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Abstract: To understand the physiological reactions of juvenile yellowfin tuna (Thunnus albacares)
under acute high-temperature stress, this study measured the changes in biochemical indexes of
serum, liver, gill, and muscle of yellowfin tuna under acute high-temperature stress (HT, 34 ◦C)
and a control group (28 ◦C) for 0 h and 6 h, 24 h and 48 h. The rising speed of water temperature
in the HT group was 2 ◦C/h and the timing started when the temperature reached 34 ◦C. In the
HT group, there was no significant difference between the four adjacent times in cortisol and lactic
acid concentration. Serum triglyceride, cholesterol, and alkaline phosphatase concentration were
significantly different from the four adjacent times. The superoxide dismutase (SOD) activity in the
liver and gills increased at 6 h and 24 h, and the gills and liver had antioxidant reactions in a short
time. The malondialdehyde (MDA) concentration in the gills changed significantly at 6 h, while that
in the liver did not change significantly. The gills were more sensitive to temperature stress than the
liver and muscle. Acute high-temperature stress affected yellowfin tuna’s antioxidant enzymes and
metabolic indexes, resulting negative trend in physiological indexes, indicating that yellowfin tuna
juveniles are susceptible to elevated temperature.

Keywords: biochemical indexes; metabolism; serum ionic concentration; immune; oxidative stress
parameters

1. Introduction

Fish often live in various water environments. It is a significant physiological process
for fish to adjust to environmental pressure. Temperature change is one of the most
common environmental changes, which is considered the main abiotic factor affecting
aquatic animals [1]. At present, there are many related studies on the impact of temperature
on fish, including killifish (Oryzias latipes) [2], sardine (Sardine pilchardus) [3], grass carp
(Ctenophryngodon Idella) [4], black head minnow (Fathead minnow) [5]. The change in water
temperature can lead to changes in the immune system, metabolism, oxidative stress, and
other physiological changes to adjust to the environment [6–9]. Temperature fluctuations
cause physiological changes in fish that generally begin by causing stress and then metabolic
rates change [1]. Metabolic changes cause the production of reactive oxygen species [10].
Excessive reactive oxygen species will damage DNA, protein, and lipids [11], resulting in
oxidative damage. At the same time, temperature also affects fish feeding and digestive
processes, thus affecting their metabolism [12]. Unsuitable water environment temperature
also leads to slow growth and poor appetite of fish. Therefore, studying the impact of
temperature on the physical responses in fish is crucial.
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The temperature change can cause stress, composed of components characterized by
sympathetic nerve activation and the secretion of adrenaline and cortisol [13]. The second
stage is the increase in plasma glucose and the disorder of osmotic pressure regulation [13].
Cortisol (COR) is a steroid hormone [14], which has many biological activities, including
maintaining osmotic pressure, regulating blood glucose, and inhibiting immunity [15].
Fish can also adapt to temperature changes by changing the superoxide dismutase (SOD)
activity and then influencing the content of malondialdehyde (MDA) [16]. SOD is an
important antioxidant enzyme that catalyzes the disproportionation of free superoxide
anion radicals to hydrogen peroxide, which is then converted into water and oxygen by
catalase or glutathione peroxidase [17]. Elevated MDA levels are an indicator of lipid
peroxidation, which results from oxidative stress damage caused by exposure of fish to
environmental changes or pollutants [18]. SOD can alleviate the oxidative damage caused
by MDA produced by lipid peroxidation. Heat stress can also lead to significant changes
in the metabolism-related indicators of fish, such as triglyceride, cholesterol [19] and
plasma components calcium and magnesium, alanine aminotransferase (ALT), and alkaline
phosphatase (ALP) [20].

Tuna is a highly demanded marine fish. Its back muscle contains 26.2% crude protein
and 0.2% fat. It has rich nutrition [21]. Additionally, it is one of the most important economic
fish in the world [22,23]. Tuna products are exported to more than 60 countries worldwide,
of which three major markets are Japan, the European Union, and the United States [24]. In
the 50 years from 1950 to 2000, the total catch of commercial tuna stocks increased from
4000 tons to 3.9 million tons [25]. Yellowfin tuna is an important species caught by fisheries
in the Pacific region [26] and the global average annual capture production has increased
year by year since the 1960s, but with significant volatility after 2004 [27]. The reason was
mainly due to the exhaustion of wild resources. Resource survey results show that since
the 1970s, wild yellowfin tuna spawning has been in a long-term decline, and the fishing
mortality of adults and juveniles has continued to increase [28]. Wild resources of yellowfin
tuna in the Central and Western Pacific Oceans have been fully exploited [29], and resources
are declining. Therefore, it is urgent to conduct research related to the artificial culture of
yellowfin tuna.

Yellowfin tuna (Thunnus albacares) belongs to the mackerel family and the tuna genus [30].
It is a highly migratory fish species in the ocean. It can swim at high speed and in deep water.
It can quickly dive to the cold-water area below the thermocline (20 ◦C isotherms) to feed,
and the maximum depth exceeds 1000 m [31]. Tuna can automatically adjust the active water
depth when encountering temperature changes in the sea [32], but in the cage or land-based
culture, the active space is limited, and high temperatures cannot be avoided. The appropriate
temperature for yellowfin tuna larval is 28.0 ± 1.0 ◦C [33], and after our observation, we
found that the summer temperature of the land-based culture pond in the tropics can be as
high as 34 ◦C. In fish farming, the aquaculture water temperature is easy to maintain at a
high level in summer, and summer is the season of increased fish diseases [34]. Therefore,
it is essential to explore the expression and change of fish’s physiological and biochemical
indicators, immune function, and oxidative stress parameters under acute high-temperature
conditions and analyze fish’s response to high temperature. In this experiment, the water
temperature is raised to 34 ◦C. By measuring the relevant indicators of serum, gills, liver, and
muscle of young yellowfin tuna at 0 h and 6 h, 24 h and 48 h after the change of environmental
conditions, the effects of acute temperature rise on osmotic physiology and oxidative stress
parameters of young yellowfin tuna are discussed, it provides a theoretical basis for in-depth
study of the stress response of the organism caused by environmental changes, provides a
reference for yellowfin tuna aquaculture.
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2. Materials and Methods
2.1. Experiment Design and Sample Collection

Juvenile yellowfin tuna used in the experiment were cultured in offshore sea cages
near Xincun Harbour, Xincun Town, Lingshui County, Hainan Province. It was temporarily
raised for seven days in the Tropical Aquaculture Research and Development Center, South
China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences. A total of
60 fish were randomly collected before the experiment and transferred into two indoor
cement tanks (5 m in diameter and 2.5 m deep) with a recirculating water system. The water
temperature was controlled at 28.0 ± 0.5 ◦C, dissolved oxygen > 5.27 mg/L, ammonia
nitrogen < 0.1 mg/L, pH 7.57 ± 0.12, salinity 32‰. Fish were fed daily from 08:30 to 09:00.
Fresh miscellaneous fish (4 cm × 2 cm pieces; Trachurus japonicus, Mene maculata) were fed
with 5–8% body weight daily by satiety.

Upon the experiment conducted, the mean body length and wet weight were
28.03 ± 1.78 cm and 503.23 ± 36.78 g, respectively. At the beginning of the experiment,
60 fish were randomly collected and divided into two groups. The temperature of the
control group and the high-temperature group were set at 28 ◦C (control group) and 34 ◦C
(HT group) in 3000 L tanks with three replicates each. The rising speed of water temper-
ature is 2 ◦C/h, and the timing starts when the temperature reaches 34 ◦C. The water
temperature of the HT group was raised and maintained by heating rods (Sensen Group
Co., Ltd., Zhoushan, China)

The sampling time was at 0 h, 6 h, 24 h, and 48 h after stress. When the stress time was
up, the samples were taken immediately. Three fish from each rearing tank were randomly
collected and anesthetized with 0.03% MS-222, and body length and weight were measured.
Liver, gill, red muscle, white muscle, and blood were taken. Blood was taken from the
caudal vein, the white muscle from 2 cm below the dorsal fin, and the red muscle from near
the spine perpendicular to the dorsal fin. Each tissue was stored in 2 mL RNA-free tubes at
−80 ◦C until enzyme activity measurement. Store the extracted blood in a 2 mL centrifuge
tube and use a desktop high-speed freezing centrifuge (EXPERT 18K-R) for centrifugation
(temperature 4 ◦C, rotating speed 3000 R·min−1, lasting for 10 min) after standing for 1 h,
and store it at −80 ◦C until analysis.

2.2. Enzyme Activity Measurement

All the tissue samples were partially thawed and homogenized mechanically using a
tissue homogenizer on ice. The suspensions were centrifuged according to the requirements
of the kits and the protein content in the supernatant was determined by the BCA Protein
Assay kit (A045-4-2). The activities of SOD (A001-3-2) and MDA (A003-1-2) contents in the
gill, liver, red muscle, and white muscle were measured. The concentration of COR (H094),
triglyceride, cholesterol, ALP, osmotic blood glucose, lactic acid, K+, Na+, Cl−, C3, and
C4 in the serum were measured, and the concentration of ALP in the liver was measured.
All of the above assays were determined using commercial kits (Nanjing Jiancheng Bio-
engineering Institute, Nanjing, China) in triplicates. Ion concentration, osmotic pressure,
glucose, and lactic acid in serum were measured by a blood gas analyzer (PL2000 Plus,
Nanjing Perlang Medical Equipment Co., Ltd., Nanjing, China), triglyceride, cholesterol,
ALP, C3, C4, LDH, and liver antioxidant index ALP, LDH was measured by the biochemical
analyzer (PVZS-300X, Beijing Prolong New Technology Co., Ltd., Beijing, China). The
above measurements using the blood gas analyzer and biochemical analyzer were carried
out in accordance with the instructions in triplicates.

2.3. Calculations and Statistical Analysis

Excel 2021 software was used for data sorting, Origin 2021 was used for drawing,
and SPSS 26.0 software was used for significant difference analysis. Comparisons between
different groups at the same time were conducted by independent t-test, comparisons
between different times in the HT group were conducted by independent one-way ANOVA
and least significant difference (LSD) test, and significant difference was set at p < 0.05.
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3. Results
3.1. Changes in Serum Indexes of Juvenile Yellowfin Tuna under an Acute Temperature Rise
3.1.1. Changes in Ion Concentration, Osmotic Pressure, Blood Glucose, and Lactic Acid in
the Serum of Juvenile Yellowfin Tuna under an Acute Temperature Rise

The osmotic pressure of the HT group (Figure 1a) showed a trend of increasing first
and then decreasing with time, reaching the highest value at 24 h. There was a significant
difference between 6 h, 24 h, and 48 h. At 6 h and 48 h, the osmotic pressure of the HT
group was lower than the concentration in the control group and higher than the control
group at 0 h and 24 h (Figure 1b). At 0 h, the osmotic pressure between the HT group and
28 ◦C had no significant difference, but there was a significant difference at 6 h, 24 h, and
48 h. The blood glucose in the HT group did not change with time (Figure 1c), there was a
gradual increase, but it was not significant. At 24 h, the blood glucose in the HT group was
higher than the concentration in the control group and lower than the concentration in the
control group at other time points (Figure 1d). At 0 h and 24 h, there was no significant
difference in blood glucose levels between the HT group and control group, but there was
a significant difference at other time points. There was no significant difference between
the lactic acid groups in the HT group (Figure 1e), but it fluctuated up and down, but not
significantly (Figure 1f).

The K+ concentration in the HT group (Figure 1g) showed a trend of first decreasing
and then increasing with the prolongation of time. There was no significant difference
between 0 h and 6 h, 24 h, and 48 h. At 48 h, K+ in the HT group was lower than in the
control group and higher than in the control group at other time points (Figure 1h). The
concentration of Na+ and Cl− increased first and then decreased with the extension of
stress time, with the same trend, and reached the peak at 24 h. Na+ concentration in the
HT group (Figure 1i) had significant differences at 6 h, 24 h, and 48 h. At 24 h, the Na+

concentration in the HT group was higher than that in the control group and lower than
that in the control group at other times (Figure 1j). The concentration of Cl− in the HT
group (Figure 1k) was significantly different between adjacent groups. At 24 h, the Cl−

concentration in the HT group was higher than that in the control group and lower than
that in the control group at other times (Figure 1l). The concentration order of three ions in
each group was Na+ > Cl− > K+.
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Figure 1. Changes in osmotic pressure (a), osmotic pressure value (b), blood glucose (c), blood glucose
value (d), lactic acid (e), lactic acid value (f), K+ concentration (g), K+ value (h), Na+ concentration
(i), Na+ value (j), Cl− concentration (k) and Cl− value (l) in the serum of young yellowfin tuna
under acute high–temperature stress. The value is the gap of the experimental group minus the
control group. Red means down and green means up. The significantly different between the control
group and the HT group was represented by a N. Different and the same letters indicate a significant
difference (p < 0.05) and insignificant difference (p > 0.05).

3.1.2. Changes in Serum Cortisol in Juvenile Yellowfin Tuna under an Acute
Temperature Rise

After the acute temperature increase, the cortisol in the HT group first decreased and
then increased with the prolongation of stress (Figure 2a), and there was no significant
difference between adjacent groups. Among them, the difference between the HT group
and the control group (Figure 2b), during 48 h, the HT group was higher than the control
group. There was no significant difference in serum cortisol concentration between the
control group and the HT group at 0 h, 6 h, and 24 h, but there was a significant difference
between the control group and the HT group at 48 h.
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Figure 2. Changes of serum cortisol (a) and cortisol value (b) in young yellowfin tuna under acute
high-temperature stress. The value is the gap of the experimental group minus the control group.
Red means down and green means up. The significantly different between the control group and
the HT group was represented by a N. Different and the same letters indicate a significant difference
(p < 0.05) and insignificant difference (p > 0.05).

3.1.3. Changes of Metabolic Indexes in Serum of Juvenile Yellowfin Tuna under an Acute
Temperature Rise

The serum triglyceride and cholesterol concentration in the HT group (Figure 3a,c)
showed a trend of first decreasing and then increasing with time, there were significant
differences between the groups. The concentration of serum triglycerides in the HT group
was lower than the corresponding concentration in the control group at four times point
(Figure 3b). There was no significant difference between the HT group and the control
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group at 0 h, but there were significant differences at the other points. The cholesterol
concentration in the HT group was lower than the control group at 6 h and higher than
at the other points (Figure 3d). There was no significant difference in serum cholesterol
concentration between the HT group and 28 ◦C at 0 h, but there was a significant difference
between 6 h, 24 h, and 48 h. The activity of alkaline phosphatase in the serum of the HT
group (Figure 3e) showed a trend of first decreasing and then increasing. The lowest value
was reached at 6 h, and it reached to gradually stable after 6 h. The activity of alkaline
phosphatase of the HT group was higher than the control group all the time. There was no
significant difference in serum alkaline phosphatase concentration between the HT group
and the control group at 0 h, but there was a significant difference at the other times point.
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Figure 3. Changes in triglyceride (a), triglyceride value (b), cholesterol (c), cholesterol (d), alkaline
phosphatase (e), and alkaline phosphatase value (f) in serum of young yellowfin tuna under acute
high–temperature stress. The value is the gap of the experimental group minus the control group. Red
means down and green means up. The significantly different between the control group and the HT
group was represented by a N. Different and the same letters indicate a significant difference (p < 0.05)
and insignificant difference (p > 0.05).
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3.1.4. Changes of Immune Indexes in Serum of Juvenile Yellowfin Tuna under an Acute
Temperature Rise

After acute temperature increase, the concentration of C3 (Figure 4a) in serum in
the HT group showed a downward trend, and it remained stable with time, there was
no significant difference between 6 h, 24 h, and 48 h. At 0 h, there was no significant
difference between the HT group and 28 ◦C, and there was a significant difference at
other time points. The C3 concentration in the serum of the HT group was higher than
the corresponding concentration in the control group at 0 h and 6 h, and lower than the
corresponding concentration in the control group at 24 h and 48 h. The concentration of
complement C4 (Figure 4c) in the serum of the HT group showed a trend of first decreasing
and then increasing with the prolongation of time, and there was a significant difference
between each time point. At 0 h, there was no significant difference between the HT group
and 28 ◦C, and there was a significant difference between 6 h, 24 h, and 48 h.
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Figure 4. Changes in complement C3 concentration (a), C3 value (b), complement C4 concentration
(c) and C3 value (d) in serum of young yellowfin tuna under acute high–temperature stress. The
value is the gap of the experimental group minus the control group. Red means down and green
means up. The significantly different between the control group and the HT group was represented
by a N. Different and the same letters indicate a significant difference (p < 0.05) and insignificant
difference (p > 0.05).

3.2. Changes in Oxidative Stress Parameters in Organs of Juvenile Yellowfin Tuna under an Acute
Temperature Rise

The superoxide dismutase (SOD) in the gills of the HT group (Figure 5a) showed an
increasing and gradually stable trend, and there was no significant difference at 6 h, 24 h,
and 48 h. The activity of SOD in the gills in the HT group gills was higher than in the
control group at all times (Figure 5b). There was no significant difference between the HT
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group and the 28 ◦C at all times. The activity of SOD in the liver (Figure 5c) in the HT group
first increased and then decreased with time, and the activity reached the highest value at
24 h, and there was no significant difference between 6 h and 24 h. At 6 h and 24 h, the liver
SOD activity of the HT group and control group was significantly different (Figure 5d).

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 17 
 

 

  

 
 

  

 
 

Figure 5. Changes in gill superoxide dismutase (SOD) (a), gill SOD value (b), liver SOD (c), liver 

SOD value (d), red muscle SOD (e), red muscle SOD value (f), white muscle SOD (g) and white 

muscle SOD value (h) in organs of young yellowfin tuna under acute high–temperature stress. The 

value is the gap of the experimental group minus the control group. Red means down and green 

b

a
a

a

0h 6h 24h 48h
0

2,000

4,000

6,000

8,000

S
u

p
er

o
x

id
e 

d
is

m
u

ta
se

 c
o

n
ce

n
tr

at
io

n
/(

U
·m

g
p

ro
t-1

)

Gill

 HT(a)

0h 6h 24h 48h
0

5,000

6,000

7,000

G
il

l 
v

al
u

e

Stress time

Increase

Decrease
(b)

b

a

a

b

0h 6h 24h 48h
0

1,000

2,000

3,000

4,000

5,000

S
u

p
er

o
x

id
e 

d
is

m
u

ta
se

 c
o

n
ce

n
tr

at
io

n
/(

U
·m

g
p

ro
t-1

)

Liver

 HT(c)

b

c

b

a

0h 6h 24h 48h
0

4,500

9,000

13,500

18,000

S
u

p
er

o
x

id
e 

d
is

m
u

ta
se

 c
o

n
ce

n
tr

at
io

n
/(

U
·m

g
p

ro
t-1

)

Red muscle

 HT(e)

b

c c

a

0h 6h 24h 48h
0

3,500

7,000

10,500

14,000

S
u

p
er

o
x

id
e 

d
is

m
u

ta
se

 c
o
n

ce
n

tr
at

io
n

/(
U

·m
g

p
ro

t-1
)

White muscle

 HT(g)

Figure 5. Changes in gill superoxide dismutase (SOD) (a), gill SOD value (b), liver SOD (c), liver SOD
value (d), red muscle SOD (e), red muscle SOD value (f), white muscle SOD (g) and white muscle SOD
value (h) in organs of young yellowfin tuna under acute high–temperature stress. The value is the gap of
the experimental group minus the control group. Red means down and green means up. The significantly
different between the control group and the HT group was represented by a N. Different and the same
letters indicate a significant difference (p < 0.05) and insignificant difference (p > 0.05).
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The activity of SOD in the red and white muscle of the HT group (Figure 5e,g) showed
a decreasing and then increasing trend, with a significant difference between adjacent
groups in the red muscle. The activity in the red muscle of the HT group was higher than
the corresponding time concentration in the control group at 0 h, 6 h, and 48 h, and lower
than the control group at 24 h (Figure 5f). There was no significant difference in the activity
of SOD in red muscle between the HT group and control group at 0 h and 6 h, but there
was a significant difference between 24 h and 48 h. The activity in the white muscle was
no significant difference at 6 h and 24 h. The activity in the white muscle of the HT group
was higher than the control group at 0 h and 24 h, and lower than the control group at 6 h
and 48 h. There was no significant difference in SOD activity between the HT group and
control group at the corresponding time at 0 h, but there had a significant difference at the
other times.

After acute heating, the concentration of malondialdehyde in the gills of the HT group
(Figure 6a) increased first and then decreased with time, and there was no significant
difference between 6 h and 24 h. The concentration of malondialdehyde in the gills of the
HT group was higher than that in the control group at 0 h, 6 h, and 24 h, and lower than 48 h
(Figure 6b). There was no significant difference in the concentration of malondialdehyde in
the gills of the HT group and control group all the time.

The MDA concentration of the liver in the HT group (Figure 6c) showed an upward
trend with the prolongation of the temperature stress time. There was no significant
difference between the concentrations at 0 h and 6 h, 24 h, and 48 h. The MDA concentration
in the liver of the HT group was higher than that in the control group at 0 h, 24 h, and 48 h,
and lower than that in the control group at 6 h (Figure 6d). At 0 h and 24 h, there was no
significant difference in the concentration of malondialdehyde in the liver between the HT
group and control group, but there was a significant difference at 24 h and 48 h. There was
no significant difference in the concentration of MDA between 0 h and 6 h (Figure 6e) in
the red muscle of the HT group, there was a significant difference between 24 h and 48 h.
Concentrations in the HT group were higher than those in the control group at 0 h, 6 h, and
48 h, and lower than those in the control group at 24 h (Figure 6f). The MDA in the red
muscle of the HT group was not significantly different from that in the control group at all
times. The concentration of MDA in the white muscle of the HT group (Figure 6g) showed
a trend of first decreasing and then increasing with the prolongation of stress time, and
there was a significant difference between 0 h and 6 h, and 24 h and 48 h had no significant
difference. At 6 h, 24 h, and 48 h, the concentration of MDA in the white muscle of the HT
group was lower than that in the control group (Figure 6h). At 6 h, the concentration of
malondialdehyde in the white muscle of the HT group had significant difference from that
in the control group, but there had no significant difference at the other times.

3.3. Changes in Immune Indexes in the Liver of Juvenile Yellowfin Tuna under an Acute
Temperature Rise

The alkaline phosphatase activity in the liver in the HT group (Figure 7a) decreased
at first and then increased with prolonged stress time. The concentration at 24 h was
significantly lower than the other three time points, and there was no significant difference
between 6 h and 48 h. After temperature stress, the hepatic alkaline phosphatase activity of
yellowfin tuna in the HT group was higher than the corresponding concentration in the
control group (Figure 7b) at 0 h and lower than the control group at the other points. At
0 h and 48 h, there was no significant difference in the concentration of hepatic alkaline
phosphatase between the HT group and control group, but there was a significant difference
at 6 h and 24 h.
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Figure 6. Changes in gill malondialdehyde (MDA) (a), gill MDA value (b), liver MDA (c), liver MDA
value (d), red muscle MDA (e), red muscle MDA value (f), white muscle MDA (g) and white muscle MDA
value (h) in organs of young yellowfin tuna under acute high–temperature stress. The value is the gap of
the experimental group minus the control group. Red means down and green means up. The significantly
different between the control group and the HT group was represented by a N. Different and the same
letters indicate a significant difference (p < 0.05) and insignificant difference (p > 0.05).
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Figure 7. Changes in alkaline phosphatase (a) and alkaline phosphatase value (b) in the liver of
young yellowfin tuna under acute high–temperature stress. The value is the gap of the experimental
group minus the control group. Red means down and green means up. The significantly different
between the control group and the HT group was represented by a N. Different and the same letters
indicate a significant difference (p < 0.05) and insignificant difference (p > 0.05).

4. Discussion
4.1. Changes in Serum Indexes of Juvenile Yellowfin Tuna under an Acute Temperature Rise
4.1.1. Changes in Ion Concentration, Osmotic Pressure, Blood Glucose, Lactic Acid, and
Cortisol in Serum of Juvenile Yellowfin Tuna under an Acute Temperature Rise

The change trend of osmotic pressure in the HT group was first increased and then
decreased. This was because the fish maintained its own pressure by regulating its own
osmotic pressure to regulate the concentration of ions after stress. The research showed
that [35] the effect of environmental temperature stress on juvenile catfish plasma ion
concentration and osmotic pressure concentration, and found that Na+, Cl− and osmotic
pressure showed an upward trend, while K+ remained roughly unchanged. The results
of Na+, Cl−, and osmotic stress were similar to those of this study, but K+ was different.
It is found that the ionic permeability increases [36] when the temperature rises, so Na+,
Cl−, and osmotic pressure show an upward trend. The change in K+ concentration may be
due to the fact that after the increase in cell membrane permeability, K+ needs to enter the
cell to play a balancing role, leading to the decrease in the concentration. The Na+ and Cl−

concentration change at 48 h, which may be due to the balance of K+.
The research reported that blood glucose increased with the increase in temperature

in carp and Senegalese sole (Solea senegalensis Kaup) under high temperatures [37–39]. The
changing trend in this study is the same as that in previous studies, indicating that the
metabolism is more vigorous and more glycogen is needed. In this study, the lactic acid
content in the HT group is lower than the control group most of the time, and lactic acid in
the HT group shows a downward trend. This indicates that to adapt to the environment
under high-temperature stress, lactic acid was taken to the liver and decomposed into CO2
and H2O, reducing the lactic acid content. The research showed that the plasma cortisol
concentration of the fish adapted to high temperature was about twice that of the control
fish, which was consistent with the results of carp [40,41] and black snapper (Acantopagrus
schlegelii) [42] adapting to the high temperature previously reported. The result of this
study is that it decreases first and then increases, which is different from the results of other
studies. This may be because the yellowfin tuna is a kind of temperate fish, which has a
tolerance to temperature for a short period of time. The HT group rises at 48 h, which may
be due to the stress response gradually enhanced with the extension of time.

4.1.2. Changes of Metabolic Indexes in Serum of Juvenile Yellowfin Tuna under an Acute
Temperature Rise

The research showed that [43] the growth performance and metabolism of Roche
Labeo (Labeo rohita) rohita under heat stress and found that the triglycerides and cholesterol
concentrations in serum decreased gradually. The research showed [19] the physiological
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and biochemical reactions of fat short cap carp (Piaractus brachypomus) under temperature
stress. The results showed that the contents of triglycerides and cholesterol in plasma
decreased after heat shock. The results of this study showed that the triglyceride concentra-
tion of the control group and the experimental group decreased gradually after 6 h, which
was consistent with the previous study. However, the concentration increased after 24 h,
which may be due to the prolonged stress time, the body’s adaptation to environmental
changes, and the gradual recovery of triglyceride metabolism, leading to the increase in
triglyceride concentration. Alkaline phosphatase (ALP) is an essential non-specific im-
mune marker enzyme and metabolic regulator enzyme. This enzyme has detoxification,
defense, and digestion functions and is also an essential metabolic regulating enzyme
involved in phosphate group transport and metabolism and is a sign of fish health [44].
Environmental changes affect its content, reflecting the stress state of fish [45]. The research
showed that [46] rainbow trout’s physiological and biochemical reactions to heat stress.
The results showed that the alkaline phosphatase decreased significantly after the temper-
ature increased. This study showed that the serum alkaline phosphatase concentration
in the HT group decreased first and then increased, similar to the previous study. This is
because alkaline phosphatase promotes fat degradation and reduces concentration under
high-temperature stress. Under long-term pressure, the body’s triglyceride, cholesterol,
and alkaline phosphatase concentrations increase. The results showed that acute heat stress
could promote the lipid metabolism of fish in a short time.

4.2. Changes in Oxidative Stress Parameters and Immune Indexes of Juvenile Yellowfin Tuna under
an Acute Temperature Rise

Superoxide dismutase can maintain the superoxide anion free radicals produced under
normal conditions and maintain balance [47]. The research showed that [48] the changes of
oxidative stress and related enzyme activities in goldfish tissues caused by temperature
rise, indicating that the activity of SOD in the liver has increased by about twice, showing a
similar trend in the muscle, which is consistent with the results of this study. The activity
of SOD in the liver decreases at 48 h, this may result in the decreased antioxidant capacity
in the liver of juvenile yellowfin tuna due to the prolonged stress time. The research
showed that [49] the antioxidant response of carp liver under temperature stress. The
results showed that under the same conditions, the activity of SOD in the liver decreased
with the increase in temperature, under the same salinity, SOD in gills gradually decreased
with the temperature increase. This study may differ from the results of our study because
the heat stressors previously studied by researchers hinder intestinal digestion and local
immunity, thereby inhibiting systemic immunity. In this study, heat stress improved the
antioxidant capacity of yellowfin tuna, but did not inhibit it. The results showed that the
time after the high temperature had little effect on the SOD in gills, and the SOD in gills
tended to be stable after gradually adapting. The change trend of SOD in the red and white
muscle of the experimental group was the same, but the red power was more sensitive
to temperature. In this study, the muscle content is the highest, which may be because
different experimental times have different effects on each organ or other species.

Malondialdehyde (MDA) is a substance with strong toxicity to organisms after the
decomposition of lipid peroxide. It can directly reflect the degree of lipid peroxidation
and cell damage, and indirectly reflect the ability of cells to remove free radicals [50]. The
research showed [51] the tissue oxidative stress response of Nile tilapia under temperature
shock. The results showed that the level of malondialdehyde in gills increased significantly.
In this study, the concentration of MDA in the gills of the experimental group gradually
increased and then decreased, which is similar to the previous study results. Dawood,
MAO [51] found that under the same salinity, MDA in gills gradually increased with the
increase in temperature, which is also similar to the results of this study. With the extension
of time, fish gradually adapt to the environment, SOD increases, and MDA decreases. The
MDA had no significant change at the 6th hour in the liver. It may be that the gills are
more sensitive to changes in environmental conditions than the liver, so the MDA content
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in the gills is significantly increased. In this study, the change of MDA in red muscle is
more obvious than that in white muscle, and the MDA content in white muscle gradually
decreases and tends to be stable because red muscle is more sensitive to temperature
changes than white muscle. According to the analysis of MDA concentration in various
organs, acute warming affects the content of the liver, and MDA in gills and red muscles is
more sensitive to temperature.

The research showed [52] the effect of different temperature stress on the immune
indexes of crucian carp. The results showed that the alkaline phosphatase activity first
increased and then decreased with the temperature increase, which was different from
the results of this study. This may be because acute warming causes yellowfin tuna to
consume a large amount of alkaline phosphatase for non-specific immunity. Additionally,
it increases over 48 h, this is because the fish adapt to the temperature change for 48 h,
and the non-specific immune function is enhanced. This shows that acute temperature
stress significantly changes the non-specific immunity of juvenile yellowfin tuna. The
research showed [53] the effect of temperature on the immunity of juvenile carp. The
results showed that the activities of C3 and C4 in the liver increased significantly with the
temperature increase. This study showed that C3 and C4 decreased first and then increased
after high-temperature stress, which was different from previous studies. This may be
because heat stress causes cannot be synthesized in a short time, and with the extension of
non-specific immune time, the addition of complement gradually increases. These results
indicate that the ability of yellowfin tuna to synthesize complement is weak in a short time.

5. Conclusions

The result shows that the serum ion concentration and osmotic pressure, biochemi-
cal indicators of blood glucose, and lactate were changed after acute temperature stress.
Acute temperature stress can cause excessive free radicals in the body and reduce immune
indicators (e.g., ALP in the liver and the complement C3 and C4 in serum). Under acute
temperature rise stress, antioxidant enzymes and metabolic indicators of the juvenile yel-
lowfin tuna changed significantly. The triglycerides, cholesterol, and alkaline phosphatase
in serum have changed significantly and gradually adapted to the environment with time.
The gills and liver also improve the activities of SOD to eliminate free radicals, but still
could not stop the increase in MDA, which may cause peroxidation damage to the body. In
this study, the juvenile yellowfin tuna is sensitive to temperature rise, and the tendency of
physiological activity disorder was aggravated over time within 48 h. Therefore, in actual
production and large-scale intensive aquaculture, it is necessary to avoid sharp temperature
changes as much as possible, reduce the frequency and duration of acute temperature stress,
and make it a suitable breeding and growing environment.
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