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Abstract: The boundary element method (BEM) with Lagrangian formulation is a conceptually sim-

ple and efficient method for the simulation of nonlinear wave shoaling, with or without impermea-

ble coastal structures, up to the wave breaking. However, in post-breaking flows, the domain is no 

longer simply connected, and the BEM is not efficient for the generation of a new free surface. Vol-

umes of fluid (VOF) methods are made to track the fluid-free surfaces after breaking, but they are 

more numerically complex and less efficient relative to the BEM before breaking. This study pre-

sents a numerical model, named BELWF—boundary elements Lagrangian wave flume—for the 

mathematical simulation of two-dimensional wave flumes. The BELWF can simulate the hydrody-

namics of wave shoaling over a coast profile, with submerged impermeable coastal structures of 

any geometry. The developed model is applied to simulate and study Geotube structures. The 

BELWF is validated by comparisons with OpenFOAM simulations. Both the BELWF and Open-

FOAM simulations show that the most critical state, regarding the sliding stability of the Geotube, 

occurs, typically just before breaking, where the BELWF reasonably assesses the wave loads and the 

sliding stability. Hence, the BELWF is a valid and efficient method for the preliminary design of 

impermeable coastal structures. Finally, the BELWF is applied to simulate a practical design exam-

ple of a complete shoaling process along a sloped shore with a Geotube structure at the shallow 

water, which develops a plunging breaker. The simulation well captures the critical event consider-

ing the sliding stability of the structure. 
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1. Introduction 

So far, the most common way to mitigate waves, protect beaches and ports, or to 

control beach morphology changes by sand transport, is by constructing rubble mound 

breakwaters. Breakwaters cause partial reflection, diffraction, breaking and dissipation of 

waves, phenomena that form regions of affected waves (attenuated, concentrated, and 

reflected) near the breakwaters. 

Developments of solutions other than emerged rubble mound coastal structures, 

over the recent decades, such as floating breakwaters [1,2], Bragg breakwaters [3], sub-

merged reef balls [4,5], artificial mangrove root system [6], and living breakwaters [7], 

may present potential advantages in cost [1,8], hydrodynamics [9,10] and environmental 

features. These types of objects suggest more options to affect the waves to meet the de-

sign goals [1,10,11]. 

Geo-textile bags, filled with saturated sand, dredged from the seabed, termed Geo-

tubes, present a relatively new method that aims to enrich traditional solutions in coastal 

engineering [12,13]. The woven geotextile container (tube) filters out water but keeps the 

sand grains inside. The principal construction procedure is laying the empty tubes on the 

seabed at the desirable location, securing the tubes with temporary anchors and lashing, 
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and the high-pressure injecting of saturated sand, pumped from the seabed. After filling 

to the designed volume ratio, the stability of the laid Geotubes should be assured by grav-

ity and friction. Geotextile tubes may serve, for instance, as groins, detached breakwaters, 

dune foot protection and submerged reefs. 

Over the last twenty years, attempts to establish multifunctional submerged artificial 

surf reefs (ASRs) made of Geotubes have been made around the world, with the expecta-

tion that such solutions could incorporate coastal protection, surf amenities and beach 

safety [14–16]. Projects of ASR can be found, for example, in Narrowneck, Queensland, 

Australia [17,18]; Pratte’s Reef, El Segundo, California [14]; and Mount Maunganui Beach, 

New Zealand [19]. Unfortunately, in a comprehensive review provided by the “Raised 

Water Research” [20], it seems that most of the projects have failed. Common reasons for 

failure are related to too-small size Geotubes installed or the loss of effectiveness due to 

sand coverage [18,20]. These failures indicate the need for more applied research and de-

sign tools. Projects that utilize Geotubes as detached breakwaters may be found, for ex-

ample, in Young-Jin beach on the east coast of Korea [21]; Yucatan in Mexico [22]; Al Aqah 

Beach Fujairah, UAE [8]; and Sigandu Beach, Indonesia [23]. In 2018, the first project of 

Geotubes structure was established in Israel, aimed at mitigating beach and cliff erosion 

along the Ashkelon shoreline [24]. 

Numerical simulations based on theoretical mathematical formulation are very use-

ful in coastal engineering, for preliminary design, prior to physical model testing in wave 

flumes. A well-verified and practically accepted method for the assessment of the interac-

tion of ocean waves with large bodies (typically, characteristic size above about 0.2 wave-

length) is to solve the wave–body interaction mathematical formulation at a water level 

of constant depth, assuming incompressible and ideal (non-viscid) fluid and irrotational 

flow. When the wave steepness is low or moderate, the wave nature is termed weakly 

non-linear, and a perturbation process in the frequency domain is practical and valid. The 

nonlinear problem may be decomposed into a series of problems of increasing order in a 

small parameter, which is the wave steepness (the wave number times the wave ampli-

tude). The first order is called the linear wave–body interaction problem, which is appli-

cable for engineering in many practical cases. To represent irregular (real) sea, solutions 

for a series of monochromatic waves are summed to provide the results for an incident 

wave spectrum. 

Fully nonlinear two-dimensional simulations of wave shoaling over sloped beaches, 

assuming potential flow and applying BEM, have been formulated over the years. Drimer 

and Agnon [25] developed an improved mathematical model for nonlinear shoaling over 

sloped beaches. A new compatibility condition, applied to the velocity of the free surface 

particles, enables the simulation of plunging breakers, up to the creation of a thin jet, with-

out numerical smoothing. Grilli et al. [26] formulated as well a fully nonlinear two-dimen-

sional BEM for the derivation of local properties (height, celerity, and asymmetry) and 

integral properties (radiation stress, and mean water level) of spilling breakers, formed 

over mild sloped beaches. Manolas and Riziotis [27] also introduced the effect of constant 

current in the tank. A finite differences solution for nonlinear waves was introduced by 

Xu [28], applying the immersed boundary method (IBM). 

For design applications of submerged structures, the numerical wave flumes need to 

represent the structures and to evaluate the wave loads. Wave forces acting on submerged 

semi-circular bodies were studied by Yuan [29], using a hybrid numerical model based on 

the BEM and the finite difference method (FDM). In his work, Yuan compared the result-

ing numerical pressure over a semicircular breakwater with local pressure measurements 

in a physical model. Geng [30] developed a three-dimensional BEM for the evaluation of 

the loads acting on submerged horizontal plate, subjected to a solitary wave. Pinto and 

Neves [31] conducted a physical experiment for the measurement of wave loads over sub-

merged trapezoidal breakwaters. Van Steeg and Vastenburg [32] derived an analysis of 

Geotubes sliding stability using theoretical methods together with physical experiments. 
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More works on wave loads evaluation were conducted by applying volume of fluids 

(VOF) models, for instance, by Rahman and Womera [9] and by Jones et al. [33]. 

This research presents new and important practical findings regarding the applica-

bility of the BEM for the design of submerged impermeable coastal structures, focusing 

on submerged Geotubes. In order to study and present our design-oriented practical find-

ings, we develop and present an improved numerical model for a wave flume, applying 

the Lagrangian BEM. Although the Lagrangian BEM is a very efficient numerical method 

to simulate shoaling, it is considered limited for the assessment of coastal structures at 

shallow water, as it is not valid after breaking of the free surface, due to the assumption 

of a simply connected domain. VOF methods can track post breaking flows, but require 

considerably more numerical resources, which limit the extent of the computation do-

main. We show that the Lagrangian BEM is efficient and valid for the assessment of coastal 

structures at shallow water, much more than it may be concluded by previous publica-

tions. Section 2 presents all the methods that we apply in this study: the formulation of 

our Lagrangian BEM model (with a detailed mathematical and numerical formulation in 

Appendix A); the assessment of the geometry of a partially filled Geotube, which we ap-

ply in our model; and the open-source VOF system, OpenFOAM, which we apply for 

validation in the nonlinear range up to breaking. In Section 3, we present our results and 

discussion, starting with validation of the wave loads obtained by our model. By compar-

ison with OpenFOAM simulations, we present that the BELWF predicts reasonable loads 

and sliding stability that are practical for design. We demonstrate that our model well 

captures the critical event considering the sliding stability of submerged impermeable 

structures, even if the structure breaks the waves. This is because the critical load takes 

place just before breaking. Then, we apply our model to simulate a practical design exam-

ple of a complete shoaling process along a sloped shore with Geotube structure at the 

shallow water. The structure causes the development of a plunging breaker. Again, the 

simulation well captures the critical event considering the sliding stability of the structure. 

In Section 4, we present our conclusions. 

2. Methods 

2.1. The BEM for a Fully Nonlinear Wave Flume with Impermeable Structures 

For the nonlinear two-dimensional simulation of the hydrodynamic effects by sub-

merged impermeable coastal structures, we programmed a source code based on the 

mathematical model developed by Drimer and Agnon [25] and extended it to include 

cross sections of filled Geotubes and to obtain the pressure and forces applied to the struc-

tures. This model may include smooth impermeable structures of any geometry, laid on 

any profile of the seabed. We term this model BELWF—boundary elements Lagrangian 

wave flume. 

Appendix A presents the mathematical and numerical formulation of the BELWF. 

An important feature of BELWF, relative to other Lagrangian formulations of BEM, is the 

formulation of two normal vectors at each nodal point (in the Lagrangian formulation, a 

nodal point represents a water particle): a normal to the linear boundary element before 

the point and a normal to the linear boundary element after the point. This improvement 

stabilizes the numerical scheme, enables the simulation of waves closer to breaking (rela-

tive to a single normal at each point, which smooths sharp corners that may exist before 

breaking), and is very important for the simulation of wave interaction with submerged 

structures in shallow water. 

2.2. The Geometry of Filled Geotube Structures 

Bezuijen and Vastenburg [34] present a practical method to approximate the geome-

try of a filled Geotube, laid on the seabed. When a geotextile tube is empty and lays flat 

on the locally flat seabed, its width is equal to half of its circumference. When it is com-
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pletely filled (filling ratio FA = 1.0), it has a circular shape with a radius R = circumfer-

ence/2π. The practical range of the filling ratio is between 0.60 and 0.85. At this range of 

filling, the underside of the cross-section is flat, each side approximates a quadrant of a 

circle, and the upper surface approximates a semi-ellipse. At the point of connection be-

tween the arc and the semi-ellipse the curvature is continuous. 

Based on this method, we programmed a pre-processor, which generates the nodes 

and elements of a specified Geotube, for the BELWF. Figure 1 presents the shapes of par-

tially filled Geotube, in all the practical range of filling: 0.60, 0.65, 0.70, 0.75, 0.80, and 0.85. 

 

Figure 1. Shapes of partially filled Geotube, in all the practical range of filling; 0.6, 0.65, 0.7, 0.75, 0.8, 

0.85. In this example, the filled radius is 2.0 m. The figure is proportional, and the grid spacing is 1.0 

m horizontally and 0.5 m vertically. 

To represent several adjacent Geotube structures, forming a wider submerged break-

water, it is practical to add in the middle a horizontal section. 

2.3. The OpenFOAM Model for Validation 

For the validation of the BELWF, we apply the widely used open-source software 

OpenFOAM [35]. OpenFOAM applies the VOF method [36]. Figure 2 presents the grid, 

generated out of 207,777 cells, modeling a short wave-flume of length 45 m and height 7 

m. This mesh demonstrates an important benefit of the BEM, which reduces the spatial 

dimension of the model by one. Whereas the VOF method for two-dimensional problems 

requires the mesh of the solution area into a grid of area elements, the BEM integral equa-

tion requires only the mesh of the boundary contour of the solution area into one-dimen-

sional line elements. This is considerably simpler and computationally efficient. Modeling 

the same geometry in BELWF requires fewer than 1000 boundary elements. However, the 

VOF method is made to track the foamy free surface for breaking waves, as Figure 3 

demonstrates. 

In this example, the water depth is 5 m, and the space above the still waterline is 

initially air, which will be occupied by water during the process. Denser cells are applied 

around the free surface zone and near the Geotube. To generate the specified waves, we 

implemented a wave-maker flap that generates second order Stokes waves. Whereas the 

BELWF assumes an ideal fluid and a potential flow, in OpenFOAM a turbulence module 

considers the formation of eddies. 
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Figure 2. Cell grid of the OpenFOAM model. 

Figure 3 shows an example by OpenFOAM of the flume profile, for a wave of height 

1 m propagating over the Geotube. 

 

Figure 3. An example by OpenFOAM of the flume profile, showing a breaker of height 1 m over the 

Geotube. 

2.4. Sliding Index 

A critical load effect for design is the stability of the structure to keep its position. We 

assess the stability limit by deriving the minimum friction coefficient, between the seabed-

and the Geotube, which is required to prevent sliding. Figure 4 schematically presents 

the loads acting on the Geotube. 

 

Figure 4. The loads applied to the submerged Geotube. 
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The vertical loads are the gravity (dry weight) 𝐹𝑔, the buoyancy 𝐹𝑏, and the vertical 

component of the wave load 𝐹𝑧, where the resultant vertical force is equals to the opposing 

normal reaction by the seabed N, see Equation (1). The horizontal loads are the horizontal 

component of the wave load 𝐹𝑦 and the reacted friction 𝐹𝜇, which is a multiplication of N 

by the friction coefficient; see Equation (2). By evaluating the forces during a complete 

wave period, we obtain by Equation (3) the sliding index, SI, which is the critical (mini-

mum) friction coefficient, 𝜇𝑚𝑖𝑛, needed to prevent sliding of the Geotube: 

𝑁 = 𝐹𝑔 − 𝐹𝑏 − 𝐹𝑧 (1) 

𝐹𝜇 = 𝑁 ∙ 𝜇𝑚𝑖𝑛 = 𝐹𝑦 (2) 

𝑆𝐼 = 𝜇𝑚𝑖𝑛 =
𝐹𝑦

𝐹𝑔 − 𝐹𝑏 − 𝐹𝑧
 (3) 

For the presented analysis, the weight calculation of the Geotube assumes a density 

of wet saturated sand of 2082 kg/m^3 [37]. 

3. Results and Discussion 

3.1. Verification of Wave Loads 

The most important verification for design is that of the wave loads applied to the 

structure. Here, we present the results of horizontal and vertical wave loads for a Geotube 

structure of typical parameters for coastal protection by a submerged structure, which 

breaks high wave while transmitting low waves. In our example, a structure of a total 

width of 12 m is composed of two Geotubes. Each Geotube has a filled (100%) radius of 

3.425 m and is filled to 80% (filling ratio FA = 0.8). This filling ratio results in a Geotube 

height of 3.8 m. The structure is placed on a horizontal seabed at water depth 5 m, so the 

freeboard is 1.2 m. The incident wave period T is 7 s, and the wave heights are increased 

from 0.3 m to 1.6 m. For the selected period and water depth, without structures, waves of 

height lower than 0.5 m are classified as linear airy waves, whereas the higher waves are 

in the applicability region of the second-order Stokes wave theory. However, the low free-

board of 1.2 m over the structure strengthens the non-linearity in all the simulated cases. 

To validate the results obtained by the BELWF model, we compare the loads applied 

to the Geotubes structure with results that we obtained by applying the OpenFOAM fully 

nonlinear two-phase turbulence model. 

Table 1 summarizes the numerical parameters for the validation simulations. Note 

that in the BELWF, the sizes of the free surface elements are changed during the simula-

tions, as the Lagrangian formulation follows the water particles. 

Table 1. Numerical parameters of all the applied models for the validation stage. 

Model 

Maximum 

Number of 

Elements 

Free Surface 

Elements Size 

Number of Time 

Step in a Wave 

Period 

Time Step 
𝜟𝐭 

Maximum 

CFL * 

Allowed 

Run Time per 

Wave 

Simulation 

OpenFOAM 207777 
00.2 × 0.15 × 0.1 m^3 to 

0.01 × 0.01 × 0.01 m^3 
140 to 26,900 

0.005 s to 

0.00026 s 
0.15 

4–42 h 

On C2 

BELWF 839 0.2 m to 0.4 m 100 to 350 
0.07 s to 0.02 

s 
0.54 

2–3 h 

On C3 

* Courant–Fredrich–Lewy (CFL) stability criterion [38]. C1—Computer 1: Intel(R) Xeon(R) CPU E5-

2690 v4 @ 2.60 GHz × (2 processors). C2—Computer 2: Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz × 

(6 processors). C3—Computer 3: 11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80 GHz and 1.69 GHz 

(2 processors). 

We set for the verification a short-wave flume to obtain a reasonable running time by 

OpenFOAM. To obtain the critical load effects, the loads are calculated during a complete 

wave period. For both models, the wave heights facing the Geotube are measured at the 
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same reference point, located at 13.6 m before the Geotube (which is the distance between 

the Geotube and the wave generator in the OpenFOAM model). 

Figure 5 presents the wave loads applied to the Geotube, by OpenFOAM and by 

BELWF, versus the incident wave heights. For both models, we present the maximum 

absolute value of the horizontal load and the maximum lifting vertical load, which are 

most critical for the sliding stability of the structure. 

 

Figure 5. A comparison of the wave forces applied to the Geotube, versus wave height; between 

BELWF and OpenFOAM. 

The wave heights in BELWF and OpenFOAM are not exactly the same, as in BELWF 

we input to the model the paddle amplitude and not the wave height (In OpenFOAM we 

do input wave height). However, the graphical presentation of the results is proper for 

different wave heights. 

We obtain a good agreement for the maximum uplifting vertical loads. For the high 

waves, the BELWF predicts about 10% higher horizontal loads. 

Figure 6 compares the critical SI for all the wave heights. For the lower waves, the 

agreement is good, while from the wave height 0.8 m to 1.5 m, the BELWF predicts 5% to 

15% higher SI, respectively. 
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Figure 6. A comparison of the SI, versus wave height; between BELWF and OpenFOAM. 

Figures 7–9 present the details of evaluation of the SI for wave heights 1.3 m, 1.4 m 

and 1.5 m, respectively. For each wave height, we present the horizontal and vertical wave 

loads and the SI versus time during a complete wave period. We also present the water 

surface at different wave phases, which are associated with the loads by different colors. 

We can see that the nature of the water surface elevations is similar in both models. In all 

the three cases and in both models, the critical state regarding sliding is obtained when a 

deep wave trough takes place near the Geotube. A negative (to the up-wave direction) 

horizontal load occurs simultaneously with a positive (uplift) vertical load. The negative 

SI indicates that if the actual friction coefficient is below the absolute value of this negative 

SI, the structure will fail by suction toward the incoming waves. This is a common mode 

of failure of breakwaters. In these cases, the BELWF predicts that the minimum required 

friction coefficient between the structure and the seabed is about 15% higher, relative to 

the OpenFOAM results, which means that the BELWF may be considered safe and con-

servative for preliminary design. 



J. Mar. Sci. Eng. 2023, 11, 236 9 of 22 
 

 

 

Figure 7. Water surface elevations, loads and SI for wave height 1.3 m and 1.27 m, T = 7 s, as obtained 

by BELWF (left) and by OpenFOAM (right), respectively. 

 

Figure 8. Water surface elevations, loads and SI for wave height 1.36 m and 1.39 m, T = 7 s, as ob-

tained by BELWF (left) and by OpenFOAM (right), respectively. 
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Figure 9. Water surface elevations, loads and SI for wave height 1.53 m and 1.5 m, T = 7 s, as obtained 

by BELWF (left) and by OpenFOAM (right), respectively. 

The following section presents the application of the BELWF to simulate a practical 

design example of a complete shoaling process along a sloped shore with Geotube struc-

ture at shallow water, which develops a plunging breaker. In view of the number of ele-

ments and the associated running times in Table 1 for a very short wave flume, where the 

wave generator is close to the structure, studying such a nature as that of long shoaling 

processes with structures at shallow water is much more practical with our BELWF model, 

relative to VOF models. 

3.2. A Practical Design Example 

For the verification by comparison with OpenFOAM, we modeled a short flume, 

where the Geotube is close to the wave generator, with similar geometry and input wave 

for both models. With BELWF, we can easily run a long wave flume, with a beach profile 

that fits the site so as to better represent the natural shoaling process and to load the struc-

ture with a more natural breaker. In the following example, we present a practical design 

case, where we simulate the shoaling and interaction with a Geotube structure, and assess 

the wave loads and the SI. 

In this example, the wave period is 9 s and the generated wave height is 2.2 m. The 

waves shoal from an intermediate water depth of 16 m, over a slope of 1:40, to shallow 

water of depth 4 m, where the Geotube of width 11 m and height 2.2 m (freeboard 1.8 m) 

is placed. At the end of slope, where the horizontal shallow seabed of depth 4 m starts, the 

generated wave of height 2.2 m shoals to a height of 2.86 m and loads the Geotube. The 

related Iribarren number is 0.17, which is in the range of the spilling breaker; however, 

the Geotube steepens the wave and causes a plunging breaker. The complete flume con-

tains 1160 nodes, and the run time on C3 (see Table 1) is about 40 h. Our goal is to present 

an ability to simulate a practical design, and to obtain the critical loading case. Figure 10 

presents the complete flume layout at an instance of a developed plunging breaker. 
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Figure 10. The flume and water surface elevation after running BELWF 8.3 wave periods. 

The Geotube lays on natural ground, and it cannot be assured that the water pressure 

will not act on the bottom of the structure. Hence, it is safer to assume that the dynamic 

pressure penetrates between the seabed and the bottom of the structure, and in the critical 

situation contributes to the uplifting of the Geotube. To consider this uplift load, we sub-

tract from Equation (3) also the approximated force acting on the contact region of the 

Geotube with the seabed (𝐹𝑐): 

𝐹𝑐 =
𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ∙ (𝑃𝑈𝑊 + 𝑃𝐷𝑊)

2
 (4) 

𝑆𝐼𝑐 = 𝜇𝑚𝑖𝑛 =
𝐹𝑦

𝐹𝑔 − 𝐹𝑏 − 𝐹𝑧 − 𝐹𝑐
 (5) 

Here, 𝑃𝑈𝑊 and 𝑃𝐷𝑊 are the values of the dynamic pressure at the up-wave and the 

down-wave contact points of the Geotube and the seabed, and 𝐿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the length of the 

contact region between the Geotube and the seabed. 

Figure 11 presents the free surface elevations, the horizontal and vertical wave loads 

and the SI (at the right), as well as diagrams of the hydrodynamic pressure acting on the 

Geotube at representative times (at the left). The dashed black lines show the modified 

vertical load and the associated SIc, which assumes the induction of the hydrodynamic 

pressure along the contact line between the Geotube and the seabed. 

The results imply that the critical SI, or SIc, is obtained just before the wave breaks 

(the green water surface elevation, which corresponds to the green dots on the diagrams 

of forces and SI). This inspection makes it practical to assess the sliding stability of the 

structure by Lagrangian BEM and specifically our model BELWF. As there is no guarantee 

that the dynamic pressure does act on the Geotube’s bottom, the extreme value, between 

the two values of the SI, the solid line, by Equation (3), and the dashed line, SIc, by Equa-

tion (5), should be taken into account. A negative S, or SIc, means a friction coefficient, 

which is needed to prevent sliding, in the up-wave direction (−𝑦). 
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Figure 11. Left: Diagrams of the dynamic pressure acting on the Geotube during the wave breaking. 

Right: water surface elevations, loads and SI for a practical design example. T = 9 s, wave height at 

the wave generator = 2.2 m. 

4. Conclusions 

We formulated and presented an effective simulation model of a fully nonlinear two-

dimensional wave flume for the investigation of submerged impermeable structures. Our 

model implements the boundary element method with Lagrangian formulation and we 

name it BELWF—boundary elements Lagrangian wave flume. 

We showed, by comparison with the simulation system OpenFOAM, which applies 

the VOF method and provides post-breaking capabilities, that our model is valid for the 

assessment of the nature of breaking, the wave loads and the sliding stability at the pre-

liminary design stage of impermeable coastal structures. Although the Lagrangian formu-

lation is not valid in post-breaking flows, where the domain is no longer simply con-

nected, we showed that, typically, the most critical state regarding the stability of a Geo-

tubes structure occurs just before breaking, so the Lagrangian BEM is a valid and efficient 

method for preliminary design. 

Following a set of simulations for the validation of BELWF, we presented a practical 

design example, simulating a complete shoaling process along a sloped shore with a sub-

merged Geotube structure. The example shows that the BELWF enables fast and stable 

simulation for a long wave flume, with or without submerged impermeable costal struc-

ture, up to a developed plunging breaker, after the critical instance for the sliding stability 

of the structure. We suggest that it is efficient and practical to apply the BELWF to assess 

the effect of the design parameters over a wide range before testing the preferred cases in 

a physical wave flume. 
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Appendix A 

Nonlinear Numerical Wave Flume Mathematical and Numerical Formulation 

This appendix presents the mathematical formulation and the numerical method of 

solution implemented in BELWF—boundary elements Lagrangian wave flume. 

For the nonlinear two-dimensional simulation of the hydrodynamic interaction of 

waves with submerged Geotubes, we programmed a source code, based on the model 

developed by Drimer [25] and extended it to represent sand-filled Geotubes. 

The important improvement, relative to other BEM methods, is the formulation of 

two normal vectors at each nodal point (which represent a water particle in the Lagran-

gian formulation), a normal to the linear boundary element before the point and a normal 

to the element after the point. This improvement enables the simulation of waves closer 

to breaking, relative to previous formulations, including plunging breakers up to the cre-

ation of a thin jet, without the use of numerical smoothing. This improvement is very im-

portant for the assessment of submerged structures in shallow water. 

The fully nonlinear boundary element method (BEM) applies a Rankine source 

Green’s function. The model can simulate phenomena, such as the steepening of waves 

due to shoaling, evolution of standing waves in a basin and simulation of wave propaga-

tion in a numerical wave channel. The model can solve wave propagation in the presence 

of structures as long as the domain remains simply connected. 

Mathematical Formulation 

For irrotational and incompressible 2D flow, a velocity potential function 𝛷(𝑦, 𝑧, 𝑡) 

exists, as defined by 

𝑉 = 𝛻𝛷 (A1) 

where 𝑉 is the vector of a particle’s velocity. 

As Figure A1 presents, the solution domain Ω, is bounded by the free surface bound-

ary and solid boundaries. The solid boundaries may be fixed or moving (such as a wave 

maker), physical (such as the seabed, or the structure) or artificial (such as the damping 

region that minimizes reflections). 
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Figure A1. Definitions sketch of the flow domain. 

The velocity potential function Φ satisfies the conservation of mass: 

𝛻2𝛷 = 0,   𝑖𝑛   𝛺 (A2) 

To enable the solution of a very steep water surface, we apply a Lagrangian formu-

lation of the free surface, which follows the water particles. The free surface particles sat-

isfy the kinematic boundary condition: 

𝐷𝑥

𝐷𝑡
= 𝛻𝛷, 𝑜𝑛 𝛤𝑓 (A3) 

where 𝑥 is the location vector (y, z) of the free surface particles, and 𝛤𝑓 is the contour of 

the free surface, as shown in Figure A1, and 

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑉 ∙ 𝛻     (A4) 

is the material derivative. 

The kinematic boundary condition states that the free surface is a material surface, 

meaning that particles do not splash out to the atmosphere or into the water domain, 

which is correct up to breaking. 

The dynamic boundary condition at the free surface is 

𝐷𝛷

𝐷𝑡
=

1

2
𝛻𝛷 ∙ 𝛻𝛷 −

𝑃0

𝜌
− 𝑔𝑧 + 𝑎 ∙ 𝑥,   𝑜𝑛 𝛤𝑓 (A5) 

where 𝑃0 is the surface pressure, assumed to be 𝑃0 = 0 (meaning that the atmospheric 

pressure is the reference pressure), 𝑔 is the gravity acceleration and 𝑎 is an additional 

acceleration field, if it exists (for example, to simulate sloshing problems). 

The dynamic boundary condition is the Lagrange form of the Bernoulli equation, 

which is obtained by a spatial integration of the Euler equation (conservation of momen-

tum for an ideal fluid). 

At rigid boundaries, the flow satisfies a non-penetration boundary condition: 

𝛻𝛷 ∙ 𝑛 = 𝑉𝑠 ∙ 𝑛,   𝑜𝑛 𝛤𝑠 (A6) 
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where 𝑛 is a unit vector (normal) perpendicular to 𝛤𝑠, positive out of 𝛺, 𝑉𝑠 is the local 

velocity vector of the rigid boundary and 𝛤𝑠 is the rigid boundary. 

In case that the free surface and the rigid boundaries do not completely bound the 

domain, Ω, artificial boundaries should be implemented, such as the following: 

(a) Spatial periodic boundary condition (at two vertical boundaries): 

𝛷(0, 𝑧) =  𝛷(𝜆, 𝑧) (A7) 

𝛻𝛷 ·  𝑛|(0,𝑧)  =  −𝛻𝛷 ·  𝑛|(𝜆,𝑧) (A8) 

where 𝜆 is the wavelength. 

(b) Linear radiation condition: 

(
𝜕

𝜕𝑡
∓ 𝑐𝛻 ∙ 𝑛) 𝛷 = 0 (A9) 

where 𝑐 is the phase velocity of the wave, ± the direction of wave propagation along the 

𝑦 axis. This condition guarantees no reflection of a periodic wave, which propagates with 

𝑐 celerity. Since nonlinear waves in general do not propagate in such a phase celerity 𝑐, 

there will be some partial nonphysical reflection from the wall boundary. 

(c) Artificial damping region: 

To minimize reflection of waves from the wall at the end of the tunnel, we can add 

an artificial damping mechanism to the free surface dynamic condition, over an extension 

of the region of interest. This region might be referred to as an energy absorption region. 

This mechanism does not require prior knowledge of the wave property, and is applied 

by subtracting a damping term 𝜈𝛷 from the right-hand side of the dynamic boundary 

condition: 

𝐷𝛷

𝐷𝑡
=

1

2
𝛻𝛷 ∙ 𝛻𝛷 − 𝑔𝑧 + 𝑎 ∙ 𝑥 − 𝜈𝛷,   𝑜𝑛 𝛤𝑑 (A10) 

where 𝛤𝑑  is an artificial extent of 𝛤𝑓, and 𝜈 is a positive damping coefficient, slowly in-

creasing along the damping region, such that it minimizes reflections. 

Numerical formulation 

We apply the numerical boundary elements method (BEM) for the evaluation of the 

velocity potential function 𝛷. By to the direct formulation, a boundary integral Equation 

(A11) replaces the Laplace Equation (A2) by the application of Green’s theorem to 𝛷 and 

a simple Rankine source, over the contour Γ enclosing the flow domain Ω: 

𝛼𝛷(𝜉, 𝑡) = ∫ [𝛷(𝑥, 𝑡)
𝜕

𝜕𝑛
(𝑙𝑛 𝑟)  − 𝑙𝑛 𝑟

𝜕

𝜕𝑛
𝛷(𝑥, 𝑡)] 𝑑𝛤   (A11) 

where 𝛼 = { 
2𝜋 𝜉 𝑖𝑛 Ω
°𝛤 𝜉 𝑜𝑛 𝛤

 }  °𝛤 is the inner angle of the contour 𝛤 (𝜋 if smooth) and 𝑟 is the 

distance between 𝑥 and 𝜉. 

The next step is the discretization of the boundary 𝛤 to finite elements. Along each 

element, we approximate the unknown functions 𝛷, 
∂𝛷

∂n
 by the sum of the element nodal 

values multiplied by interpolation functions 𝜓1, 𝜓2 (see Figure A2): 

𝛷 =  𝛷1𝜓1  +  𝜑2𝜓2 (A12) 

𝜕𝛷

𝜕𝑛
 = (

𝜕𝛷

𝜕𝑛
)

1
𝜓1  +  (

𝜕𝛷

𝜕𝑛
)

2
𝜓2 (A13) 

𝑥 = 𝑥1𝜓1  +  𝑥2𝜓2 (A14) 

where the local nodes 1 and 2 of element 𝑗 are the global nodes 𝑗, 𝑗 +  1, respectively, and 

𝜓1, 𝜓2 are linear interpolation functions in the element region: 
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𝜓1 =
1

2
(1 − 𝜏) ,   𝜓2 =

1

2
(1 + 𝜏), −1 ≤ 𝜏 ≤ 1 (A15) 

 

Figure A2. Local element interpolation functions. 

The arc length 𝑑𝛤 is expressed as a function of 𝑑𝜏: 

𝑑𝛤 =  √(𝑦1

𝑑𝜓1

𝑑𝜏
+ 𝑦2

𝑑𝜓2

𝑑𝜏
)

2

+ (𝑧1

𝑑𝜓1

𝑑𝜏
+ 𝑧2

𝑑𝜓2

𝑑𝜏
)

2

𝑑𝜏

= √(
1

2
(𝑦2 − 𝑦1))

2

+ (
1

2
(𝑧2 − 𝑧1))

2

𝑑𝜏 

(A16) 

𝑑𝛤 =
1

2
∆𝑆𝑑𝜏 (A17) 

Substituting the boundary integral Equation (A11) with the approximated sum of 

integrals of the interpolation functions 𝜓1 and 𝜓2 Equation (A15) over the boundary el-

ements, where the unknown values 𝛷,
𝜕𝛷

𝜕𝑛
 are left out of the integrals, results in 

∑ [𝐴𝑖𝑗𝜙𝑗 − 𝐵𝑖𝑗
− (

𝜕𝛷

𝜕𝑛
)

𝑗

−

− 𝐵𝑖𝑗
+ (

𝜕𝛷

𝜕𝑛
)

𝑗

+

] = 0,     𝑖 = 1,2, … 𝑁

𝑁

𝑗=1

 (A18) 

where 

𝐴𝑖𝑗 =
1

2
𝛥𝑆𝑗−1 ∫ 𝜓2

𝜕

𝜕𝑛𝑒𝑗−1

𝑙𝑛(𝑟) 𝜕𝜏  +
1

2
𝛥𝑆𝑗 ∫ 𝜓1

𝜕

𝜕𝑛𝑒𝑗−1

𝑙𝑛(𝑟) 𝜕𝜏 − 𝛿𝑖𝑗𝛼𝑗 (A19) 

𝐵𝑖𝑗
− =

1

2
𝛥𝑆𝑗−1 ∫ 𝜓2

𝑒𝑗−1

𝑙𝑛(𝑟) 𝜕𝜏 (A20) 

𝐵𝑖𝑗
+ =

1

2
𝛥𝑆𝑗 ∫ 𝜓1

𝑒𝑗

𝑙𝑛(𝑟) 𝜕𝜏 (A21) 

(
𝜕𝛷

𝜕𝑛
)

𝑗
 is the normal velocity of the particle at the 𝑗th node, 𝑟 is the distance between node 

𝑖 and the integration point along the element and 𝑒𝑗 below the integration symbol indi-

cates integration along the 𝑗th element. 

Satisfying Equation (A18) for each of the 𝑁 boundary nodes results in a set of 𝑁 

equations with 3𝑁 unknowns. 

The integrals in the terms 𝐴𝑖𝑗 , 𝐵𝑖𝑗
± are calculated numerically by the Gauss–Legendre 

integration method. 

When the source point is located on one of the nodes of the element on which the 

integration is held (𝑖 = 𝑗), these terms contain singularity when 𝑟 equals zero. An ad-

vantage of using linear interpolation functions is the possibility to analytically integrate 

the expressions at these singular elements. 
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In 𝐴𝑖𝑖, 𝑟 is measured along a line element. The change of 𝑟 across the perpendicu-

lar direction to the element is zero and so the change of ln(𝑟) in this direction is 
𝜕

𝜕𝑛
ln(𝑟) =

0. So, the terms of the diagonal of the matrix 𝐴 by (A19) are 

𝐴𝑖𝑖 = 𝛼𝑖 (A22) 

For the calculation of 𝐵𝑖𝑖
±, assuming the line element is horizontal (it does not affect 

the generality), and applying the interpolation functions, we obtain 

𝐵𝑖𝑖
− =

1

2
𝛥𝑆𝑖=1 ∫

1

2
(𝜏 + 1)

1

2
𝑙𝑛 {(𝑦𝑖−1

1

2
(1 − 𝜏) + 𝑦𝑖

1

2
(1 + 𝜏) − 𝑦𝑖)

2

} 𝑑𝜏
1

−1

 (A23) 

 𝐵𝑖𝑖
− = (−

3

2
+ 𝑙𝑛 𝛥𝑆𝑖−1)

1

2
𝛥𝑆𝑖−1 (A24) 

In a similar way, 

𝐵𝑖𝑖
+ = (−

3

2
+ 𝑙𝑛 𝛥𝑆𝑖−1)

1

2
𝛥𝑆𝑖 (A25) 

As shown in Figure A3, the discrete linear elements have normal vectors pointing out 

of the domain. With the linear interpolation functions, these normals are not continuous 

between the elements. Hence, we define two normals at each point: 

(
𝜕𝛷

𝜕𝑛
)

𝑗

−

= 𝛻𝛷 ∙ 𝑛𝑗−1    𝑎𝑡   𝑥 = 𝑥𝑗 (A26) 

(
𝜕𝛷

𝜕𝑛
)

𝑗

+

= 𝛻𝛷 ∙ 𝑛𝑗     𝑎𝑡   𝑥 = 𝑥𝑗 (A27) 

𝑛𝑗  =  
1

𝛥𝑆𝑗
(𝑧𝑗+1 − 𝑧𝑗 , 𝑦𝑗 − 𝑦𝑗+1) (A28) 

where 𝑗 stands for the 𝑗th element for 𝑛𝑗 , 𝛥𝑆𝑗 as well as for 𝑗th node for (
𝜕𝛷

𝜕𝑛
)

𝑗
, 𝛷𝑗 and 

𝑥𝑗. 

 

Figure A3. The boundary elements model scheme. 

In previous formulations, the coefficients 𝐵𝑖𝑗
− and 𝐵𝑖𝑗

+ (Equation (A18)) were united 

to a single coefficient 𝐵𝑖𝑗, which multiplies the single normal velocity (
𝜕𝛷

𝜕𝑛
)

𝑗
, i.e., equality 
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of term (
𝜕𝛷

𝜕𝑛
)

𝑗

+

 and (
𝜕𝛷

𝜕𝑛
)

𝑗

−

was assumed. This assumption caused numerical instability of 

steep waves when sharp angles between the normal of the elements evolved. 

Our distinguishing formulation applies a compatibility condition. A tangential de-

rivative of any function 𝑓 following a free surface particle may be computed by a finite 

difference central derivative: 

𝜕𝑓

𝜕𝑠
=

𝑓𝑗+1 − 𝑓𝑗−1

𝐷𝑆𝑗
 (A29) 

where 𝐷𝑆𝑗 = √(𝑦𝑖+1 − 𝑦𝑖−1)2 + (𝑧𝑖+1 − 𝑧𝑖−1)2. 

The slope of the tangential velocity of the 𝑗th particle is calculated as the slope of the 

dashed line connects between element 𝑗 + 1 to element 𝑗 − 1, see dashed line in Figure 

A3: 

𝜕𝑦

𝜕𝑧
=

𝑦𝑗+1 − 𝑦𝑗−1

𝑧𝑗+1 − 𝑧𝑗−1
 (A30) 

So, the true normal velocity of 𝑗th particle is the velocity component, which is per-

pendicular to the tangent defined by Equation (A30). Hence, the real normal of the jth 

particle is 

𝑛𝑗  =
1

𝐷𝑆𝑗
(𝑧𝑗+1 − 𝑧𝑗−1, 𝑦𝑗−1 − 𝑦𝑗+1) (A31) 

Since the velocity vector of any particle is unique, the following compatibility condi-

tions should be satisfied: 

(
𝜕Φ

𝜕𝑛
)

𝑗

−

= 𝑐𝑜𝑠𝛽𝑗
− (

𝜕Φ

𝜕𝑛
)

𝑗
− 𝑠𝑖𝑛𝛽𝑗

− (
𝜕Φ

𝜕𝑠
)

𝑗
 (A32) 

(
𝜕𝛷

𝜕𝑛
)

𝑗

+

= 𝑐𝑜𝑠𝛽𝑗
+ (

𝜕𝛷

𝜕𝑛
)

𝑗
+ 𝑠𝑖𝑛𝛽𝑗

+ (
𝜕𝛷

𝜕𝑠
)

𝑗
 (A33) 

where 𝛽𝑗
∓is the angle between the normals 𝑛𝑗

∓ and 𝑛𝑗 as shown in Figure A3. 

(
𝜕𝛷

𝜕𝑠
)

𝑗
=

𝛷𝑗+1 − 𝛷𝑗−1

𝐷𝑆𝑗
 (A34) 

is the tangential velocity of each element. 

Notice that when 𝛼𝑗 = 𝜋 (meaning the boundary is smooth), the compatibility con-

dition is reduced to 

(
𝜕𝛷

𝜕𝑛
)

𝑗

−

= (
𝜕𝛷

𝜕𝑛
)

𝑗

+

= (
𝜕𝛷

𝜕𝑛
)

𝑗
 

(A35) 

At corners, between water surface and solid boundaries, two boundary conditions 

are satisfied, and so the compatibility condition is not required. 

Substituting the compatibility conditions for the internal free surface particles in 

(A11) results in  

∑[𝐴𝑖𝑗𝛷𝑗] − ∑ [(𝐵𝑖𝑗
− + 𝐵𝑖𝑗

+) (
𝜕𝛷

𝜕𝑛
)

𝑗
]

𝑗=𝛤

𝑗=𝛤𝑎
𝑠

𝑁

𝑗=1

− ∑ [(𝐵𝑖𝑗
− (

𝜕𝛷

𝜕𝑛
)

𝑗

−

+ 𝐵𝑖𝑗
+ (

𝜕𝛷

𝜕𝑛
)

𝑗

−

)]

𝑗 𝑐𝑜𝑟𝑛𝑒𝑟𝑠

− ∑ [(𝐵𝑖𝑗
𝑛 (

𝜕𝛷

𝜕𝑛
)

𝑗
+ 𝐵𝑖𝑗

𝑠 (
𝜕𝛷

𝜕𝑛
)

𝑗
)]

𝑗 ∈𝛤

= 0, 𝑖 = 1,2, … 𝑁 

(A36) 

where 
 𝐵𝑖𝑗

𝑛 = 𝐵𝑖𝑗
−𝑐𝑜𝑠𝛽𝑗

− + 𝐵𝑖𝑗
+𝑐𝑜𝑠𝛽𝑗

+ (A37) 
 𝐵𝑖𝑗

𝑠 = 𝐵𝑖𝑗
−𝑠𝑖𝑛𝛽𝑗

− + 𝐵𝑖𝑗
−𝑠𝑖𝑛𝛽𝑗

+ (A38) 
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After applying the compatibility condition, we are left with 𝑁 equations and 2𝑁 

unknowns. As 𝛷𝑗 or (
𝜕𝛷

𝜕𝑛
)

𝑗
 is given at each node by the boundary condition, solving the 

integral equation at each time step will find (
𝜕𝛷

𝜕𝑛
)

𝑗
 or 𝛷𝑗 respectively. 

The velocity of the free surface particles is given by:  
𝑥𝑡 = ∇𝛷 = 𝛷𝑛𝑛 + 𝛷𝑠𝑠 (A39) 

The time-stepping procedure 

The problem is solved as an initial condition problem, whereas in each time step, a 

boundary values problem is solved. Figure A4 presents a flowchart of the procedure. 

Figure A4. A flowchart of the solution procedure. 

The time stepping applies the following Runge–Kutta 4th steps formulation: 

For a given initial condition problem of the form 

𝐷𝑓

𝐷𝑡
= 𝑔(𝑡, 𝑓) (A40) 
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𝑓(𝑡𝑘) = 𝑓𝑘 (A41) 

The 𝑘 + 1 step, 𝑓𝑘+1 = 𝑓(𝑡𝑘 + 𝛥𝑡) is calculated by a weighted mean of 𝑔(𝑡, 𝑓), which 

is calculated at 4 different times in the time step 𝛥𝑡. 

𝑓𝑘+1 = 𝑓𝑘 +
𝛥𝑡

6
(𝑔𝑘

1 + 2𝑔𝑘
2 + 2𝑔𝑘

3 + 𝑔𝑘
4) + 𝑜(𝛥𝑡5) 

(A42) 

𝑔𝑘
1 = 𝑔(𝑡𝑘, 𝑓𝑘)  

𝑔𝑘
2 = 𝑔 (𝑡𝑘 +

1

2
𝛥𝑡, 𝑓𝑘 +

1

2
𝛥𝑡𝑔𝑘

1) 
 

𝑔𝑘
3 = 𝑔 (𝑡𝑘 +

1

2
𝛥𝑡, 𝑓𝑘 +

1

2
𝛥𝑡𝑔𝑘

2) 
 

𝑔𝑘
4 = 𝑔(𝑡𝑘 + 𝛥𝑡, 𝑓𝑘 + 𝛥𝑡𝑔𝑘

3)  

In our case the functions 𝑔(𝑡, 𝑓) are 
𝐷𝛷

𝐷𝑡
 according to the dynamic condition (Equation (A5)) for propagation of 𝛷. 

𝐷𝑥

𝐷𝑡
 according to the kinematic condition (Equation (A3)) for propagation of 𝑥. 

At each time step the boundary condition problem is solved four times. 

The condition for numerical stability is 

𝛥𝑡 < 𝑚𝑖𝑛 (
𝛥𝑆𝑗

|𝑥𝑡|
𝑗

) , 𝑗 ∈ 𝛤𝑓 (A43) 

Forces acting on rigid bodies—Post Processing 

The total force vector (acting on the rigid boundary, having y and z components) is 

the integral of the pressure over the boundary of body in interest. In the discrete formula-

tion, the integral is expressed by sum of the pressure values acting over the elements. The 

pressure is acting normal to each element and contributes a local force vector: 

𝐹 = ∫ 𝑃
𝑏𝑜𝑑𝑦 𝑟𝑒𝑔𝑖𝑜𝑛

𝑛 𝑑𝐴 = ∑ 𝑃𝑗  𝛥𝑆𝑗  𝑛𝑗

𝑁

𝑗=1

 
(A44) 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒  

𝑗 = 1: 𝑁  

𝑇ℎ𝑒 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑎𝑟𝑒:   

𝑖 = 1: 𝑁 + 1  

The horizontal (along y direction) and vertical (along z direction) components are 

𝐹𝑦 = ∑ 𝑃𝑗 ∙ 𝛥𝑆𝑗

𝑁

𝑗=1

𝑐𝑜𝑠(𝛼𝑗) (A45) 

𝐹𝑧 = ∑ 𝑃𝑗 ∙ 𝛥𝑆𝑗

𝑁

𝑗=1

∙ sin(𝛼𝑗) (A46) 

where 

𝑠𝑖𝑛(𝛼𝑗) =
𝛥𝑧𝑗

𝛥𝑆𝑗
, 𝑐𝑜𝑠(𝛼𝑗) =

𝛥y𝑗

𝑑𝑆𝑗
 

𝛥𝑆𝑗 = √(𝑦𝑖+1 − 𝑦𝑖)
2 + (𝑧𝑖+1 − 𝑧𝑖)

2 

With the linear shape function, the pressure over each element is the mean pressure 

at the two nodes of the element: 

𝑃𝑡,𝑗 =
𝑃𝑡,𝑖 + 𝑃𝑡,𝑖+1

2
 (A47) 

The dynamic pressure (the hydrostatic pressure does not contribute to the horizontal 

force, while the vertical hydrostatic force is the buoyancy force) acting on each node 𝑖 at 

time step 𝑡 is 
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𝑃𝑡,𝑖  = −𝜌 (
𝜕𝜙𝑖

𝜕𝑡𝑡
+

1

2
𝛻𝜙𝑡,𝑖 ∙ 𝛻𝜙𝑡,𝑖) (A48) 

where 
𝜕𝜙𝑖

𝜕𝑡𝑡
=

𝜙𝑡+1,𝑖−𝜙𝑡−1,𝑖

2∆𝑡
 is a central time derivative, and 𝛻𝜙 = (

𝜕𝜙

𝜕𝑛
,

𝜕𝜙

𝜕𝑠
) is the velocity vec-

tor at each node on the body boundary. 

Over an impenetrable fixed body 
𝜕𝜙

𝜕𝑛
= 0 and so 𝛻𝜙𝑡,𝑖 =

𝜕𝜙

𝜕𝑠
= 𝑣𝑇

𝑖 , where 𝑣𝑇
𝑖  is the 

tangent velocity at each node I, based on the two conjugate elements: 

𝑣𝑇
𝑖 =

𝑣𝑇
𝑖− + 𝑣𝑇

𝑖+

2
 (A49) 

where 

𝑣𝑇
𝑖− =

𝜙𝑡,𝑖 − 𝜙𝑡,𝑖−1

𝛥𝑆𝑗−1
 (A50) 

𝑣𝑇
𝑖+ =

𝜙𝑡,𝑖+1 − 𝜙𝑡,𝑖

𝛥𝑆𝑗
 (A51) 

Figure A5 demonstrates the meshing and indexing of a submerged structure. 

 

Figure A5. The boundary elements of a rigid body (geotextile tube) placed on seabed. 
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