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Abstract: An active area of study under the dual carbon target, which is based on automatic identifi-
cation systems (AIS), is the emission inventory of pollutants from ships. Data compression is required
because there is currently so much data that it has become difficult to transmit, process, and store it.
A trajectory simplification method considering the ship sailing state and acceleration rate of change
is developed in this paper to assure the validity of the compressed data used in the emission inven-
tory analysis. By carefully examining the integral relationship between acceleration and pollution
emissions, the algorithm constructs an acceleration rate of change function for data compression and
categorizes AIS data by ship navigation status. By dynamically altering the amount of acceleration
change, the developed function can stabilize the pollutant emission calculation error and adaptively
calculate the threshold value. The experimental results show that the emission calculation error of
the proposed algorithm is only 0.185% when the compression rate is 90.28%.

Keywords: automatic identification systems; data compression; emission inventories; adaptive thresholds

1. Introduction

Under the two key objectives of “carbon peaking” and “carbon neutrality”, the emis-
sion inventory of pollutants from ships is currently a hot research area. The process of
compiling the inventory is based on the automatic identification system (AIS). A new
navigation aid called AIS is being used to improve marine safety and communication
between ships and shore, as well as between ships themselves. It can automatically com-
municate crucial data, including the ship’s position, speed, heading, and name. When
carbon dioxide emissions reach their peak and then start to decline gradually, this is re-
ferred to as “carbon peaking”. “Carbon neutrality” refers to the positive and negative
offsetting of carbon dioxide or greenhouse gas emissions through energy conservation and
emission reduction strategies. The production of emission inventories has been achieved
at numerous ports [1–4]. A great deal of AIS data is produced due to the skyrocketing
volume of maritime activity, which presents significant challenges for data transmission
and processing [3]. The data collected by researchers is probably already compressed to
aid in transmission. Additionally, the cost in terms of time and space needed to perform
computations for pollutant emission increases with data volume. To increase the effec-
tiveness of emission inventory investigations, large amounts of data must be compressed
before analysis. Compressed data can free up storage space and make it easier to store
and transmit trajectory information [5]. More importantly, the ship’s trajectory data may
be thoroughly analyzed with the help of simplification, allowing it to can retain pertinent
information and eliminate superfluous material.

The use of trajectory simplification and compression techniques has greatly improved
due to the rapid development of many disciplines and the widespread application of these
techniques in a variety of sectors. Early methods for simplifying trajectories generally took
into account information such as position, velocity, and time [6–10]. Douglas proposed
the Douglas–Peucker (DP) algorithm in 1973, which is one of the most classical trajectory
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compression algorithms [6]. Meratnia et al. proposed the velocity-based top-down algo-
rithm and top-down time ratio (TD-TR) algorithm [7]. Many researchers have improved
the DP algorithm by considering the characteristics of AIS data [11–16]. Li et al. proposed
that a suitable threshold interval can be selected from the experimental comparison results
of different DP thresholds, according to the quality of AIS trajectory visualization [11].
Han et al. proposed the conversion of trajectories into spatial paths and time series to
compress both spatial and temporal data [12]. Liangbin Zhao and Guoyou Shi proposed a
method based on an improved DP algorithm that considers the shape of the ship’s trajec-
tory derived from the heading information of the trajectory points [16]. Wonhee Lee and
Sung-Won Cho (2022) proposed a simplified algorithm for the AIS trajectory considering
terrain information [17]. The polygon map random (PMR) quadtree was used to consider
topographic information on the coast, and the intersection between topographic informa-
tion and simplified trajectories was efficiently computed using the PMR quadtree. These
algorithms consider other characteristics of the ship, but do not apply to emission inventory
studies because the production of emission inventories requires the consideration of the
ship’s engine information and the deep relationship between different characteristics of the
ship, and it is not enough to consider only these shallow characteristics [18]. The lack of
targeted studies makes it impossible to guarantee the reliability of the data. The processing
efficiency of massive data is equally important, so the selection of the threshold value is
also the focus of current research, and an adaptive threshold can optimize the compression
method to a great extent [19–25]. Zhaokun Wei et al. designed a new algorithm considering
trajectory space and motion features which can compress AIS trajectories based on ship
behavior features and apply statistical theory to help determine the threshold of motion
features in the sliding window algorithm [20]. Chunhua Tang et al. proposed an adaptive
threshold AIS trajectory data compression method based on the DP algorithm to improve
the computational efficiency of the algorithm by taking advantage of matrix operations and
reducing the number of points [21]. Ran Yan et al. proposed two trajectory compression
algorithms: a static mode with a preset compression threshold and a dynamic mode that
considers the distance between the trajectory point and the coastline in real-time [22]. To
address the difficulties involved in selecting appropriate thresholds, adaptive thresholds
are also included in this paper’s design goal.

Despite the high computing performance of these techniques, they are not appropriate
for the analysis of emission inventories. This is due to the bottom-up emission inventory
production method’s requirement that different parameter values be substituted based
on the type and condition of the ship’s sailing [26–29]. One of the crucial metrics, main
engine load, must be calculated using both real-time speed and rated speed. As a result,
in addition to position and speed information, it is important to consider the complex
relationship between the motion characteristics of the ship and the pollution emissions
when compressing such data. When employed for emission estimates, the compressed
data output from the current trajectory simplification method will result in significant error.
Therefore, a trajectory simplification technique that can be used for ship-related pollution
emissions is required. Based on the peculiarities of AIS data and emission inventories, an
adaptive threshold simplification algorithm suitable for emission inventories is proposed in
this study. This study offers three contributions. To retain the voyage state differentiation
points as the important features and speed up the compression process, the data are first
categorized and then simplified. Second, a function for the acceleration rate of change that
may be adaptively decided as a threshold was built. This function combined the main
engine load and the rated speed to thoroughly assess the overall relationship with pollutant
emissions. The suggested algorithm is then contrasted with other algorithms in terms of
running time, compression ratio, and pollutant emission calculation error.

2. Ship Trajectory Simplification Algorithm

In this research, a simplified algorithm is put forth that can guarantee a high com-
pression rate while maintaining the accuracy of emission calculation and critical feature
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information, including latitude and longitude, real-time speed, and the acceleration of
the ship. Figure 1 depicts the simplified algorithm flow, and Appendix A contains the
pseudocode. The simplified algorithm is split into two halves. The data are categorized
in the first part according to the sailing state, while retaining the characteristics of the
sailing state. The main engine load and speed determine the sailing state, and the ship’s
trajectory exhibits noticeably varied features depending on the sailing state. For instance,
the ship is virtually completely stationary when it is moored, whereas when it is cruising,
the ship is primarily moving across the water. The crucial trajectory information is thus
contained in the navigation state differentiation point. The data from the various navigation
states are handled independently in the second part, and the trajectories are simplified by
adaptive thresholding. The several navigation statuses are categorized and compressed
independently in this section. The compression technique can be significantly improved
with adaptive thresholding.
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Figure 1. Framework diagram of the simplified algorithm. First, the AIS data are classified according
to the navigation status, and only the first and last trajectory points of the trajectory are retained for
the part of the data where the main engine is not running (see data compression branch 2). Then, the
maximum value σmax of the acceleration rate of change function in all intermediate trajectory points
Pi is calculated for the part the data where the main engine running, and the result is compared with
the set threshold value to determine whether to retain or delete it (see data compression branch 1).

2.1. Classification of Data According to Navigation Status

Data must first be categorized according to the sailing status before being compressed.
To determine the ship’s sailing status, the IMO’s speed and host load factor recommen-
dations from the fourth GHG study are combined. The methodology is illustrated in
Table 1 [26]. It is possible to determine the distinguishing speed of the relevant sailing
condition by using the host load factor calculation formula. Additionally, because not all
differentiating points of the navigation status may be recorded by the automatic identi-
fication system, interpolation must be used to determine some of these time points. It is
important to interpolate between these two trajectory points to discern between distinct
sailing states when two neighboring trajectory points are in different sailing states.
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Table 1. Basis of the determination of vessel navigation status.

Navigational States Judgment Conditions

Mooring Speed < 1 knot
Anchoring 1 knot ≤ speed < 3 knot

Port mobility Speed ≥ 3 knot and main engine load < 20%
Low speed sailing Speed ≥ 3 knot and 20% ≤main engine load < 65%

Cruising Main engine load ≥ 65%

For trajectory points in different navigational states Pi and Pi+1, in Pi, the real-time
speed is Vi, and the time point is ti. In Pi+1, the real-time speed is Vi+1, and the time point
is ti+1. The distinguished speeds for different sailing states are V. When Pi to Pi+1 has a
stable rate of speed change during this time, the speed ratio can be calculated from r, and
the interpolation point is calculated from P of the time point t.

For trajectory points Pi and Pi+1 of indifferent navigational states, the velocity of Pi is
Vi, and the time point is ti. The voyage speed of Pi+1 is Vi+1, and the time point is ti+1. The
distinguished velocity for different navigational states is V. When the period from Pi to
Pi+1 has a stable rate of change of velocity, the time point t of the interpolated point P can
be calculated from the velocity ratio r.

r =
(V−Vi)

(Vi+1 −Vi)
(1)

t = r× (ti+1 − ti) + ti (2)

Table 1 divides the ship’s sailing state into five categories, where the ship is almost
stationary, and the main engine is not running in the moored state [26,27]. The trajectory
of the ship in the other four states will change significantly, and the main engine will
run; this part of the data is also the focus of trajectory simplification. Therefore, in this
paper, the sailing states are grouped into two parts according to whether the main engine
is running or not. When the main engine is not running, only the first trajectory point and
the last trajectory point of this part of the data need to be retained. When the main engine
is running, the trajectory data of this part is simplified by the adaptive threshold value
designed in this paper.

2.2. Adaptive Thresholds

The applicability of the threshold value to the data source in compression algorithms
determines whether the compressed data may be used for further analysis [23,24]. Most
modern data compression algorithms demand compression criteria that have been inten-
tionally defined. A great deal of testing is required to achieve the correct threshold value
because this is a blind, speculative operation. Effective compression can be increased by
adaptive thresholding. Three aspects make up the adaptive thresholding concept presented
in this study. The integral relational equation between pollutant emission and acceleration
is first developed after the key variables portion of the host emission equation is extracted
for in-depth analysis. Second, an acceleration rate of change function is built using the
integral relationship equation. This function not only reflects the accuracy of the integral
relationship’s emission computation, but also allows for dynamic adjustment of the acceler-
ation change at various speed intervals. Finally, the function is used to establish a threshold
value for trajectory simplification, which is an adjustable parameter and a user-preset for
the accuracy of emission calculation.

The trustworthiness of the compressed data in subsequent specific research cannot be
guaranteed by many trajectory simplification techniques. They can only promise that the
retained information has a high trajectory similarity. The adaptive threshold suggested in
this paper can ensure that the quality of the compressed data is no longer unknown. Users
can adjust the threshold value to achieve a balance between the compression rate and the
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data quality according to the required precision, without performing multiple experiments.
This lowers the cost of compression and ensures the dependability of the compressed data.

2.2.1. Integral Relationship Equation

Even though a ship’s track is continuous, AIS data is collected and stored discretely [30–32].
It is necessary to estimate the continuous variation of each ship’s characteristics to calculate
pollution emissions. If the mean value approach is used to estimate the velocity variation
between two trajectory points, the error will be higher the larger the observed velocity
difference between the two trajectory points. The cost will rise once more if the trajectory
is interpolated with high density during this period. If the velocity information for this
period is calculated using integration, it is not only more accurate than the mean technique,
but also more efficient than high-density trajectory interpolation.

When calculating emissions using discrete AIS data, it is critical to determine the
continuous variation of each parameter of a ship. If the deep relationship between pa-
rameter variation and emission calculation can be found, the ship trajectory data can be
simplified to the maximum extent while ensuring the accuracy of emission calculation.
The main engine emission estimation model in emission inventory production is shown
in Equation (1) [26]. In the equation, Ei stands for the emissions of the main engine for a
class i specific pollutant, P stands for rated engine power, LF stands for main engine load
factor, Act stands for operation time, EF stands for pollutant emission factor, FCF stands
for fuel correction factor, LLA stands for low load adjustment factor, and s stands for the
sailing state of the ship. Among these, the main engine load factor must be calculated
separately, and it is an important factor affecting the accuracy of the emission calculation.
The classical calculation formula of the main engine load factor is shown in Equation (2).
Va is the real-time speed, and Vm is the maximum design speed.

Ei =
5

∑
S=1

(
P× LFS ×ActS × EFS,i × FCF× LLA× 10−6

)
(3)

LF =

(
Va

Vm

)3
(4)

Let the velocity of the trajectory point P1 be V1, the velocity of P2 be V2, the time dif-
ference be Act, and the rate of change of velocity during this period be a. After determining
the ship’s main engine power and sailing state, extract the variable part of the main engine
emission calculation equation LF×Act The integral transformation is then carried out. The
formula for calculating the main engine emission is shown in Equation (1), and the integral
calculation relationship is shown in Equations (5) and (6).

a =
V2 −V1

Act
(5)

Act× LF =
Act×Va

3

Vm
3 =

∫ Act
0 (V1 + a× t)3dt

Vm
3 (6)

Equation (6) converts the formula based on real-time velocity and time difference
into an integral relationship based on acceleration. If the acceleration of a segment of
the trajectory is stable, the intermediate trajectory points can be discarded without losing
critical information and again, without affecting the emission calculation.

2.2.2. Threshold Function of Acceleration Rate of Change

It is cumbersome to design the threshold function to compress the data directly using
the emission calculation formula, and this study considers simplifying the process with
the help of Equations (5) and (6). For the starting point Ps, the endpoint Pe, and the
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intermediate trajectory points Pi, the emissions can be calculated for three different periods
Es,i, the Ei,e and Es,e, and the errors can be analyze.

C = Es,e − (Es,i + Ei,e) (7)

σ’
E =

C
Es,e
× 100% (8)

In the above equation, the σ’
E is the error in Es,e as the standard error.

It is more complicated to calculate the error if the emission calculation formula is
used directly, due to the need to substitute all the parameters in Equation (3). When the
acceleration of the three time periods is determined, the C is equal to a constant value that
is not affected by the magnitude of the real-time velocity. When the acceleration change
is constant, Es,e and σ’

E in Equation (8) have the opposite trend, while Es,e and real-time
velocity show the same trend. Therefore, the main influence on the emission error is the
variation of the real-time velocity over a certain period, which can be expressed in terms
of acceleration. Since using a constant acceleration change to set the threshold leads to
different simplification effects for the data of high velocity and the data of low velocity,
the adaptive adjustment of the acceleration change at different velocity intervals is also
required when setting the threshold function. In this study, Riemann integral relations for
three accelerations can be established with the help of Equations (5) and (6).∫ Acts,i

0
(Vs + as,i × t)dt +

∫ Acti,e

0
(Vi + ai,e × t)dt =

∫ Acts,e

0
(Vs + as,e × t)dt (9)

Vs + Vi

2
×Acts,i +

Vi + Ve

2
×Acti,e =

Vs + Ve

2
×Acts,e (10)

Equation (9) is the Riemann integral relation, and Equation (10) is the integral ex-
pansion, where Act denotes the period, and as,i denotes the Ps to Pi acceleration, and ai,e
denotes the Pi to Pe acceleration, and as,e denotes the Ps to Pe acceleration, and V is the
velocity. Set S and S’ as the expressions of Equations (11) and (12), and we can obtain the
acceleration rate of the change function σ, which is shown in Equation (13).

S =
Vs + Ve

2
×Acts,e (11)

S’ =
Vs + Vi

2
×Acts,i +

Vi + Ve

2
×Acti,e (12)

σ =
|S− S’|

S
(13)

σ reflects the fluctuation of the acceleration change σ; the smaller it is, the more
stable the acceleration. In addition, σ has the ability to adaptively change the amount of
acceleration change at different velocity intervals. The smaller value also reflects the smaller
error of the emission calculation. When σ equals 0, it means that the acceleration is constant,
and the emission calculation error between the compressed data and the original data is also
0. The value of σ approximates the emission calculation error. Therefore, this paper uses σ
to set an adaptive threshold for trajectory simplification, which is equivalent to presetting
the emission calculation error value to ensure the quality of the compressed data, avoiding
the need to determine the appropriate threshold value through extensive experiments.

2.3. Trajectory Simplification

According to the data classification in Section 2.1, the trajectory simplification process
of AIS data in the four navigation states during host operation is described below. The AIS
trajectory is represented as the set of points D = {P1, P2, . . . , Pi}. Calculate the maximum
value of σmax as a function of the rate of change of acceleration for each point Pi on the
trajectory from its starting point Ps and its ending point Pe. If σmax exceeds the threshold,
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the maximum point Pmax is retained. Subsequently, the trajectory is split at that position
(Pmax). The algorithm is applied recursively to both sub-trajectories. If σmax is below
the threshold, only the points Ps and Pe of the subpart of the trajectory are retained. A
schematic of the trajectory simplification process is shown in Figure 2.
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Figure 2. Schematic diagram of the trajectory simplification process. There are 13 trajectory points.
In the first step, we keep the first node P1 and the last node P13, and find the maximum point P6.
In the second step, if σmax exceeds the threshold, keep P6, and split the trajectory. In the third step,
recursively judge the two trajectories, find the maximum point, and judge σmax; if it does not exceed
the threshold, then discard all trajectory points except for the first and last nodes. Recursively repeat
the judgment, and finally, obtain the simplified trajectory containing only four trajectory points.

2.4. Compression Evaluation

In this paper, considering the needs of practical applications, the proposed algorithm
pays more attention to the computational error of emissions from compressed data. The
compression performance is evaluated in three aspects, namely compression ratio, emission
calculation error, and runtime complexity. The compression ratio is derived by dividing
the number of discarded trajectory points by the number of original trajectory points. The
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emission calculation error represents the standard error between the calculated emissions
from the compressed data and the calculated emissions from the uncompressed data.

CR =
N−Ns

N
× 100% (14)

σE =

∣∣∣∣Eo − Es

Eo

∣∣∣∣ (15)

In the above equation, CR is the compression rate, N is the number of trajectory
points on the original trajectory, and Ns is the number of trajectory points on the simplified
trajectory. σE denotes the error in emission calculation, Eo is the emission calculated from the
original uncompressed data, and Es is the emission calculated from the compressed data.

3. Experiment and Analysis
3.1. Data Sources

The proposed approach is implemented and contrasted with other algorithms using
one month’s worth of AIS data from the sea region of the Shandong emission control
area and three months’ worth of data from the AIS data from the Ningbo port to further
assess the algorithm’s effectiveness. The static database of the ship comes from Clarkson’s
database and Lloyd’s database, which mainly include parameters such as ship length, ship-
breadth, ship depth, main engine power, auxiliary engine power, boiler power, rated speed,
and ship tonnage. The dynamic AIS data includes parameters such as ship MMSI code,
longitude, latitude, bow direction, heading to earth, real-time speed, and ship position accu-
racy. The AIS data and static database are tested after deciding on the outlier identification
criteria [26,27]. The random forest model was used to fill in the missing values and outliers
in the design parameters [33]. Cubic spline interpolation was used to fill in missing and
anomalous values in the AIS data [34]. NOx is the pollutant type used in the calculation
of emissions. The experiments make use of Python 3.9 as the programming language and
PyCharm 11.0.10 as the compiler. The comparison experiments make use of an identical
hardware setup and software environment. The compiler’s recursion depth is set to 30,000
according to the real quantity of data for the method, necessitating recursive iteration.

3.2. Experiments and Analysis

The compression rate may generally be improved by raising the threshold setting, but
more information is lost in the process. Different thresholds were chosen for the suggested
algorithm in this study so that they could be compared, and as shown in Tables 2 and 3;
the compression rate rises when a higher threshold factor is applied. For each of the seven
distinct compression rate circumstances, the discrepancy between the pollutant emissions
calculated using the compressed data and the original data is minimal. This demonstrates
that the suggested algorithm’s data compression method may be successfully used to
study emission inventories. The threshold system that directly considers the emission
calculation formula and the acceleration rate of change is also used in this paper to compare
compression performance. As shown in Figure 3, the errors of emission calculation for both
at the same compression rate are very close. This also proves the reasonableness of the
threshold design of the proposed algorithm.
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Table 2. Partial performance comparison of each compression algorithm at different thresholds (Shandong Province data). Seven different thresholds are set for
each algorithm, corresponding to the computational error of emissions at seven compression ratios. To facilitate the cross-sectional comparison, the determined
thresholds will ensure that the data compression ratios under different algorithms are as close as possible.

Proposed Algorithm DP Algorithm TD-TR Algorithm CSB Algorithm

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

0.01 90.28% 0.19% 0.1 90.13% 9.53% 0.1 91.14% 4.48% 1.9 91.63% 7.49%

0.05 93.48% 0.27% 0.2 94.83% 10.57% 0.2 95.84% 7.10% 2 93.63% 9.31%

0.1 94.63% 0.33% 0.5 96.49% 11.97% 0.5 96.69% 15.84% 2.1 96.44% 31.62%

0.2 95.14% 1.57% 0.8 97.55% 21.58% 0.8 97.04% 20.37% 2.2 96.84% 28.80%

0.5 97.69% 1.81% 1 97.79% 22.27% 1 97.64% 22.26% 2.3 98.49% 20.63%

0.8 97.89% 2.08% 2 98.79% 62.95% 2 98.34% 36.94% 2.4 99.44% 23.14%

1 98.14% 2.22% 5 98.89% 59.32% 5 99.34% 53.45% 2.5 99.54% 30.00%

Table 3. Partial performance comparison of each compression algorithm under different thresholds (Ningbo Port data).

Proposed Algorithm DP Algorithm TR Algorithm CSB Algorithm

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

Threshold Compression
Rate

Main Engine
Emission

Calculation
Error

0.01 89.41% 0.12% 0.2 91.12% 7.02% 0.2 90.29% 5.08% 1.8 90.02% 10.53%

0.05 92.67% 0.23% 0.4 94.63% 14.55% 0.4 92.41% 11.76% 2 92.37% 14.45%

0.1 93.88% 0.30% 0.6 96.79% 22.61% 0.6 96.49% 19.84% 2.2 94.35% 19.64%

0.2 96.57% 1.44% 0.8 97.15% 27.37% 0.8 97.38% 23.68% 2.3 95.79% 19.26%

0.5 98.15% 1.89% 1 98.36% 36.98% 1 98.10% 39.72% 2.4 97.92% 28.57%

0.8 98.83% 2.18% 2 99.04% 49.59% 2 98.76% 47.62% 2.5 98.26% 24.98%

1 99.12% 2.49% 5 99.61% 58.19% 5 99.14% 57.03% 2.6 98.81% 33.48%
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1 
 

 

Figure 3. Emission calculation errors of two thresholds σ and σ’
E using methods at the same compres-

sion rate. Method 1 uses the threshold considering the acceleration rate of change, and Method 2
uses the threshold considering the standard error of emissions calculation. The emission calculation
errors of the two threshold setting methods at the same compression rate are close, which also proves
the reasonableness of the threshold design of the proposed algorithm.

The suggested compression technique will be contrasted with three existing com-
pression algorithms to further assess its performance. These include the top-down time
ratio (TD-TR) method [7], the Douglas–Peucker (DP) algorithm [6], and the compression
algorithm considering the behavior of the ship(CSB) [20]. These three algorithms mainly
consider some basic characteristics of the ship (latitude and longitude, time stamp, real-time
speed, bow direction, etc.). In Appendix B, these three algorithms are explained in detail.
In this study, seven sets of thresholds were chosen for each compression technique, and two
datasets from the Shandong Province and the Ningbo Port were used for the experiments.
Tables 2 and 3 illustrate the computational errors of the host emissions, as well as the com-
pression rates of the four compression algorithms at various thresholds. To ensure that the
four algorithms may be fully compared horizontally, the specified thresholds were set after
several experiments. As shown in Figure 4, each compression algorithm was chosen for the
scenarios of 90%, 94%, and 98% compression rates, while the emission calculation errors
were compared horizontally. Because other algorithms have a harder time determining the
precise compression rate when choosing the correct threshold, the error of the compression
rate was set at within 2%.
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Figure 4. Comparison of emission calculation errors of each compression algorithm at different
compression rates. The compression rates are divided into three grades—90%, 94%, and 98%—and
the four algorithms are compared horizontally. The left graph shows the comparative analysis of
data from Shandong Province, and the right graph shows the comparative analysis of data from
the Ningbo Port. At the compression rate of about 98%, the other algorithms have a great error in
emission calculation because they lose a large amount of information concerning the ship and the
emission calculation, while the proposed algorithm can still maintain a small error.

Tables 2 and 3 further illustrate how higher thresholds might result in higher com-
pression rates and greater information loss. Each algorithm has a varied performance, as
illustrated in Figure 4. The DP algorithm emission calculation error is particularly high
when the compression rate is 98%, reaching 59.321% and 36.983% in the two datasets,
respectively. This is so that the data can be compressed using the DP algorithm, which
ignores substantial speed fluctuations in favor of position information. As a result, for
various compression rates, the DP algorithm performs the poorest in this regard. The
approach suggested in this research performs an order of magnitude better than do the
existing algorithms, and it shows the minimum error in emission computation at various
compression rates. The emission calculation error of the suggested approach still fluctuates
very slightly and is only 2.221% and 1.890% in the two datasets, even when the compression
rate is raised to 98%. Other algorithms with the same compression rate have emission
calculation errors of more than 20%. Due to the integrated considerations of position,
speed, and direction information, the emission calculation error of the compression method,
taking ship behavior into account, is 23.14% at the compression rate of 98%, which is much
better than that of the DP and TD-TR algorithms. Between this algorithm and the algorithm
suggested in this study, there is still a sizable gap. This is due to the algorithm’s additional
disregard for the precise velocity fluctuation between the compressed trajectory points.

The computational error of the technique for emissions calculation is significantly
reduced as the compression rate drops, which is also in line with the theory of the algorithm
put forth in this study. Other compression techniques, on the other hand, follow the same
pattern, but when the compression rate is too high, the emission computation error can
be significant and challenging to use in emission inventory investigations. This is because
other compression algorithms do not carefully consider how the motion characteristics of
the ship and the pollution emissions relate to one another.

Table 4 shows the running time complexity of the four compression algorithms [35].
The algorithm proposed in this paper is divided into two parts. The first part needs to
traverse all the data, with the purpose of marking and dividing the navigation state, and
the time complexity of this part is O(n). The second part needs to process the different
divided sailing state data, mainly processing the data of the sailing state of the ship’s
main engine operation; the time complexity of this part is O(mlog m), and m denotes
the amount of data for this sailing state. The running time complexity of the DP and
TD-TR algorithms depends on the different algorithm designs, which is O

(
n2), if the
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dynamic sliding window approach is used, and O(nlog n), if the iterative approach is used.
The compression algorithm considering the ship’s behavior is divided into two parts in
parallel; the first part of the position data is compressed using the DP algorithm, so the
time complexity is O

(
n2) or O(nlog n). The compression of the second part of the speed

and heading data uses a fixed sliding window approach, so the time complexity is O(n).
Although the running time complexity of the second part of the proposed algorithm is
not optimal among all algorithms, the division processing of the first part will reduce the
amount of data processed each time. Therefore, it is possible to maintain a short running
time while ensuring the superiority of the proposed algorithm.

Table 4. Running time complexity of each compression algorithm. The time complexity is a function
that evaluates the time consumed to execute the program and allows for the estimation of program
processor use. The time complexity is often expressed in large O symbolic expressions, excluding the
lower order terms and first coefficients of this function. The time complexity is evaluated when the
amount of input data tends to infinity. The running time complexity of the proposed algorithm is not
optimal among all algorithms, but the data classification reduces the amount of data processed per
iteration. Therefore, the overall efficiency is still high.

Proposed Algorithm DP Algorithm TD-TR Algorithm CSB Algorithm

Part 1 Part 2 Sliding window Iteration Sliding window Iteration Part 1 Part 2

O(n) O(mlog m) O
(
n2) O(nlog n) O

(
n2) O(nlog n) O

(
n2) or O(nlog n) O(n)

The results show that the algorithm proposed in this paper can guarantee computa-
tional accuracy under the condition of a high compression rate, and it is suitable for the
study of emission inventory.

4. Conclusions

In this paper, we propose a trajectory data compression algorithm based on the
ship’s navigation state and acceleration variation, and the proposed algorithm exhibits
three novelties. First, the data are classified using the navigational states, retaining the
navigational state differentiation points as key features. Second, the simplified algorithm
combines the main engine load and rated speed to investigate the deep relationship with
pollutant emissions, and it is applicable to the study of emission inventories. Third, the
simplified algorithm adaptively determines the threshold value using the acceleration
rate of change function. To test the performance of the proposed algorithm, numerical
experiments are employed. The results show that the proposed algorithm maintains very
low emission calculation errors at high compression rates and can achieve almost the same
results as the original data in the study of emission inventories. Other algorithms show high
errors in emission calculations, and their compressed data are not applicable to the study
of emission inventories. Compared with other algorithms, the proposed algorithm can
guarantee the quality of compressed data by controlling the variation of acceleration with
preset emission calculation error values, avoiding the need to determine the appropriate
threshold value through extensive experiments. In addition, data classification reduces
the depth of data processing iterations and improves the operational efficiency. Therefore,
the proposed algorithm exhibits good comprehensive performance. Future studies may
employ the distributed approach to reduce running time and may also consider the adaptive
threshold in terms of compression rate [36].
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Appendix A. Pseudocode for the Proposed Compression Algorithm

The input of the algorithm is the data (O) and the threshold, and the output is the
simplified trajectory data. The data are firstly classified into T(NS0) and T(NS1), according
to the navigation status. The T(NS0) data only need to keep the first and last trajectory
points. The T(NS1) data need to be compressed using the acceleration rate of the change
threshold function. The process of trajectory simplification is described in detail in the form
of the flow chart in Section 2.3.

Algorithm A1. Compression considering acceleration

Input: Original trajectory points set O, threshold
Output: Point set Simpli f ied_trajectory

1: T(NS0), T(NS1)= classification(O)
2: for each T in T(NS0) do
3: Add T[0] into Simpli f ied_trajectory
4: Add T[n− 1] into Simpli f ied_trajectory
5: for each T in T(NS1) do
6: AC(T, threshold)
7: /*function*/
8: classification(O){
9: /* Classify data according to navigational states*/

10: n is the size of point set O
11: temp = 0
12: for i = 1 to n− 1 do
13: if O[i] is dividing point of navigational states or i = n− 1
14: part = O[temp : i + 1]
15: if the navigational state of part is the navigational state of main engine stop operation
16: Add part into T(NS0)
17: else
18: Add part into T(NS1)
19: end if
20: temp = i
21: end for
22: return T(NS0), T(NS1)}
23: AC(T, threshold){
24: n is the size of point set T
25: set σmax as 0
26: for i = 1 to n− 2 do
27: Calculate the acceleration change rate σ from T[i] to T[0]T[n− 1] through Equation (13)
28: if σ > σmax then
29: σmax = σ
30: index = i
31: end if
32: end for
33: if σmax > threshold then
34: AC(T[0 : index + 1], threshold)
35: AC(T[index : n], threshold)
36: else
37: Add T[0] into Simpli f ied_trajectory
38: Add T[n− 1] into Simpli f ied_trajectory
39: end if}
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Appendix B. Comparing the Three Algorithm Profiles in the Experiment

Table A1. DP algorithm.

Algorithm introduction

Select the first point Pa and the last point Pb in the trajectory , and connect these
two points into a line segment La,b. Then, calculate the perpendicular distance

from all points between Pa and Pb to the line corresponding to La,b. The maximum
perpendicular distance Dmax is taken and compared with the threshold σ. If

Dmax > σ, the corresponding points are kept in the generated set. If Dmax ≤ σ,
then all points between Pa and Pb are discarded. The above process is repeated

recursively on each line segment until the end of the recursion.

Main features Location (longitude and latitude).

Threshold setting Generally, in terms of ship length, set a multiple of the ship length as the threshold,
such as 0.5 times, 0.8 times, and 1 time.

Table A2. TD-TR algorithm.

Algorithm introduction
The algorithm flow is basically the same as that of the DP algorithm; the only

difference is that the maximum vertical distance Dmax is modified to the distance
corresponding to the time-synchronized position of the line segment La,b.

Main features Location (longitude and latitude) and time.

Threshold setting Generally, in terms of ship length, set a multiple of the ship length as the threshold,
such as 0.5 times, 0.8 times, and 1 time.

Table A3. CSB algorithm.

Algorithm introduction

The proposed algorithm has two main parts: the DP algorithm is employed to
simplify the trajectories according to spatial features, and a sliding window is

adopted to simplify the trajectories based on motion features. Furthermore, the
statistical theory is applied to help determine the thresholds of the motion features
in the sliding window algorithms. Finally, the two results are combined to form a

simplified trajectory.

Main features Location (longitude and latitude), speed, and ship heading.

Threshold setting
The DP algorithm portion is still chosen as a multiple of the ship length, and the
sliding window simplified trajectory part sets the threshold with reference to the

published literature of this algorithm.

References
1. Huang, L.; Wen, Y.; Geng, X.; Zhou, C.; Xiao, C.; Zhang, F. Estimation and spatio-temporal analysis of ship exhaust emission in a

port area. Ocean Eng. 2017, 140, 401–411. [CrossRef]
2. Toscano, D.; Murena, F.; Quaranta, F.; Mocerino, L. Assessment of the impact of ship emissions on air quality based on a complete

annual emission inventory using AIS data for the port of Naples. Ocean Eng. 2021, 232, 109166. [CrossRef]
3. Huang, L.; Wen, Y.; Zhang, Y.; Zhou, C.; Yang, T. Dynamic calculation of ship exhaust emissions based on real-time ais data.

Transp. Res. Part D Transp. Environ. 2020, 80, 102277. [CrossRef]
4. Goldsworthy, B. Spatial and temporal allocation of ship exhaust emissions in Australian coastal waters using AIS data: Analysis

and treatment of data gaps. Atmos. Environ. 2017, 163, 77–86. [CrossRef]
5. Makris, A.; Kontopoulos, I.; Alimisis, P.; Tserpes, K. A Comparison of Trajectory Compression Algorithms Over AIS Data. IEEE

Access 2021, 9, 92516–92530. [CrossRef]
6. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its

caricature. Cartogr. Int. J. Geogr. Inf. Geovisualization 1973, 10, 112–122. [CrossRef]
7. Meratnia, N.; By, R. Spatiotemporal Compression Techniques for Moving Point Objects. In Extending Database Technology; Springer:

Berlin/Heidelberg, Germany, 2004.
8. Jensen, I.H. Compressing Spatio-Temporal Trajectories; Springer: Berlin/Heidelberg, Germany, 2014.
9. Potamias, M.; Patroumpas, K.; Sellis, T. Sampling Trajectory Streams with Spatiotemporal Criteria. In International Conference on

Scientific & Statistical Database Management; IEEE Computer Society: Washington, DC, USA, 2006.

http://doi.org/10.1016/j.oceaneng.2017.06.015
http://doi.org/10.1016/j.oceaneng.2021.109166
http://doi.org/10.1016/j.trd.2020.102277
http://doi.org/10.1016/j.atmosenv.2017.05.028
http://doi.org/10.1109/ACCESS.2021.3092948
http://doi.org/10.3138/FM57-6770-U75U-7727


J. Mar. Sci. Eng. 2023, 11, 216 15 of 15

10. Cudremauroux, P.; Wu, E.; Madden, S.R. TrajStore: An Adaptive Storage System for Very Large Trajectory Data Sets; IEEE: Piscataway,
NJ, USA, 2010.

11. Yan, L.; Liu, R.W.; Liu, J.; Yu, H.; Hu, B.; Kai, W. Trajectory Compression-Guided Visualization of Spatio-Temporal AIS Vessel
Density. In Proceeding of the International Conference on Wireless Communications & Signal Processing; IEEE: Piscataway, NJ, USA, 2016.

12. Han, Y.; Sun, W.; Zheng, B. Compress: A comprehensive framework of trajectory compression in road networks. ACM Trans.
Database Syst. 2017, 42, 1–49. [CrossRef]

13. Hershberger, J.; Snoeyink, J. Speeding up the douglas-peucker line-simplification algorithm. Proc. Intl. Symp. Spat. Data Handl.
2000, 134–143.

14. Hershberger, J.; Snoeyink, J. An O ( n log n ) implementation of the Douglas-Peucker algorithm for line simplification. Tenth Symp.
Comput. Geom. DBLP 1994, 383–384.

15. Visvalingam, M.; Whyatt, J.D. The douglas-peucker algorithm for line simplification: Re-evaluation through visualization.
Comput. Graph. Forum 2010, 9, 213–225. [CrossRef]

16. Zhao, L.; Shi, G. A method for simplifying ship trajectory based on improved douglas–peucker algorithm. Ocean. Eng. 2018,
166, 37–46. [CrossRef]

17. Cho, S.W. Ais trajectories simplification algorithm considering topographic information. Sensors 2022, 22, 7036.
18. Peng, X.; Wen, Y.; Wu, L.; Xiao, C.; Han, D. A sampling method for calculating regional ship emission inventories. Transp. Res.

Part D Transp. Environ. 2020, 89, 102617. [CrossRef]
19. Ji, Y.; Qi, L.; Balling, R. A dynamic adaptive grating algorithm for ais-based ship trajectory compression. J. Navig. 2022, 75, 213–229.

[CrossRef]
20. Wei, Z.; Xie, X.; Zhang, X. Ais trajectory simplification algorithm considering ship behaviours. Ocean. Eng. 2020, 216, 108086.

[CrossRef]
21. Tang, C.; Wang, H.; Zhao, J.; Tang, Y.; Xiao, Y. A method for compressing ais trajectory data based on the adaptive-threshold

douglas-peucker algorithm. Ocean. Eng. 2021, 232, 109041. [CrossRef]
22. Yan, R.; Mo, H.; Yang, D.; Wang, S. Development of denoising and compression algorithms for ais-based vessel trajectories. Ocean.

Eng. 2022, 252, 111207. [CrossRef]
23. Han, Z.R.; Guang-Luan, X.U.; Huang, T.L.; Ren, W.J.; Electronic, S.O. Vessel trajectory outlier detection algorithm based on

adaptive threshold. Comput. Mod. 2018, 9, 42.
24. Li, R.; Li, S.-X.; Liu, X.R.; Zhang, J.F. Research on Ship Trajectory Compression Algorithm Based on Cumulative Heading Variation.

In Proceedings of the 2019 International Conference on Artificial Intelligence, Control and Automation Engineering (AICAE
2019), Dalian, China, 23–24 June 2019.

25. Smierzchalski, R.; Michalewicz, Z. Adaptive Modeling of a Ship Trajectory in Collision Situations at Sea. In Proceedings of the IEEE
World Congress on IEEE International Conference on Evolutionary Computation; IEEE: Piscataway, NJ, USA, 1998.

26. IMO-MEPC Reduction of GHG Emissions from Ships. Fourth IMO GHG Study 2020. Int. Marit. Organ. 2020. Available on-
line: https://imoarcticsummit.org/publications/imo-papers/mepc-75/reduction-of-ghg-emissions-from-ships-fourth-imoghg-
study-2020-final-report/ (accessed on 14 December 2021).

27. Buhaug, O.; Corbett, J.J.; Endresen, O.; Eyring, V.; Faber, J.; Hanayama, S.; Lee, D.S.; Lee, D.; Lindstad, H.; Markowska,
A.Z.; et al. Second IMO Greenhouse Gas Study 2009; International Maritime Organization: London, UK, 2009; Available online:
https://www.imo.org/en/OurWork/Environment/Pages/Greenhouse-Gas-Study-2009.aspx (accessed on 14 December 2021).

28. Yang, L.; Zhang, Q.; Zhang, Y.; Lv, Z.; Mao, H. An ais-based emission inventory and the impact on air quality in Tianjin port
based on localized emission factors. Sci. Total Environ. 2021, 783, 146869. [CrossRef]

29. Jalkanen, J.P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A modelling system for the exhaust emissions of marine
traffic and its application in the baltic sea area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [CrossRef]

30. Ristic, B.; Scala, B.L.; Morelande, M.; Gordon, N. Statistical Analysis of Motion Patterns in AIS Data: Anomaly Detection
and Motion Prediction. In Proceedings of the Information Fusion, 2008 11th International Conference; IEEE: Piscataway, NJ,
USA, 2008.

31. Pallotta, G.; Vespe, M.; Bryan, K. Vessel pattern knowledge discovery from ais data: A framework for anomaly detection and
route prediction. Entropy 2013, 15, 2218–2245. [CrossRef]

32. Iperen, E.V. Detection of hazardous encounters at the North Sea from AIS data. In Proceedings of the IWNTM’ 2012, Shanghai,
China, September 2012.

33. Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 23, 18–22.
34. Dyer, S.A.; Dyer, J.S. Cubic-spline interpolation. 1. IEEE Instrum. Meas. Mag. 2001, 4, 44–46. [CrossRef]
35. Michiels, W.; Korst, J.; Aarts, E. Time Complexity. In Theoretical Aspects of Local Search; Springer: Berlin/Heidelberg, Germany,

2007; pp. 97–134.
36. Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Prentice Hall: Englewood Cliffs, NJ,

USA, 1989.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3015457
http://doi.org/10.1111/j.1467-8659.1990.tb00398.x
http://doi.org/10.1016/j.oceaneng.2018.08.005
http://doi.org/10.1016/j.trd.2020.102617
http://doi.org/10.1017/S0373463321000692
http://doi.org/10.1016/j.oceaneng.2020.108086
http://doi.org/10.1016/j.oceaneng.2021.109041
http://doi.org/10.1016/j.oceaneng.2022.111207
https://imoarcticsummit.org/publications/imo-papers/mepc-75/reduction-of-ghg-emissions-from-ships-fourth-imoghg-study-2020-final-report/
https://imoarcticsummit.org/publications/imo-papers/mepc-75/reduction-of-ghg-emissions-from-ships-fourth-imoghg-study-2020-final-report/
https://www.imo.org/en/OurWork/Environment/Pages/Greenhouse-Gas-Study-2009.aspx
http://doi.org/10.1016/j.scitotenv.2021.146869
http://doi.org/10.5194/acp-9-9209-2009
http://doi.org/10.3390/e15062218
http://doi.org/10.1109/5289.911175

	Introduction 
	Ship Trajectory Simplification Algorithm 
	Classification of Data According to Navigation Status 
	Adaptive Thresholds 
	Integral Relationship Equation 
	Threshold Function of Acceleration Rate of Change 

	Trajectory Simplification 
	Compression Evaluation 

	Experiment and Analysis 
	Data Sources 
	Experiments and Analysis 

	Conclusions 
	Appendix A
	Appendix B
	References

