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Abstract: The LNG price is basically determined based on the oil price, but other than that, it is also
determined by the influence of the method of LNG transportation; storage; processes; and political,
economic, and geographical instability. Liquefied natural gas (LNG) may not reflect its market value
if the destination of the purchase is restricted or the purchase contract includes a take-or-pay clause.
Furthermore, it is difficult for the buyer to flexibly manage procurement, resulting in the decoupling
of oil and natural gas prices. Therefore, as the LNG bunker price is expected to be more volatile
than the marine bunker price in the future, shipping companies need to prepare countermeasures
based on scientific forecasting techniques. This study aims to be the first to analyze the forecasting
of short-term LNG bunker prices using recurrent neural network (RNN) models suitable for highly
volatile data such as time series. Predictive analysis was performed using simple RNN, long short-
term memory (LSTM), and gated recurrent unit (GRU) models, which effectively forecast time-series
data, and the prediction performance of LSTM among the three models was excellent. LSTM had
relatively excellent prediction performance of outliers and beyond. In addition, it was possible to
effectively manage ship operating costs with improved forecasting in practice. Furthermore, this
study contributes to establishing a systematic strategy for supervisors in global shipping companies,
port authorities, and LNG bunkering companies.

Keywords: liquefied natural gas; bunker price; long short-term memory; recurrent neural network;
gated recurrent unit; forecasting

1. Introduction
1.1. Background

Even though freight rate has been skyrocketed during COVID-19, shipping industry
has been pressured by competition and oversupply issue until 2020. Shipping freight
rates remained low for approximately ten years since the collapse of Lehman Brothers
in 2008, demonstrating the adverse effects of external variables on profitability. During
the same period, the increase in the freight rates was slowed by a second factor—a rapid
increase in the supply of shipping vessels within a short period of time. Therefore, shipping
company have to choose efficient decision, especially about cost management, under this
circumstance. The one of major part of cost management is a bunker management because
it is essential for shipping companies to reduce bunker consumption in view of high bunker
price and shipping emissions [1]. Bunker costs account for 47% of ship operating costs on
average and reducing them requires changes to the ship design or navigation method [2].
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For example, for a container ship sailing at 24 knots, one analysis found that bunker
costs accounted for 60% of the total ship costs (including ship operation, capital, bunker,
and port costs) and 40% of the total cost (ship costs along with supply, repair, container
maintenance, administrative, cargo handling, and cargo claim costs) [3]. In addition, the
analysis revealed that bunker costs accounted for 75 and 20% of total voyage costs in long-
and short-distance voyages, respectively. On average, the bunker cost accounts for over
50% of the total ship operating costs [4]. Thus, many shipping companies adopted slow
steaming or changed fuel oils to control costs and cope with soaring bunker prices in 2007.
Furthermore, environmental regulations were put in place by the International Maritime
Organization (IMO) and port authorities to navigate at low speeds.

In addition, at its 76th session, the IMO Marine Environment Protection Committee
(MEPC) adopted a plan to reduce carbon emissions by 2% per year between 2023 and
2026. It also set a goal of reducing ship carbon emissions by 70% and greenhouse gas
emissions by 50% by 2050 compared with 2008 levels. The sulfur oxides’ regulation, which
was strengthened in 2020 to reduce air pollutants, is another example of IMO regulations.
Since then, shipping companies have shifted from high sulfur fuel oil (HSFO) with 3.5%
sulfur content to low sulfur fuel oil (VLSFO) with 0.5% sulfur content or liquefied natural
gas (LNG) bunker, occasionally installing a scrubber to meet the sulfur oxides’ emissions
standard of 0.5%. Among the three methods, shipping companies have been using VLSFO
and LNG the most and LNG bunkers are increasing in the mid-to-long term. As shown in
Figure 1, the total LNG-capable orderbook is steadily increasing.
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Figure 1. LNG-capable orderbook trend (adapted from Clarkson research [5]). LNG, liquefied
natural gas.

However, shipping companies should pay more attention to satisfying the environ-
mental regulations because these new fuels have high volatilities. The price volatility of
VLSFO has been quite high since the regulation of sulfur content limitation. However, as
shown in Figure 2, the volatility of LNG bunker prices is higher than that of VLSFO.
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Figure 2. LNG bunker price trend in the port of Singapore (computed by the authors using data from
Platts Bunkerwire [6]). LNG, liquefied natural gas; VLSFO, very low sulfur fuel oil.

As shown in Figure 3, this is because of the differences in the complexity of the LNG
supply chain, transportation and storage processes, political and economic instability, and
various port and terminal-related infrastructures. Long-term LNG contract prices in Asia-
Pacific are generally determined by oil prices. The LNG market value may not be reflected if
the destination of the LNG purchase is restricted or the purchase contract includes a take-or-
pay clause. Furthermore, it is difficult for the buyer to flexibly manage procurement, resulting
in the decoupling of oil and natural gas prices. Russia’s full-scale invasion of Ukraine has
pushed LNG and oil prices to historic highs, as the conflict has resulted in high market
volatility and a coordinated global economy. J.P. Morgan’s Global Research Institute has
examined the expectations for LNG and oil prices as the possibility of an ongoing conflict
poses potential risks to supply chain management [7]. Therefore, shipping companies need
to prepare countermeasures based on scientific forecasting techniques, as the LNG bunker
price is expected to be more volatile than the marine bunker price in the future.
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1.2. Purpose

As discussed earlier, shipping companies have implemented countermeasures such
as changing the navigation method to slow steaming, LNG bunker adjustment, using
derivative products, and forging long-term agreements for bunker fuel supply to cope
with the volatility in the LNG bunker prices. An analysis showed that changing the
navigation method to increase fleet sizes while reducing vessel speeds can potentially
minimize costs [8]. Furthermore, it has been established that the use of derivative products
can have a hedging effect on the volatility of LNG bunker prices [9]. In the end, these
competitive advantage countermeasures can be viewed as a way to deal with medium- and
long-term volatility. Therefore, a cost management strategy based on short-term LNG fuel
price forecasting is required. Because tramp vessels, unlike regular liner vessels, have such
options for procuring LNG bunker fuel, it is possible to control costs by determining the
time and place of LNG bunker fuel procurement through short-term forecasts of less than a
month. Therefore, in this study, we aimed to forecast short-term LNG bunker prices using
a recurrent neural network (RNN) model suitable for learning from highly volatile data
such as time-series data. We also employed horizontal comparative analysis to investigate
forecast-related characteristics through comparative verifications of the RNN models. Our
forecast method can potentially assist major global shipping companies in making better
business decisions.

1.3. Literature Review

As vessels become larger and faster, comprehensive cost management must be imple-
mented systematically for voyage expenses such as cargo and port costs, in addition to the
bunker, crew, ship maintenance, and insurance costs. The LNG bunker cost, in particular,
is highly volatile. Hence, LNG bunker prices must be precisely estimated throughout
the lifetime of a vessel. A charterer or shipowner can reduce the costs by systematically
establishing an LNG bunker procurement plan for each voyage if medium- and long-term
forecasting of the prices is possible. Nonetheless, there is relatively little reported research
on forecasting LNG bunker prices despite the abundance of studies on forecasting general
bunker fuel prices. However, major global shipping companies as well as universities and
research institutes are paying increasing attention to the cost management of LNG bunker
fuel owing to the recent expansion of the ship emission control areas centering on Europe
and the United States and the IMO’s 2020 environmental regulations [10].

Analysis shows that orders for LNG-fueled ships have increased significantly owing to
the enforcement of IMO environmental regulations [11]. Accordingly, as shown in Table 1,
deliveries of LNG-fueled ships will increase beyond that of conventional oil-fueled ships
after 2024; however, delivery of LNG-fueled ships may decrease as the zero-carbon policy
expands in the future. Their expansion over the next 10 years means the growth of the
LNG bunkering market, and it can be confirmed that global shipping companies are also
required to manage LNG bunker costs.

Table 1. LNG-fueled ship and decarbonisation scenario.

Period Prediction

Early 2020s Gradual ramp up of deliveries of LNG-fueled ships

2024–2030 LNG-fueled ship deliveries begin to surpass those of conventional
oil-fueled ships

2030s LNG-fueled ships shares begin to fall as zero-carbon technologies develop
2040s Zero-carbon vessels account for the major share of shipyard output

Source: author revised based on LNG Bunkering Review (Busan, Incheon, and Ulsan Ports) [12]. 2022.
LNG, liquefied natural gas.

Stefanakos and Schinas [13] performed a predictive analysis of bunker prices using
the weekly HSFO 380CST prices at major bunker supply ports, such as Rotterdam, Fujairah,
Singapore, and Houston. The vector autoregressive moving average model was employed,
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which is typically used for financial time-series forecasting. The prediction performance
of the models with previous variables added for the one lag of the four ports and the one
to four lags of one port for the upcoming third quarter was excellent. Furthermore, the
prediction performance for a medium-term analysis over 52 weeks was within 20%. In
their other work [14], Stefanikos and Schinas used the fuzzy time-series model to analyze
bunker fuel at the same ports after including HSFO 180CST, MDO, and MGO bunker fuel
types. The results revealed that the forecast for MDO in Rotterdam performed the worst.
Choi used system dynamics [15] to analyze the HSFO 380CST prices using annual data
from the Singapore port. Crude oil production and consumption, West Texas Intermediate
(WTI), world GDP, exchange rates, cargo demand, supply of vessels, demand/supply ratio,
and freight rates were the variables affecting bunker prices. According to the analysis
results, the average bunker price between 2017 and 2029 will be 26% higher than that
between 1990 and 2015. Kim [16] performed a forecasting analysis of bunker prices using
the weekly HSFO 380CST in Singapore. Three recurrent neural network model such as
RNN, LSTM, and GRU was employed, which is normally used for time-series data. The
prediction performance of RNN was better than others. However it has been different
length of sequence for forecasting among models.

Several studies have been conducted based on crude oil prices that have a pattern
similar to that of marine fuel oil. An analysis of the performance of an empirical mode
decomposition (EMD)-based neural network model and an ARIMA model to predict the
daily price of WTI and Brent crude oils revealed excellent results for the neural network
model to which EMD was applied [17]. Similarly, for predicting the monthly price of WTI
and Brent crude oils, the prediction performance was compared using the support vector
machine (SVM), random walk model, ARIMA, fractional integrated ARIMA, Markov-
switching ARFIMA, and feed-forward neural network. The Diebold–Mariano test revealed
a greater predictive power for SVM in Brent crude oil compared with the other models
at a significance level of 5% [18]. In addition, the monthly price of WTI crude oil futures
was predicted using the multi-layer back propagation neural network and Harr A trous
wavelet decomposition [19]. Furthermore, Salvi et al. [20] used LSTM to predict the daily
price of Brent oil, Güleryüz and Özden [21] predicted the weekly prices, and Wu et al. [22]
analyzed the WTI daily prices using LSTM with ensemble empirical mode decomposition.

As described above, most of the preceding studies are predictions of crude oil or ship’s
bunker oil. Most of the data in the studies used weekly prices. The reason is that the
weekly price prediction has the greatest impact on the bunker cost management of the
shipping company. In particular, these characteristics are more prominent in the tramp
market that does not generally take long-term contracts. Although the methods used for
prediction in previous studies are very diverse, there are few studies comparing predictions
between recurrent neural networks specialized in time series. Therefore, this study intends
to proceed with the study by referring to the contents of these previous studies. Therefore,
this study can make a gap from previous studies through the following three characteristics.
First, it will be a trial study that conducted the prediction of LNG bunker price with high
volatility compared with crude oil or bunker. In addition, the prediction will contribute to
the decision-making of shipping companies using the weekly price referenced in previous
studies. Second, we will predict three recurrent neural networks specialized in time-series
data and compare their performance. Recurrent neural network models are commonly
used for time-series data such as price prediction because the previous data are circulated.
Therefore, it is possible to verify the effectiveness of the prediction through this models.
Third, the recurrent neural network has been called the black box model because it lacks
a relatively statistical causal relationship. Therefore, the performance comparison of the
predicted values will be statistically supplemented through the Diebold–Mariano test.
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2. Materials and Methods
2.1. Data

This study used the weekly prices of LNG bunkers from Singapore, which is the
largest LNG bunker hub in Asia. The analysis used 144 weekly time-series data between
September 2019 and May 2022. The data were divided into a training and test set in an
8:2 ratio. The data from September 2019 to July 2021 served as the training set, and the
data from July 2021 to November 2021 served as the validation set. It is conventional to
split the training and test set in a ratio between 7:3 and 8:2 to train neural network models.
Consequently, this split was followed in this study. Furthermore, the Collaboratory tool
from Google was used to forecast the LNG bunker prices using RNNs and artificial neural
networks. The program was implemented using Python and run on GPUs in Google cloud
computing environment GPUs. Table 2 lists the descriptive statistics of the data. Time-series
data are nonstationary in general. As a result, the data were validated using the augmented
Dickey–Fuller (ADF) test. The null hypothesis in this test is that data have a unit root. This
means that data are nonstationary. Furthermore, this test does not reject the null hypothesis.
As a result, LNG Bunker price data are non-stationary as well. However, artificial neural
networks that allow non-linearities would be helpful for this data [23].

Table 2. Descriptive statistics of liquefied natural gas bunker prices.

Statistics Weekly LNG Bunker Price

Observations 144
Mean 15.04

Std. error 0.83
Median 11.09
Std. dev. 10.00

ADF test
t-stat. −1.85
Prob 0.353

Source: Computed by the authors using data from Platts Bunkerwire [6].

2.2. Research Modeling
2.2.1. Simple RNN

The simple RNN model used in this study is designed to analyze time-varying data
(i.e., time-series data) and is constructed based on the study by Rumelhart et al. [24]. Unlike
a traditional artificial neural network, a simple RNN feeds back a portion of the data
between the input and output layers to deliver time-series information. In simple RNN, the
output of the hidden layer becomes the input of the next hidden layer again. These layers
are commonly referred to as cells. Therefore, the hidden layer vector (ht) is expressed
in Equation (1) and the output vector (yt) is expressed in Equation (2). Here, xt is input
vector at time t, W is parameter matrices, vector f becomes one of the nonlinear activation
functions, and b is a bias.

ht = tanh(Whht−1 + Wxxt + b) (1)

yt = f (Whht + b) (2)

2.2.2. LSTM

A conventional simple RNN model has a long-term dependency problem, owing to the
vanishing gradient during the training process. A simple RNN model using memory cells
was developed to address this issue. The LSTM [25] and GRU models [26] are examples of
such a model. The LSTM model employs a memory cell structure that includes a forget gate,
an input gate, and an output gate that employ sigmoid and hyperbolic tangent functions
to delete unnecessary information while storing essential long-term memory information,
allowing LSTMs to use long-term memory information. First, the forget gate is used to
determine which cell to discard. As in Equation (3), the forget gate ( ft) can be acquired,
which is derived from the combination of input (xt) and old hidden state (ht−1) through a
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sigmoid function. The input gate is represented by Equations (4) and (5). The input gate
determines the new information to be input. This gate is divided into two sections. There

is the input gate (it), like ft, and a new long-term candidate (
∼
Ct) through the hyperbolic

tangent function. Vectors from the input and the forget gates are entered as new long-term
values (Ct), as exhibited in Equation (6). This is the sum of the product of ft and Ct−1 and

the product of it and
∼
Ct. Finally, the output (Ot) is calculated similarly to the it or ft using

ht−1 and xt, as shown in Equation (7). The new short-term state value (ht) is calculated
by multiplying Ot and Ct derived through the hyperbolic tangent function, as shown in
Equation (8). Learning is accomplished in this manner by transmitting the short-term state
values ht and Ct.

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(3)

it = σ(Wxixt + Whiht−1 + bi) (4)
∼
Ct = tanh(Wxixt + Wxcht−1 + bc) (5)

Ct = ft � Ct−1 + it �
∼
Ct (6)

Ot = σ(Wxoxt + Whoht−1 + bo) (7)

ht = Ot � tanh(Ct) (8)

2.2.3. GRU

The GRU model consists of a reset gate and an update gate, similar to the LSTM forget
gate and input gate combination. A reset gate (rt) exists in the GRU model, as shown in
Equation (9). The reset gate multiplies the old hidden state (ht−1) and input (xt) by weights
and outputs 0 or 1 after passing the sigmoid activation function. As shown in Equation (10),
the update gate (Zt) is similar to the LSTM’s forget gate and input gate combined. Like a
reset gate, an update gate (Zt) is output based on the weights of ht−1 and xt. Zt determines
how much hidden state information from the previous time is used and the present input
value is combined with 1− Zt to determine how much present information is reflected.

The new candidate hidden state (
∼
ht), which is between −1 and 1 owing to the hyperbolic

tangent function, is composed of the sum of xt and the elementwise multiplication of rt
and ht−1, as expressed in Equation (11). Finally, the amount of information on the old
hidden state (ht−1) is calculated using Zt, and the amount of information on the new

candidate hidden state (
∼
ht) is calculated using 1− Zt. As a result, the new hidden state (ht)

is calculated from the sum of these two parts, as shown in Equation (12).

rt = σ(Wxrxt + Whrht−1 + br) (9)

Zt = σ(Wxzxt + Whzht−1 + bz) (10)
∼
ht = tanh

(
W

x
∼
h

xt + W
h
∼
h
(rt � ht−1) + b∼

h

)
(11)

ht = Ztht−1 + (1− Zt)
∼
ht (12)

2.2.4. Hyper Parameter Modelling

In this study, the three RNN models described above were used for forecasting. A
supervised learning problem was constructed using time-series data for forecasting by
classifying the time step (t) data to be predicted and the past data at (t − α). Additionally,
the previous studies [16,27–29] that used neural network model to forecast were consulted
to determine the extent of the lag to be used from the past data. As short-term forecasts
are based on weekly data, the sequence length of the neural network model was set into
3 based on these studies. Other parameters were set as follows, referring to previous
studies [16,20,21,27–29] based on recurrent neural networks.
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When predicting LNG bunker prices, large-scale numbers must be calculated repeat-
edly to obtain the price per ton. As a result, the input data were converted into a value
between 0 and 1 using a min–max scaler to improve prediction performance. The activation
function in the model is a Relu function, which outputs 0 for a negative input and the
input itself for positive input. As a result, it solves the problem associated with the use
of a sigmoid function. The Adam optimizer, as in previous studies, was used to optimize
the model based on the loss function. The Adam algorithm combines the advantages of
the momentum and RMSProp algorithms, both of which are adaptive gradient methods.
The number of hidden layers was set to one based on previous studies [16,30,31], which
concluded that sufficient forecasting capability could be achieved using just one hidden
layer. The number of neurons in the hidden layer was fixed at 30 to keep the model concise.
The batch size was set to 30 in all models. The learning rate was set to 0.001, which is
the default value in the Adam algorithm. For an epoch, determining a suitable number is
difficult. Hence, the validation and training sets were compared. The point at which the
value of loss function starts to increase for the validation set and the model begins to overfit
the training data was used as a reference for early stopping and determining the number of
epochs to avoid overfitting. Furthermore, to prevent the validation set’s loss function from
abruptly terminating as a result of a change, the training was set to stop only if the loss
function had not improved for at least five iterations. The dropout values used were 0.

2.3. Performance Indicators

To compare the prediction performance of the models, mean absolute error (MAE) [32],
mean squared error (MSE) [33], root mean squared error (RMSE) [34], and mean absolute
percentage error (MAPE) [35] were used as verification indicators. MAE, MSE, RMSE,
and MAPE are commonly used indicators to evaluate prediction performances. These
indicators are defined as follows:

MAE =
1
n ∑n

i=1|yi − ŷi|,

MSE =
1
n ∑n

i=1(yi − ŷi)
2,

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2,

MAPE =
100
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣,
where yi and ŷi are the observed and predicted data, respectively. n is the size of the
observed data.

Furthermore, the Diebold–Mariano test [16,17,36] was used to analyze the differences
in statistical prediction performances between the models.

3. Results

The forecasting was based on the selected hyperparameters. Table 3 shows the ver-
ification indicators from the analysis. The results indicate that the LSTM had excellent
prediction performance for all the verification indicators (MAE, MSE, MAPE, and RMSE)
followed by the simple RNN and GRU. Compared with the simple RNN, the GRU model
had relatively low predictive performance in all indicators. The GRU model was relatively
overfitted compared with the other models. This is presumed to be because of the relatively
small variability of the training set compared with the test set in the data used for analysis.
As shown in Figure 4, which expresses the predicted values of each model, GRU had less
variability compared with the other models. Accordingly, it showed lower predictive per-
formance for rapidly changing LNG bunker prices. Considering the sudden change in the
LNG price at any time, it is estimated that the performance of this prediction characteristic
may be relatively inferior to other models in the LNG bunker price prediction.
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Table 3. Performance of the proposed models.

Model MAE MSE MAPE RMSE

Simple RNN Tr 1.17 6 11.81 2.45
Te 4.26 38.13 14.14 6.18

LSTM
Tr 1.23 5.75 12.19 2.4
Te 4.14 33.81 13.77 5.82

GRU
Tr 1.15 5.26 12.1 2.29
Te 5.09 47.52 16.81 6.89

Tr and Te mean training set and test set, respectively. RNN, recurrent neural network; LSTM, long short-term
memory; GRU, gated recurrent unit; MAE, mean absolute error; MSE, mean squared error; MAPE, mean absolute
percentage error; RMSE, root mean squared error.
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The Diebold–Mariano test was used to validate the statistical significance of the model
performances by varying the loss functions and using the LSTM model as the best model
and the simple RNN model as the reference model. The analysis results are listed in Table 4.
The LSTM model showed an excellent prediction performance at the 1% significance level
compared with GRU based on all loss functions. Unlike previous studies [16], RNN did
not show the best performance, but did not have statistical significance with the LSTM
model with the best performance. It was found that the simple RNN model showed higher
predictive performance than GRU at the 5% significance level based on the loss function
excluding the squared error.

Table 4. Diebold–Mariano test results.

Benchmark Squared Error Absolute Error Squared Proportional Error

Simple RNN GRU Simple RNN GRU Simple RNN GRU

LSTM −1.254
(0.105)

−2.623
(0.004)

−0.577
(0.282)

−3.159
(0.001)

−1.029
(0.152)

−3.289
(0.001)

Simple RNN −1.576
(0.058)

−2.160
(0.015)

−1.702
(0.044)

( ) is a p-value, RNN, recurrent neural network; LSTM, long short-term memory; GRU, gated recurrent unit.

In conclusion, the LSTM model performed the best in terms of prediction. In studies
on forecasting the prices of crude oil, the LSTM or GRU models generally show excellent
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prediction performances [21,22,37] because they use long-term memory, which can solve the
vanishing gradient problem and use long-term information, making them advantageous
for analyzing time-series data, which is affected by past information. In the case of simple
RNN, it has relatively high volatility and high sensitivity in a specific range, but owing to
excessive sensitivity, it was limited in following the rapidly changing LNG bunker price. In
the case of LSTM, however, the sensitivity is somewhat low in a specific range because it
reflects a large part of the volatility of the existing LNG bunker price, but it shows high
predictive performance when rapidly changing and regressing after a specific range. In the
case of GRU, low variability caused by overfitting resulted in poor predictive performance
for outliers.

4. Discussion

Owing to the intensified sulfur oxide environmental regulations of the IMO, ship-
ping companies have options such as low-sulfur oil, LNG as marine fuel, and scrubber
installation. Among these methods, the use of LNG bunker is feasible in the medium-
to long-term and, in particular, it has been adopted as the method for the majority of
new shipbuilding orders. According to Table 1, orders for LNG-fueled ships are expected
to increase over 1~20 years. In addition to these changes, a change in the management
method in terms of the cost reduction of shipping companies that have suffered a long-term
shipping stagnation following the financial crisis can lead to efficient cost management of
LNG bunkers. The main factor in selecting an LNG bunkering port is the suitability for
the LNG bunkers price, required quantity, supply and demand, and port regulations, as
shown in Figure 5. In general, liners can receive LNG bunkers at a relatively stable price
through long-term contracts with specific bunkering companies in specific ports by taking
advantage of economies of scale because they have various sailing routes and large fleets.
It is easy to calculate the amount required for LNG bunkering in the case of ships sailing
on regular routes. However, tramp shipping cannot obtain a discount owing to a long-term
contract, and there is a difficulty in determining the supply and demand through various
ports in a short-term contract according to a new sailing plan. Therefore, a short-term
forecast of the price of LNG bunkers under these circumstances can be helpful. Through
short-term forecasting, shipping companies can also consider supply and demand, selection
of supply and demand ports, and the size and timing of hedge contracts.

However, natural gas, which is a raw material for LNG bunkering linked to the price
of LNG bunkering, has very high volatility compared with crude oil owing to the influence
of seasonal factors and political and industrial factors. Therefore, the LNG bunker price,
which has high volatility and non-linear characteristics, was analyzed with a recurrent
neural network model with high predictive ability. As a result of analyzing three recurrent
neural network models, simple RNN, LSTM, and GRU, the predictive performance of
LSTM using long-term memory was analyzed to be relatively high. Shipping companies
create additional economic benefits by considering various factors such as ship operation,
port characteristics, cargo management, weather conditions, and prices of alternative fuels,
as well as predictability based on a predictive model that considers only the characteristics
of LNG bunkering prices. This study has limitations in determining the economic advan-
tages and differences by applying the simple RNN, LSTM, and GRU models, respectively.
Through this study, it is expected that the volatility of LSTM will be significant in the predic-
tion of the LNG bunker price, which shows high volatility without a one-way trend. Finally,
this study is expected to contribute to establishing a systematic strategy for supervisors in
global shipping companies, port authorities, and LNG bunkering companies.
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5. Conclusions

Generally, marine fuel oil is an important cost item that makes up for 47% of an
average ship’s operating cost [2]. The LNG bunkering price is highly volatile and, because
of the high dynamics, it is necessary to accurately estimate the price during the operation
period of the vessel.

To academically solve these practical problems, this study investigated methods
for obtaining short-term LNG bunker price forecasts, which can be used by shipping
companies as an effective cost-control measure for the cost associated with LNG bunkers.
LNG bunker fuel procurement decisions based on short-term responses play a critical role
in managing the expenses of shipping companies. These short-term responses necessitated
the forecasting LNG bunker prices. Predictive analysis was performed using simple RNN,
LSTM, and GRU models, which are effective in forecasting time-series data.

First, LSTM showed the best prediction performance among the three models based
on indicators such as MAE, MSE, MAPE, and RMSE. LSTM was followed by simple RNN
and GRU. GRU was determined to be relatively overfitted compared with the other models.
As the LNG bunkering price data used in the analysis showed high volatility in recent
years, it is assumed that overfitting deteriorated the forecasting performance. However,
LSTM and simple RNN showed relatively good predictive performance for the test set
despite such variability.

Second, the Diebold–Mariano test was performed to statistically estimate the pre-
diction accuracy of the prediction value. As a result, it was analyzed that LSTM showed
excellent predictive performance at the 1% significance level compared with GRU. However,
LSTM was not found to be statistically superior to simple RNN. In comparing simple RNN
to GRU, simple RNN was analyzed to be statistically superior at the 5% significance level
based on absolute error and square proportional error. Therefore, it was determined that
GRU has a significantly lower predictive performance compared with the other models.

To the best of our knowledge, this study was the first to analyze the LNG bunker prices
using simple RNN models. Hence, this study merits academic significance. Furthermore,
it was possible to effectively manage ship operating costs in practice for their own fleet
by improving the accuracy of short-term bunker price forecasts. This study was limited
by the vague standard for adjusting the model hyperparameters. In future research, we
aim to improve the performance by investigating the selection of hyperparameters. These
hyperparameters can then be used to search for a set of parameters that correspond to the
set of data needed to make business decisions by categorizing various factors that influence
the fluctuation in LNG bunker prices.
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