lower AoA combinations (Figure 8).

• Since one-way and two-way tip deflections are similar (Figure 9), it can be deduced
that the decrease in wash-in at higher velocities seen for the two-way analysis, but
not for the one-way analysis, is not due to structural bend-twist coupling, and thus
hydrodynamic wash-out moment effects appear to be responsible.

• The hydrodynamic loading from the rigid fin shape deforms the fin in such a way that
the hydrodynamic tip torsional loadings are reduced (Figure 19).
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3.2.4. Tip Deflection

Tip deflection increases with velocity and AoA (and hence lift forces) in all cases, as
expected (Figure 9). Deflections are also slightly higher for the two-way than for the one-
way analysis. As discussed in Section 3.2.1, the tip wash-in seen for the two-way analysis
but not for the one-way analysis would increase tip lift forces, and hence tip deflections.
However, again, Figure 20 shows that there is no simple correlation between tip deflection
and twist. Again, further work is required to investigate the mechanisms(s) responsible for
these trends.
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4. Passive Tip Control

As discussed in the introduction, building a twist response into the fin gives the
sailor better control in challenging conditions, but since this is achieved via a raked-back
plan-form it results in non-optimal lift to drag ratios (i.e., control comes at the expense of
speed). However, as described in Section 3.2.3, the non-homogenous internal structure of
fibre composites allows tailoring of the material itself to give bend-twist coupling, i.e., pure
bending loading produces twist (and vice versa). This allows for the possibility of retaining
a fin planform for minimum drag (i.e., without resorting to rake) whilst causing the fin to
‘twist-off’ (i.e., reduce the AoA, ‘feather’ or ‘wash-out’) as it bends longitudinally at higher
loadings to give better control—‘the best of both worlds’. Alternatively, if a fin already has
too much wash-out then the bend-twist coupling can be modified to give less wash-out or
even ‘wash-in’ (where longitudinal bending increases the AoA), increasing the ‘lift’ (in this
case side force) produced by the fin.

Bend–twist coupling can be achieved in a laminated fibre composite by simply specifying
a ‘symmetric’ layup—that is the plies above the mid-plane are a mirror image (in terms of fibre
material, architecture, areal weights and fibre direction) of those below the mid-plane [37].
For example, by ‘rotating’ the fibres in the laminate of the upper and lower faces of a simple
UD fibre composite box cantilever in the same direction as shown in Figure 21 (adapted from
Figure 3 in [38]), bend twist coupling is obtained in the sense shown. Details of the laminate
theory behind fibre composite bend–twist coupling is detailed in [37–43].
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This approach has already been successfully used in aerospace (originated by Krone [44]
and famously successfully utilized for the forward swept wings of the Grumman X-29 ex-
perimental aircraft [45,46]), wind energy [38,43,47–52], tidal energy [53,54], composite marine
propellers [55–61] and International Moth ‘foiling’ dinghy and larger surface-piercing sailing
hydrofoils [62–69]. Much as for the X-29, the approach of Giovannetti et al. was to produce
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bend-twist coupling by rotating the ply alignment symmetrically on the top and bottom
surface of a supporting ‘wing box’ beam (c.f. Figure 21) embedded within the foil itself.

However, in this study, plies within the monolithic foil laminate itself are rotated
to provide an integral solution. In Figure 22 the directions of the ply rotations required
(symmetrically, on both leeward and windward faces of the fin) for longitudinal fin bending
to produce wash-in (where twist increases the AoA) and wash-out (where twist decreases
the AoA) are shown.
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Figure 22. Fibre alignment for wash-in and wash-out (pressure, i.e., leeward side).

The influence of rotations of the full-face outer plies, 2 and 3, and 4 and 5, as those with
most influence on the fin twist due to their distance from the fin centreline, on tip twist was
investigated. Fibre rotation was defined here as positive for aft ‘rake’ since this is already a
standard industry term used to describe the fin planform. Similarly, tip twist was defined
with wash-out angle as positive (and hence wash-in as negative) since wash-out of sails
generally is referred to as ‘twist’ or ‘twisting off’, and the fin is analogous, and indeed the
exact counterpart, to the sail. These definitions make explanations of the scientific findings
more easily digested by the windsurfing industry and wider community.

The previously developed FSI model is now used as a tool to explore this ‘hydro-elastic
tailoring’ to try to achieve passive tip twist and deflection control, which constitute the two
main fin characteristics affecting the ‘on the water’ sailing performance. Plies 2 and 3 were
rotated together, aft and forward (up to 45◦ since these are balanced woven reinforcements
with the same warp and weft fibres), and the obtained corresponding tip deflection and
twist changes from that of the actual production fin layup are plotted in Figure 23.
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UD plies 4 and 5 were then rotated together to give the corresponding plot also shown
in Figure 23. The required rotations for plies 2 and 3, and for 4 and 5, to give maximum
wash-in were identified as 25◦ forward and 30◦, respectively, and for maximum wash-out
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25◦ forward and aft, respectively. Although the current FEA model uses shell elements and
validation has been via experimental bending tests, these maximum and minimum twist
angles of approximately 25◦ in Figure 23 (and Figures 24 and 25) correspond to those found
in the literature [37,38]. Finally, the appropriate rotations were applied to all four plies 2 to
5, to give the maximum wash-out and wash-in points indicated in Figure 23.
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Rotations of these plies appear to lead to very significant changes in tip twist, especially
considering that these fins stall at AoAs of approximately 6 to 8◦, and are operating (in
theoretical ‘steady state’ sailing at least) at far lower AoAs. In terms of practical application
of this work, the amount of wash-in or wash-out which will be ‘better’ is extremely difficult
to define, and will no doubt depend on many variables such as wind and sea conditions,
type of sailing competition, sailor weight, height and sailing style, sail type and size, etc.
Furthermore, increases in tip wash-in and wash-out are accompanied here by increases and
decreases in the tip deflection, respectively.

In fact, the only way to effectively identify an optimum bend-twist coupling response
is to fabricate identical fins with maximum and minimum wash-out and wash-in and
then allow on-the-water testing by professional, world-class sailors, which is currently
underway. This should allow ‘translation’ (i.e., ‘calibration’) of the language of the test
sailors’ reports (which are in terms of subjective terminology such as ‘control’, ‘speed’,
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‘softness’, ‘ease of planning’, etc.) into what is actually happening to the fin hidden in the
water under the board in terms of deflection and twist, which is the main aim of this work.

Since resources for research are extremely low in the windsurfing fin industry, putting
full two-way FSI out of reach as a practical tool (that must be fully updated as fin forms
and layups rapidly evolve and change), the effects of the ply rotations discussed above were
investigated using the simpler, and hence more economical, one-way FSI analysis (Figure 24).

Figure 24, shows that, although the values differ, exactly the same conclusions would
have been made using this plot as would have been made using the far more resource
intensive full two-way FSI approach of Figure 23.

Further, since most, if not all fin producers have no access to full 3D CFD, nor FEA,
and almost certainly not to full two-way FSI analyses, but could far more easily replicate
the simple point loaded cantilever physical, mechanical type of test of Section 2.1.3, the FEA
model was used to predict if this simple loading condition could be used to identify the
ply rotations required for the different combinations of tip twist and deflection identified
by the full two-way FSI. Figure 25 again shows that although the amounts of twist and
deflections differ, the same conclusions would have been made using this plot as would
have been made using the full two-way FSI approach of Figure 23. This is a very important
finding as it indicates that simple mechanical cantilever tests can be used to identify the
probable twist and deflection trends obtained via rotation of the outer plies that should
be seen under actual sailing conditions, further helping this process of ‘translation’ of test
sailor’s reports into fin deformations and hence to the laminators lay-up schedule.

5. Conclusions

A two-way full fluid-structure interaction (FSI) tool has been developed for a carbon
and glass fibre reinforced composite windsurfer fin. An ABAQUS FEA verified against
mechanical tests on an actual fin, was coupled with a STAR-CCM+ CFD model to give a
fully iterative hydro-elastic solution. Composite laminate property data were developed,
taking into account the actual production processes used. The FSI tool was then used to
investigate the forces produced by, and deflections of, the fin under a range of typical sailing
conditions, represented by combinations of two main parameters: velocity and angle of
attack (AoA). Finally, the tool was used to investigate the effects on tip twist and deflection
of ‘hydro-elastically tailoring’ the fin’s internal reinforcement layup specifications. The
main conclusions of this work are:

A full two-way FSI analysis (which takes into account the CFD effects of fin deforma-
tions) gives better insights into the fin behaviour than does a one-way analysis (where CFD
assumes a fully rigid fin), hence leading to different conclusions:

• The two-way FSI predicted more ‘lift’ force than did the simple one-way analysis.
• The one-way analysis and the Prandtl equation gave very similar predictions of ‘lift’

coefficient for all velocities, whereas the full two-way FSI predicted increasing lift
coefficient and slope with Reynolds number.

• Both approaches predicted a decreasing drag coefficient with increasing Reynolds
number, but the two-way FSI value was lower than that of the one-way analysis.

• The one-way analysis FSI predicted tip wash-in that increased both with AoA and
velocity. The two-way FSI predicted significantly less tip wash-in, which decreased at
higher velocities and even switched to wash-out at lower AoAs.

• Tip deflections were slightly higher for the two-way FSI than for the one-way analysis.

Hydrodynamic wash-in effects appear to be mainly dominant (except for lower AoAs
at high velocities) and the hydrodynamic loading deforms the fin so that hydrodynamic tip
torsional loadings are reduced.

Clearly, hydro-elastic tailoring of the fin laminate layup through simple ply rotations
can lead to very significant changes in tip twist. This gives an opportunity for both passive
control under highly loaded conditions and regulation of tip twist for higher speeds, both
of which may be achieved whilst retaining a hydrodynamically optimised plan shape.
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Importantly, simple inexpensive cantilever tests appear to be sufficient to make quali-
tative comparisons between the ‘on-the-water’ responses of fins with different layups.

Further work is underway to develop the FEA model using solid elements and ex-
perimental twist results for validation, but the current study has already indicated how
the behaviour of the fin changes in terms of the main responses under the whole range
of probable sailing conditions. The work has already indicated some counter-intuitive
responses that require further investigation, and exploration of the physical mechanisms
behind some of the behaviour seen is still to be completed.
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