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The term “algae” has no formal taxonomic position. However, it is commonly applied
when referring to polyphyletic (i.e., organisms with no common origin but evolving in
multiple and independent lineages), random, and rather artificial associations of the lower
taxa of photosynthetic eukaryotic organisms assimilating CO2 and releasing O2. Algae
include both unicellular and multicellular forms; they may be aquatic or subaerial when
exposed to the atmosphere rather than submerged in water. Moreover, they lack many
types of cells and tissues that are characteristic of higher plants [1,2]. Algae ensure stability
and the sustainable functioning of the freshwater and marine ecosystems. They are the
principal agency by which the energy of sunlight is used to convert inorganic substances
of low potential chemical energy to organic substances of high potential chemical energy,
and other living organisms directly or indirectly depend on their metabolic activity. The
ecological diversity of algae is very broad and reflected in a wide range of biochemical
adaptations that determine the relationship of an organism with its environment [3].

Algae play a key role in the biogeochemical fate of many chemical elements and in the
regulation of their cycling in the aquatic ecosystems [4]. The main part of algae biomass
comprises six nutrients (C, O, H, N, S, and P) and minor elements (Ca, K, Na, Cl, Mg,
Fe and Si). Other elements (Zn, Mg, Cu, Mn, Mo, Ni, Co, Se, et al.), which are necessary
for a variety of catalytic processes, are found in trace amounts. All groups of algae are
characterized by multi-element composition; in general, the latter reflects the chemical
composition of the habitat. At the same time, some species are characterized by a unique
(selective) accumulation of certain elements, whose content in the tissues of algae may
be dozens, hundreds, and even thousands of times higher than that in the surrounding
environment [5].

Elements included in the organic matter of algae are eventually recycled. The process
of converting organics back into inorganic forms of chemical elements is called mineraliza-
tion; it is the most important ecological aspect of the biogeochemical cycle. Mineralization
takes place throughout the entire water column, as well as at/in the bottom of reservoirs,
where most of the sedimentary matter of the overlying water masses accumulates over
time [6]. Different chemical elements require different time scales, after which they again
become metabolically available for algae, and thus, participate in the biogenic cycle (hours;
days; months; years, etc.). During the process of primary production in photoautotrophs,
differences in the assimilation efficiency of major and trace elements, in the ways of their
trophic transfer, and in the mineralization rate of organic matter components, are the key
processes of the global biogeochemical cycle performed by algae in freshwater and marine
ecosystems [7].

The study of the chemical composition of various groups of algae has a long history,
starting in the late XIX to the early XX century [8–11], and receiving much attention in
the 1930–1940s [12]. Initially, these studies focused on determining the major component
composition (proteins, fats, carbohydrates, and fiber) of macro- and microalgae, and on
assessing of their energy capacity (feed value) for fish. By the middle of the XX century, a
large amount of factual material was accumulated describing the features of the chemical
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composition of various marine organisms, including various taxonomic groups of algae and
macrophytes [13]. Fundamental studies of the biochemical composition and biogeochemical
role of algae have been widely applied, both in various scientific fields and in practice
(Figure 1).
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In the 1940–1950s, studies of algae stoichiometry—primarily nutrients (carbon, nitro-
gen, and phosphorus), as well as trace elements—formed the basis of production hydro-
biology [14,15]. These data then served for the development of modern ideas about the
factors limiting the primary production in freshwater and marine ecosystems at various
geological time scales. Subsequently, algae stoichiometry was widely applied in numerous
mathematical models aiming to assess the global and regional cycles of chemical elements
in the biosphere [16].

In the 1970–1980s, the development of general theoretical concepts of the geochemistry
of sedimentary processes in the ocean became a new stage in the study of the biogeochem-
istry of algae (mainly plankton microalgae) [17–19]. According to these data, algae play
a key role in the assimilation, transformation, and sedimentation of chemical elements
in the course of their life activity. They change the forms of the occurrence of elements
in the environment and increase the time of their residence in the photic layer of aquatic
ecosystems [4].

Since the end of the 1980s, studying the role of algae in the regulation of nutrients has
found wide application in climate studies. At present, algal climate regulation is called the
CLAW hypothesis, which is of great importance for both understanding the cycle of certain
nutrients in the biosphere and for assessing the effect of algae on the Earth’s radiation
balance and climate in different geological epochs [20].

Currently, the development of so-called “green” and “blue” technologies is one of the
key areas of technological development in the world, which enables ensuring the necessary
level of economic growth without introducing additional environmental risks [21,22]. The
ability of algae to assimilate inorganic forms of chemical elements and convert them into
organometallic forms, forming a wide range of biologically active substances, is intensively
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utilized by human beings. Since ancient times, various groups of algae have served as
a source of food, feed, medicines, fertilizers, biosorbents, etc. Modern biotechnology
makes it possible to use algae as a source of biologically active forms of trace elements
and as producers of inexpensive carotenoids, pigments, proteins, vitamins, and fatty
acids for the production of nutraceuticals, pharmaceuticals, food additives, cosmetics, etc.
(Table 1) [2,23].

Table 1. Main applications of algae in biotechnology.

Application High Value Products and Processes
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Food and Nutraceuticals for Humans
and Animals

• Proteins
• Lipids and Polyunsaturated Fatty Acids
• Carbohydrates
• Vitamins
• Essential Nutrients
• Bio-minerals/Bioavailable trace elements

Feed

• Aquaculture
• Marine farming
• Products for aquarium
• Pets and Farm animals

Hydro(Bio)colloids
• Alginates
• Agars and Agarose
• Carrageenans

Pigments
• Chlorophyll
• Carotenoids (Tetraterpenoids)
• Phycobiliproteins

Bioactive Compounds

• Anticancer Compounds
• Antifungal and Antibiotic Compounds
• Antiviral Compounds
• Toxins

Fuels

• Bio-oil
• Biodiesel
• Biogas
• Bio-hydrogen
• Fuel Alcohols

Environmental Applications

• CO2 sequestration
• Wastewater Treatment and Bioremediation
• Ecological monitoring
• Fertilizers and Soil Conditioners

Other Applications

• Cosmetics
• Biosorbents
• Stable Isotopically Labeled Compounds
• Biomanufacturing and Specialty Chemicals
• Feedstock for Industrial Bioprocesses
• And much more

Algae are also being considered as a potential third-generation biofuel source due to
their numerous advantages over other crops. The idea of using algae for energy production
is quite old. Currently, the cost of producing biofuels from algae is high due to limited
cultivation systems. However, over time, new technologies will be developed that allow
algae cultivation on a large scale in various climatic zones throughout the year [24].

Algae are able to efficiently assimilate CO2; thus, they are considered promising
catchers of the carbon footprint emitted from various anthropogenic sources. One kilogram
of dry algae biomass is capable of retaining ~1.8 kg of CO2 [25,26]. Such algae may be
grown in wastewater containing high concentrations of nitrogen and phosphorus. The
absorption of dissolved biogenic elements necessary for the growth and development of
algae ensures high purification of water masses, preventing N and P from entering natural
waters, and their subsequent eutrophication [27].

Being able to concentrate various chemical elements from the environment, algae
may serve as biological sorbents, promoting the development of biotechnologies for the
removal of inorganic contaminants from industrial waters [2,22,23]. Due to their small size
and high surface area to volume ratio, they have a large contact area interacting with the
metal ions present in solution. Due to the efficiency of heavy metal absorption by algae,
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the environmental safety of raw materials, relative simplicity and mode of cultivation,
using live and/or inactivated algae is currently considered a promising biotechnological
approach in water treatment aimed at preventing environmental pollution [22,23].

In recent decades, there has been great concern about the change in regional and global
cycles of the major and trace elements, caused primarily by climate change and anthro-
pogenic impact [23,28]. Negative consequences of such changes include eutrophication,
hydrogen sulfide contamination, heavy metal pollution, microbial decomposition of frozen
carbon pool, etc., which are potential feedback processes affected by global climate dynam-
ics accelerating global warming. In this regard, it is of great interest to study the role of algae
in biogeochemical processes—in particular, their response to the changing environmental
conditions and the development of environmental monitoring programs [29,30].

Thus, modern studies of the bio(in)organic chemistry of primary producers of aquatic
ecosystems serve as a theoretical basis for the development of green biotechnologies in
such practical fields as controlled photobiosynthesis, production hydrobiology, the environ-
mental monitoring of aquatic ecosystems, the production of biologically active substances,
biofuels, the bioremediation of water bodies, waste and industrial water treatment, the
sequestration of CO2 and key nutrients (N and P), as well as the search for alternative,
biological methods for the concentration of rare and noble metals and metalloids.

This Special Issue will uniquely focus on the bio(geo)chemical interactions between
algae and the environment. We welcome original research papers presenting experimental
work, field studies, new methods and equipment, theoretical approaches, and mathe-
matical modeling, in addition to review papers. We especially encourage contributions
that use multidisciplinary approaches to explore biogeochemical processes in the natural
environment and applied biotechnology.
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