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Abstract: In this study, twenty-six core shale samples were collected from the marine Lower Paleozoic
shale in a well in the northeastern margin of the Yangtze Platform. Analyses of TOC content, mineral
composition, major elements, along with trace and rare earth elements were conducted on the
samples. The results were used to investigate the depositional conditions and their effects on
organic matter accumulation and preservation. Generally, the sedimentation period of Niutitang
Formation shale was in a cold and arid climate with anoxic marine environments, while the shale
from Wufeng-Longmaxi Formation was formed in a warm and humid climate with oxic marine
environments. In addition, the Wufeng-Longmaxi and Niutitang formations are characterized by low
paleo-productivity. The organic matter enrichment for shale in this study could be simultaneously
controlled by paleo-redox state and paleo-productivity. Organic matter enrichment of the Niutitang
shale is mainly driven by preservation rather than productivity, while the dominant driving factor
is the opposite for the Wufeng-Longmaxi shale. Additionally, palaeoclimate and terrestrial influx
intensity were found to significantly impact the organic matter enrichment in the Wufeng-Longmaxi
shale. The findings have implications for the understanding of the sedimentary processes, organic
matter enrichment and preservation and shale gas potential of the study area.
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1. Introduction

Shale gas is an important unconventional natural gas resource that has gained world-
wide attention, and the marine shale gas in the Sichuan Basin of China has been the subject
of significant breakthroughs in recent years [1–3]. Additionally, the widely developed and
distributed Lower Paleozoic black shale near the Micangshan-Hannan Uplift in the north-
eastern margin of the Yangtze Platform, which is adjacent to the north Sichuan Basin, is
considered to have shale gas potential due to its high TOC content, thickness, and maturity
level [4]. However, studies of the Lower Paleozoic shale in the northeastern margin of the
Yangtze Platform are still limited compared to that in the Sichuan Basin.

Unlike natural gas from conventional (e.g., sandstone) reservoirs, shale gas is gener-
ated and preserved within the source rock [5]. The organic matter in shale can contribute to
the generation of hydrocarbons via thermal decomposition processes as the precursors of
petroleum and natural gas [6]. Studies have shown that the adsorption capacity of marine
shale is positively correlated with its total organic carbon (TOC) content due to the organic
pores in the shale matrix [7–9]. As a result, the organic matter in marine shale could have a
considerable impact on hydrocarbon generation as well as the occurrence of gas hydrocar-
bons in shale. Depositional conditions, such as paleo-productivity, preservation conditions
(e.g., redox conditions, paleo-water depth), terrestrial influx, and paleo-salinity, can all
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impact the accumulation and preservation of organic matter in sediments [10–13]. Depo-
sitional conditions can undoubtedly affect the accumulation and dispersion of elements
in sediments [14]. Hence, inorganic geochemical proxies, including specific element abun-
dances and ratios, have been applied to infer paleo depositional conditions for sediments
and indicate the enrichment and preservation of organic matter [15–17]. However, specific
paleo-environmental geochemical proxies show weather-related alteration in outcrop sam-
ples [18], suggesting that drilling core samples could better record the paleo-environmental
characteristics. In a previous study, Liu et al., (2021) studied the organic matter accu-
mulation of the Niutitang Formation in the SND-1 Well in the northeastern margin of
the Yangtze Platform [19]. However, the depositional environment and organic matter
enrichment of the shale in the Lower Paleozoic strata of the northeastern margin of the
Yangtze Platform, mainly including the Wufeng-Longmaxi shale and Niutitang shale, have
yet to be extensively studied through core samples.

Hence, core shale samples were collected from a well in the northeastern margin of
the Yangtze Platform in this study, consisting of Wufeng-Longmaxi shale samples and
Niutitang shale samples. The TOC content, mineral composition, major elements, trace
elements and rare earth elements analyses were conducted to investigate the depositional
conditions and their impacts on the accumulation and preservation of organic matter. The
results of this study contribute to an improved understanding of the depositional conditions
and their effects on the enrichment of organic matter in the Lower Paleozoic shale in the
northwestern margin of the Yangtze Platform.

2. Geological Setting

The Micangshan-Hannan Uplift is located in the northwestern margin of the Yangtze
Platform and acted as the coupling unit of the South Qinling Dabie orogenic belt and
Sichuan Basin [20–22]. The Micangshan-Hannan Uplift is adjacent to the Mianlue su-
ture zone to the north, the Sichuan Basin to the south, the Bikou block to the northwest,
the Longmenshan Tectnoic Zone to the southeast, the Dabashan Folding Belt to the east
(Figure 1) [23].
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The stratigraphic sequences of the Wufeng-Longmaxi and the Niutitang Formations 
in Well A are shown in Figure 2. The location of the well in the Huijunba syncline is shown 
in Figure 1b. 26 core shale samples were collected from this well. Due to the non-continu-
ous drilling and core sampling of this well, only upper and lower samples of the Longmaxi 
Formation are available. Nine of them were collected from the Wufeng-Longmaxi For-
mations with depths ranging from 1366.90 m to 1428.21 m. Samples 1 to 4 were collected 
from the upper part of the Longmaxi Formation, samples 5 to 7 were collected from the 
lower part of the Longmaxi Formation, and samples 8 and 9 were collected from the 
Wufeng Formation. Seventeen shale core samples were collected from the Niutitang For-
mation and the depths range from 2168.93 m to 2384.77 m. The lithology of the collected 
core samples was shale. 

Figure 1. Location of the study area in the Yangtze Platform (a) and the geological map of the study
area in the northern part of the Yangtze Platform and well location (b). The geological map of the
study area is modified from Chen et al., (2019) [21].

The Yangtze Platform was developed on the Precambrian basement [24]. During the
Jinning movement, the Micangshan area evolved from a continental margin basin to a
back-arc basin. The ancient Qinling Ocean was formed in the early Jinning period and
the ancient Qinling Oceanic block was subducted under the Yangtze Platform, forming
the arc-basin system [25]. In the Early Sinian, the west and north margin of the Yangtze
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Platform was a stretched state and eventually formed the Longmenshan-Micangshan
continental rift belt [25]. The Micangshan-Hannan Uplift was the result of continuous
collision and subduction of the Yangtze Plate and the North China Plate, and it was
uplifted from the Late Triassic [26]. The Micangshan area formed the present geological
structural characteristics in the Late Himalayan period. With the increasing sea level
in the Early Cambrian, the Niutitang shale was widely distributed in the Sichuan Basin
and its adjacent areas, including Micangshan area [27,28]. The shale is of relatively high
maturity level and high TOC contents [29]. The Silurian Wufeng-Longmaxi formations
were also widely deposited and distributed in the Sichuan basin and its adjacent areas [30].
However, a regional uplift occurred in the north margin area of the Yangtze Platform
and the termination period of the uplift varied in different areas, which led to different
depositional characteristics of the Ordovician-Silurian strata in Micangshan area [31].

3. Samples and Analyses
3.1. Samples

The stratigraphic sequences of the Wufeng-Longmaxi and the Niutitang Formations
in Well A are shown in Figure 2. The location of the well in the Huijunba syncline is
shown in Figure 1b. 26 core shale samples were collected from this well. Due to the
non-continuous drilling and core sampling of this well, only upper and lower samples
of the Longmaxi Formation are available. Nine of them were collected from the Wufeng-
Longmaxi Formations with depths ranging from 1366.90 m to 1428.21 m. Samples 1 to
4 were collected from the upper part of the Longmaxi Formation, samples 5 to 7 were
collected from the lower part of the Longmaxi Formation, and samples 8 and 9 were
collected from the Wufeng Formation. Seventeen shale core samples were collected from
the Niutitang Formation and the depths range from 2168.93 m to 2384.77 m. The lithology
of the collected core samples was shale.

3.2. Analyses

Total organic carbon (TOC), mineral compositions, major elements, and trace and rare
earth elements analyses were performed on the core shale samples.

(1) TOC analysis: The shale samples were crushed and ground to greater than 200 mesh.
The powdered sample was subjected to hydrochloric acid treatment (Vanalytically pure HCl:
Vwater = 1:7) and kept at temperatures between 60 and 80 ◦C for two hours to thoroughly
dissolve the carbonate minerals. The remaining material was dried at 100 ◦C after being
rinsed with distilled water to a neutral pH. Finally, samples were analyzed on the CS-230
Carbon-Sulfur analyzer (LECO). The TOC contents are reported as wt%, after taking into
account the material lost by acid treatment. The analytical uncertainty is less than 0.5%.

(2) Mineral compositions analysis: A Bruker D8 Advance X-ray diffractometer with
a Cu tube was used to analyze the mineral compositions after the shale had been
crushed to more than 200 mesh. The Tube voltage and electric current were ≤40 kV
and ≤40 mV, respectively. The scan ranges from 0 to 140◦ with a rate of 2◦/min and
step size of 0.02◦. The analytical uncertainty is less than 5%.

(3) Major elements analysis: The powdered samples (greater than 200 mesh) were dried
at 105 ◦C and compressed into a specimen (32 mm i.d.) under the pressure of 30 tons
using boric acid to rim the substrate. Then, the compressed specimen was measured by
an Axios Panalytical X-ray fluorescence(XRF) spectrometry to obtain the concentration
of the major elements. The analytical uncertainty is less than 3%.

(4) Trace and rare earth elements analysis: Trace and rare earth elements concentration
analysis was carried out by inductively coupled plasma mass spectrometry (ICP-MS)
(Nu Attom, UK). The powder samples with >200 mesh were dried at 55 ◦C for 12 h.
After that, the powder sample was digested by acid solution (HNO3 + HF). Then, the
solutions were transferred and diluted for ICP-MS analysis to access the trace and rare
earth elements concentration. Generally, the analytical uncertainty for most elements
is less than 2%.
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Figure 2. Stratigraphic sequences and the sampling depths of the Wufeng-Longmaxi Formation and 
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the Niutitang Formation.

4. Results
4.1. TOC Content and Mineral Composition

TOC content and mineral composition for shale samples are given in Table 1. The
TOC contents of the shale from the Upper part of the Longmaxi Formation, Lower part
of the Longmaxi Formation, Wufeng-Longmaxi shale and Niutitang shale range from
0.06% to 0.26%, 1.15% to 1.63%, 1.42% to 2.86% and 0.15% to 2.56%, respectively. The
mineral composition characteristics of the Wufeng-Longmaxi shale and Niutitang shale
are different. In general, the shale is dominated by quartz, feldspar, and clay but of
varying average proportions in different formations. The Wufeng-Longmaxi shale has
average proportions of quartz, feldspar, and clay of 38.3%, 12.2%, and 27.9%, respectively.
The average proportions for the same major minerals in the Niutitang shale are 29.2%,
31.4%, and 20.8%, respectively.
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Table 1. TOC contents and mineral compositions of Wufeng-Longmaxi and Niutitang samples.

Formation Sample
Number

Depths
(m)

TOC
Mineral Compositions

Quartz Feldspar Berlinite Muscovite Pyrite Clay Calcite Dolomite Total

% % % % % % % % % %

Wufeng-
Longmaxi

1 1366.90 0.08 39.6 9.3 / 11.0 / 40.1 / / 100.0
2 1369.90 0.06 39.6 21.4 6.4 15.6 / 17.0 / / 100.0
3 1371.86 0.09 44.5 13.7 8.4 8.3 / 25.1 / / 100.0
4 1375.60 0.26 29.6 26.7 8.7 15.7 / 19.3 / / 100.0
5 1420.90 1.15 39.8 6.5 / 23.9 / 29.8 / / 100.0
6 1422.75 1.63 33.4 8.6 12.4 18.0 / 27.6 / / 100.0
7 1423.75 1.40 35.3 4.8 8.8 20.5 / 30.6 / / 100.0
8 1426.50 2.86 40.4 6.7 6.5 12.5 / 32.5 / 1.4 100.0
9 1428.21 1.42 42.5 12.4 7.5 8.2 / 29.4 / / 100.0

Niutitang

10 2158.70 0.97 27.7 24.9 9.1 5.5 1.6 28.3 2.1 0.8 100.0
11 2168.93 0.71 35.4 14.4 7.6 18.2 / 22.0 1.2 1.2 100.0
12 2179.25 0.66 31.2 22.4 4.6 17.7 / 18.9 4.4 0.8 100.0
13 2188.60 0.79 29.3 24.7 4.6 13.9 / 22.9 2.8 1.8 100.0
14 2198.00 0.98 32.1 14.9 / 12.5 1.4 34.3 3.3 1.5 100.0
15 2208.00 1.97 26.6 36.6 6.0 13.7 / 15.8 1.3 / 100.0
16 2218.50 1.58 35.7 22.7 7.8 16.0 / 17.8 / / 100.0
17 2228.84 1.22 24.4 32.0 7.4 10.9 0.8 24.5 / / 100.0
18 2237.38 1.28 36.3 33.2 5.4 6.6 / 18.5 / / 100.0
19 2246.86 0.90 37.2 30.9 7.4 6.0 / 18.5 / / 100.0
20 2254.60 1.10 24.9 27.4 9.4 12.9 1.1 24.3 / / 100.0
21 2265.80 1.18 24.5 39.4 9.5 4.6 1.1 20.9 / / 100.0
22 2273.20 0.15 21.9 49.7 / 3.7 1.0 23.0 / 0.7 100.0
23 2355.80 2.56 29.1 48.1 5.4 4.3 / 13.1 / / 100.0
24 2365.66 2.54 25.9 46.9 4.0 11.6 / 11.6 / / 100.0
25 2375.95 1.96 24.4 35.3 8.6 11.6 1.7 18.4 / / 100.0
26 2384.77 1.68 31.3 29.6 10.5 6.2 1.8 20.6 / / 100.0

4.2. Major Elements

Major element concentrations of the shale samples are presented in Table 2. No
significant difference in major element oxide distribution can be observed between the
Wufeng-Longmaxi and the Niutitang samples. The dominant major element oxides are
SiO2, Al2O3, and TFe2O3. The Wufeng-Longmaxi shale has an average SiO2 content of
63.96%, with a range of 62.22% to 67.94%, while the SiO2 abundance in the Niutitang shale
ranges from 53.69% to 65.74% with an average of 60.41%. The average Al2O3 and TFe2O3
contents in the Wufeng-Longmaxi shale are 16.14% and 6.32%, respectively, while the
Niutitang shale has average Al2O3 and TFe2O3 contents of 13.95% and 5.37%, respectively.
Other major element oxides, including CaO, MgO, K2O, Na2O and P2O5, are present in
relatively low amounts (less than 5%).

Table 2. Major elements data of Wufeng-Longmaxi and Niutitang samples.

Formation Sample
Number

Depths SiO2 Al2O3 TFe2O3 CaO MgO K2O Na2O P2O5 TiO2 MnO Other Total
(m) % % % % % % % % % % % %

Wufeng
-

Longmaxi

1 1366.90 63.24 16.68 6.79 0.32 2.30 4.09 1.22 0.11 0.74 0.08 4.12 99.71
2 1369.90 67.94 14.18 5.54 0.65 2.04 3.14 1.33 0.13 0.73 0.10 3.97 99.75
3 1371.86 66.18 14.92 6.21 0.44 2.15 3.35 1.31 0.13 0.74 0.08 4.25 99.74
4 1375.60 67.08 15.38 6.44 0.36 2.21 3.46 1.28 0.12 0.72 0.08 2.59 99.72
5 1420.90 62.41 17.29 6.43 0.71 2.38 4.50 1.08 0.10 0.70 0.07 3.74 99.39
6 1422.75 62.22 16.90 6.61 1.13 2.42 4.40 0.98 0.09 0.72 0.07 3.64 99.17
7 1423.75 65.65 15.88 5.64 0.67 2.21 4.20 1.08 0.10 0.65 0.06 3.22 99.35
8 1426.50 58.57 16.16 7.83 1.29 2.24 4.09 1.05 0.10 0.79 0.07 5.67 97.84
9 1428.21 62.38 17.87 5.44 1.02 1.79 4.67 1.00 0.09 0.49 0.04 3.64 98.43

average 63.96 16.14 6.32 0.73 2.19 3.99 1.15 0.11 0.46 0.26 0.26 99.23

Niutitang

10 2158.70 56.22 14.72 6.66 4.79 3.17 3.53 1.24 0.19 0.72 0.09 7.48 98.81
11 2168.93 55.08 14.56 6.48 5.82 3.27 3.40 1.20 0.21 0.76 0.12 8.01 98.89
12 2179.25 56.57 14.82 6.07 5.26 3.21 3.49 1.26 0.23 0.78 0.09 7.27 99.05
13 2188.60 53.69 14.65 6.14 6.82 3.53 3.52 1.16 0.24 0.75 0.12 8.50 99.10
14 2198.00 54.42 14.61 5.93 6.76 3.41 3.51 1.18 0.24 0.75 0.11 8.21 99.13
15 2208.00 58.60 13.80 5.58 4.68 2.70 3.13 1.62 0.17 0.75 0.07 7.68 98.79
16 2218.50 61.13 14.21 5.36 3.02 2.62 3.30 1.61 0.19 0.73 0.06 6.75 98.96
17 2228.84 63.43 12.52 4.66 3.19 2.24 2.76 1.94 0.21 0.74 0.06 7.37 99.11
18 2237.38 62.71 14.15 5.07 2.65 2.76 3.21 1.65 0.18 0.75 0.06 6.00 99.19
19 2246.86 61.92 13.77 5.32 2.73 2.70 3.20 1.62 0.19 0.75 0.06 6.90 99.15
20 2254.60 62.84 13.92 5.41 2.26 2.61 3.18 1.72 0.19 0.75 0.05 6.12 99.06
21 2265.80 65.74 12.22 4.77 3.00 2.01 2.64 2.20 0.24 0.71 0.05 5.26 98.85
22 2273.20 62.88 12.22 4.00 3.74 2.21 2.52 3.03 0.47 0.73 0.05 7.48 99.32
23 2355.80 62.65 12.79 4.88 1.93 2.10 3.12 1.84 0.22 0.80 0.04 8.44 98.80
24 2365.66 63.53 12.98 4.74 2.85 2.09 3.00 2.10 0.24 0.81 0.06 6.45 98.85
25 2375.95 63.03 15.45 5.31 1.53 2.37 3.61 1.93 0.21 0.83 0.04 4.04 98.35
26 2384.77 62.49 15.83 4.94 2.06 1.92 3.60 1.59 0.25 0.82 0.04 4.58 98.10

average 60.41 13.95 5.37 3.71 2.64 3.22 1.70 0.23 0.76 0.07 6.86 98.91
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4.3. Trace Elements

The abundances of selected trace elements of the Wufeng-Longmaxi and Niutitang
samples in the study area are shown in Table 3. The UCC-normalized trace elements of
shale from the Wufeng-Longmaxi Formation and the Niutitang Formation are illustrated
in Figure 3. The distribution characteristics of trace elements in the Wufeng-Longmaxi
samples are different, as demonstrated by the findings in Figure 3a. Cu, Sr, Mo, and Pb
are depleted in the shale samples from 1366.90 m to 1375.60 m (Nos. 1–4). However,
Cu, Mo, Pb and U are obviously enriched in samples from 1420.90 m to 1428.21 m (Nos.
5–9). The UCC-normalized trace element distributions of the Niutitang samples show a
similar distribution pattern compared to the Wufeng-Longmaxi shale with depths ranging
from 1420.90 m to 1428.21 m (Figure 3b). In general, the majority of the samples from the
Niutitang samples are enriched in Mo, Cd and U.
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Figure 3. UCC-normalized trace element distributions for the Wufeng-Longmaxi shale (a) and the
Niutitang shale (b). The enrichment coefficient can be expressed as Xsample/XUCC, where X represents
the weight concentrations of elements X.

4.4. Rare Earth Elements

Rare earth element concentrations of the samples are presented in Table 4 and Figure 4.
The average ΣREE contents of the Wufeng-Longmaxi and the Niutitang samples are
209.93 µg/g and 166.90 µg/g, respectively. The Niutitang and the Wufeng-Longmaxi
samples have average light rare earth elements (ΣLREEs) of 187.36 µg/g and 146.51 µg/g,
respectively. The average heavy rare earth elements (ΣHREEs) in the Wufeng-Longmaxi
and the Niutitang samples are 22.57 µg/g and 20.38 µg/g, respectively.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 8 of 21 
 

 

ples have average light rare earth elements (ΣLREEs) of 187.36 μg/g and 146.51 μg/g, re-
spectively. The average heavy rare earth elements (ΣHREEs) in the Wufeng-Longmaxi 
and the Niutitang samples are 22.57 μg/g and 20.38 μg/g, respectively. 

 
Figure 4. NASC —normalized REEs distribution for the samples from the Wufeng-Longmaxi For-
mations (a) and the Niutitang Formation (b). NASC = The North American shale composite from 
McLennan (1989) [32]. The enrichment coefficient can be expressed as Xsample/XNASC, where X repre-
sents the weight concentrations of elements X. 

The NASC normalized REE distributions of the Wufeng-Longmaxi samples suggest 
a relative enrichment of LREE. Samples 8 and 9 from the Wufeng Formation have a con-
siderably enriched HREE content. The shale samples from the Niutitang Formation do not 
show any notable enrichment or depletion of REE compared to NASC (Figure 4). 

Table 3. Trace elements data of Wufeng-Longmaxi and Niutitang samples. 

For-
mation 

Sample 
Number 

Depths Li Be Sc V Cr Co Ni Cu Zn Ga Ge Rb Sr Zr Nb Mo Cd Ba Hf Ta Pb Th U 
(m) μg/g 

Wufeng- 
Longmax

i 

1 1366.90 61.40 2.98 17.45 113.39 84.64 16.43 44.29 6.28  91.14  21.51 1.89 109.01 72.91 226.31 14.56 0.20  0.05  655.30 5.95  1.26 12.61 13.44 2.63  
2 1369.90 51.17 2.14 15.27 79.88 67.41 12.92 33.98 13.49 148.59 16.73 1.60 116.26 71.51 237.03 13.60 0.21  0.07  480.08 6.16  1.17 10.67 12.76 2.59  
3 1371.86 53.16 2.38 14.37 84.94 67.81 13.75 36.68 28.86 88.59  16.56 1.64 94.73  76.76 228.66 13.63 0.31  0.06  532.89 6.07  1.20 6.55  13.81 2.46  
4 1375.60 56.71 2.36 15.19 88.15 67.53 13.49 37.91 9.75  82.15  16.93 1.66 130.53 71.36 213.07 13.33 0.41  0.05  563.13 5.61  1.13 30.96 14.87 2.86  
5 1420.90 54.87 3.04 17.81 223.38 81.40 15.87 57.71 48.92 109.31 19.63 1.60 147.25 72.75 188.34 13.41 3.49  0.39  852.31 5.01  1.18 31.68 12.51 3.67  
6 1422.75 55.91 3.48 18.04 158.22 82.48 17.04 62.26 45.76 118.28 21.11 1.64 136.39 74.56 196.92 15.84 5.57  0.37  884.21 5.20  1.39 39.97 13.67 5.64  
7 1423.75 50.17 3.50 16.46 169.05 73.82 13.64 55.76 47.26 157.69 22.05 1.65 117.23 67.15 283.33 24.47 5.29  0.46  894.24 6.97  1.96 29.60 13.03 4.39  
8 1426.50 45.48 4.07 18.29 123.72 67.38 20.34 173.12 67.93 216.24 21.12 1.54 168.28 79.86 392.94 33.33 39.84 1.38  1089.65 9.79  4.06 52.88 16.99 14.74 
9 1428.21 28.70 4.66 9.32  81.46 29.63 12.03 83.17 36.09 186.41 20.76 1.35 108.56 70.68 478.97 49.12 15.65 1.41  1210.13 11.46 3.70 71.91 16.91 10.04 

Niutitang 

10 2158.70 37.45 2.24 13.85 211.89 81.58 19.90 64.61 47.53 314.88 16.49 1.38 72.27  231.66 170.23 9.70  12.42 2.65  614.29 4.56  0.87 44.95 9.80  8.59  
11 2168.93 37.56 2.11 13.89 269.18 81.63 17.47 67.41 44.35 287.45 16.42 1.35 65.58  271.11 173.93 10.16 11.93 2.44  539.22 4.63  0.88 31.38 9.85  7.93  
12 2179.25 37.27 2.22 12.29 342.91 86.53 17.03 68.38 45.01 238.01 16.90 1.41 82.91  274.90 183.65 10.77 9.78  1.83  668.00 4.86  0.94 26.27 9.77  7.69  
13 2188.60 33.02 2.24 10.52 155.66 71.24 14.74 50.17 36.64 148.43 15.58 1.32 117.19 318.98 160.62 9.84  11.13 1.03  667.63 4.39  0.89 22.39 10.19 7.72  
14 2198.00 35.15 2.08 10.90 184.15 73.09 15.24 61.53 38.61 211.33 16.92 1.33 107.88 322.79 156.54 9.68  16.81 1.51  631.54 4.11  0.85 19.43 9.35  9.14  
15 2208.00 32.65 1.95 14.08 122.95 68.34 17.82 40.56 38.32 46.10  14.24 1.21 79.39  253.23 233.45 10.07 22.47 0.31  545.17 6.10  0.90 28.14 11.10 11.04 
16 2218.50 33.55 2.11 13.40 119.10 71.29 15.29 39.72 35.98 78.17  13.92 1.26 79.24  204.75 209.37 10.39 13.91 0.50  653.60 5.72  0.94 20.73 11.02 9.17  
17 2228.84 30.83 1.71 13.09 94.50 61.08 11.78 30.66 27.01 44.36  11.49 1.14 70.68  203.72 266.21 10.27 9.18  0.30  610.31 7.00  0.91 17.91 10.90 6.16  
18 2237.38 35.18 2.03 12.49 116.63 68.64 12.76 33.34 28.38 72.05  12.67 1.25 65.85  174.23 264.79 10.60 12.56 0.27  526.23 7.09  1.02 12.75 10.58 7.01  
19 2246.86 37.23 1.99 16.11 166.77 76.01 14.33 53.32 36.64 132.33 15.81 1.35 86.13  203.01 236.76 11.16 10.71 0.81  626.99 6.13  0.97 11.72 12.15 6.44  
20 2254.60 35.81 1.91 15.67 151.43 80.99 15.06 42.65 40.45 54.40  16.76 1.35 74.83  186.09 272.48 11.34 10.84 0.27  603.84 6.75  0.96 19.94 11.20 6.82  
21 2265.80 26.05 1.58 12.60 114.38 59.39 11.31 41.41 23.05 94.09  11.15 1.12 64.35  196.47 324.33 9.73  22.46 0.79  727.90 8.46  0.86 16.94 10.51 11.46 
22 2273.20 26.06 1.67 12.03 65.48 52.30 8.57  19.29 10.83 21.88  12.89 1.07 51.24  224.14 281.72 9.49  0.56  0.09  574.39 7.32  0.82 9.03  10.15 2.50  
23 2355.80 27.76 1.86 15.18 111.23 76.39 15.35 50.48 32.03 38.50  15.17 1.29 90.41  205.50 296.12 10.51 29.87 0.24  1004.28 7.57  0.92 19.20 12.20 13.49 
24 2365.66 28.29 1.88 15.78 119.70 72.30 15.08 51.04 29.57 56.47  15.65 1.26 71.96  244.04 308.91 10.87 21.12 0.40  1006.17 7.76  0.96 14.02 11.97 14.56 
25 2375.95 26.69 2.25 16.20 124.07 83.55 16.43 50.78 38.34 40.94  14.24 1.11 102.50 172.50 270.43 11.17 20.08 0.24  1101.38 7.06  0.97 21.13 10.91 12.17 
26 2384.77 17.83 2.05 16.82 407.74 80.86 23.34 117.94 49.02 372.50 21.61 0.96 79.66  124.23 280.09 14.71 69.21 2.36  578.59 7.11  0.92 26.99 11.80 18.26 

UCC * 20.00 3 13.6 107 85 17 44 25 71 17 1.6 112 350 190 12 1.5 0.098 550 5.8 1 17 10.7 2.8 

* The UCC data was from Taylor and McLennan (1985) [33] and McLennan et al. (1995) [34]. 

  

Figure 4. NASC —normalized REEs distribution for the samples from the Wufeng-Longmaxi For-
mations (a) and the Niutitang Formation (b). NASC = The North American shale composite from
McLennan (1989) [32]. The enrichment coefficient can be expressed as Xsample/XNASC, where X
represents the weight concentrations of elements X.
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Table 3. Trace elements data of Wufeng-Longmaxi and Niutitang samples.

Formation Sample
Number

Depths Li Be Sc V Cr Co Ni Cu Zn Ga Ge Rb Sr Zr Nb Mo Cd Ba Hf Ta Pb Th U

(m) µg/g

Wufeng-
Longmaxi

1 1366.90 61.40 2.98 17.45 113.39 84.64 16.43 44.29 6.28 91.14 21.51 1.89 109.01 72.91 226.31 14.56 0.20 0.05 655.30 5.95 1.26 12.61 13.44 2.63
2 1369.90 51.17 2.14 15.27 79.88 67.41 12.92 33.98 13.49 148.59 16.73 1.60 116.26 71.51 237.03 13.60 0.21 0.07 480.08 6.16 1.17 10.67 12.76 2.59
3 1371.86 53.16 2.38 14.37 84.94 67.81 13.75 36.68 28.86 88.59 16.56 1.64 94.73 76.76 228.66 13.63 0.31 0.06 532.89 6.07 1.20 6.55 13.81 2.46
4 1375.60 56.71 2.36 15.19 88.15 67.53 13.49 37.91 9.75 82.15 16.93 1.66 130.53 71.36 213.07 13.33 0.41 0.05 563.13 5.61 1.13 30.96 14.87 2.86
5 1420.90 54.87 3.04 17.81 223.38 81.40 15.87 57.71 48.92 109.31 19.63 1.60 147.25 72.75 188.34 13.41 3.49 0.39 852.31 5.01 1.18 31.68 12.51 3.67
6 1422.75 55.91 3.48 18.04 158.22 82.48 17.04 62.26 45.76 118.28 21.11 1.64 136.39 74.56 196.92 15.84 5.57 0.37 884.21 5.20 1.39 39.97 13.67 5.64
7 1423.75 50.17 3.50 16.46 169.05 73.82 13.64 55.76 47.26 157.69 22.05 1.65 117.23 67.15 283.33 24.47 5.29 0.46 894.24 6.97 1.96 29.60 13.03 4.39
8 1426.50 45.48 4.07 18.29 123.72 67.38 20.34 173.12 67.93 216.24 21.12 1.54 168.28 79.86 392.94 33.33 39.84 1.38 1089.65 9.79 4.06 52.88 16.99 14.74
9 1428.21 28.70 4.66 9.32 81.46 29.63 12.03 83.17 36.09 186.41 20.76 1.35 108.56 70.68 478.97 49.12 15.65 1.41 1210.13 11.46 3.70 71.91 16.91 10.04

Niutitang

10 2158.70 37.45 2.24 13.85 211.89 81.58 19.90 64.61 47.53 314.88 16.49 1.38 72.27 231.66 170.23 9.70 12.42 2.65 614.29 4.56 0.87 44.95 9.80 8.59
11 2168.93 37.56 2.11 13.89 269.18 81.63 17.47 67.41 44.35 287.45 16.42 1.35 65.58 271.11 173.93 10.16 11.93 2.44 539.22 4.63 0.88 31.38 9.85 7.93
12 2179.25 37.27 2.22 12.29 342.91 86.53 17.03 68.38 45.01 238.01 16.90 1.41 82.91 274.90 183.65 10.77 9.78 1.83 668.00 4.86 0.94 26.27 9.77 7.69
13 2188.60 33.02 2.24 10.52 155.66 71.24 14.74 50.17 36.64 148.43 15.58 1.32 117.19 318.98 160.62 9.84 11.13 1.03 667.63 4.39 0.89 22.39 10.19 7.72
14 2198.00 35.15 2.08 10.90 184.15 73.09 15.24 61.53 38.61 211.33 16.92 1.33 107.88 322.79 156.54 9.68 16.81 1.51 631.54 4.11 0.85 19.43 9.35 9.14
15 2208.00 32.65 1.95 14.08 122.95 68.34 17.82 40.56 38.32 46.10 14.24 1.21 79.39 253.23 233.45 10.07 22.47 0.31 545.17 6.10 0.90 28.14 11.10 11.04
16 2218.50 33.55 2.11 13.40 119.10 71.29 15.29 39.72 35.98 78.17 13.92 1.26 79.24 204.75 209.37 10.39 13.91 0.50 653.60 5.72 0.94 20.73 11.02 9.17
17 2228.84 30.83 1.71 13.09 94.50 61.08 11.78 30.66 27.01 44.36 11.49 1.14 70.68 203.72 266.21 10.27 9.18 0.30 610.31 7.00 0.91 17.91 10.90 6.16
18 2237.38 35.18 2.03 12.49 116.63 68.64 12.76 33.34 28.38 72.05 12.67 1.25 65.85 174.23 264.79 10.60 12.56 0.27 526.23 7.09 1.02 12.75 10.58 7.01
19 2246.86 37.23 1.99 16.11 166.77 76.01 14.33 53.32 36.64 132.33 15.81 1.35 86.13 203.01 236.76 11.16 10.71 0.81 626.99 6.13 0.97 11.72 12.15 6.44
20 2254.60 35.81 1.91 15.67 151.43 80.99 15.06 42.65 40.45 54.40 16.76 1.35 74.83 186.09 272.48 11.34 10.84 0.27 603.84 6.75 0.96 19.94 11.20 6.82
21 2265.80 26.05 1.58 12.60 114.38 59.39 11.31 41.41 23.05 94.09 11.15 1.12 64.35 196.47 324.33 9.73 22.46 0.79 727.90 8.46 0.86 16.94 10.51 11.46
22 2273.20 26.06 1.67 12.03 65.48 52.30 8.57 19.29 10.83 21.88 12.89 1.07 51.24 224.14 281.72 9.49 0.56 0.09 574.39 7.32 0.82 9.03 10.15 2.50
23 2355.80 27.76 1.86 15.18 111.23 76.39 15.35 50.48 32.03 38.50 15.17 1.29 90.41 205.50 296.12 10.51 29.87 0.24 1004.28 7.57 0.92 19.20 12.20 13.49
24 2365.66 28.29 1.88 15.78 119.70 72.30 15.08 51.04 29.57 56.47 15.65 1.26 71.96 244.04 308.91 10.87 21.12 0.40 1006.17 7.76 0.96 14.02 11.97 14.56
25 2375.95 26.69 2.25 16.20 124.07 83.55 16.43 50.78 38.34 40.94 14.24 1.11 102.50 172.50 270.43 11.17 20.08 0.24 1101.38 7.06 0.97 21.13 10.91 12.17
26 2384.77 17.83 2.05 16.82 407.74 80.86 23.34 117.94 49.02 372.50 21.61 0.96 79.66 124.23 280.09 14.71 69.21 2.36 578.59 7.11 0.92 26.99 11.80 18.26

UCC * 20.00 3 13.6 107 85 17 44 25 71 17 1.6 112 350 190 12 1.5 0.098 550 5.8 1 17 10.7 2.8

* The UCC data was from Taylor and McLennan (1985) [33] and McLennan et al. (1995) [34].
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Table 4. Rare earth elements abundances of Wufeng-Longmaxi and Niutitang samples.

Formations Sample
Number

Depth La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE

(m) µg/g

Wufeng-
Longmaxi

1 1366.90 40.41 86.92 9.41 34.30 6.82 1.27 5.86 0.97 5.69 1.15 3.37 0.51 3.30 0.50 200.48
2 1369.90 42.05 79.59 9.49 35.15 7.29 1.36 6.22 0.98 5.59 1.10 3.16 0.48 3.04 0.46 195.96
3 1371.86 41.71 88.73 10.16 34.98 7.08 1.32 6.11 0.98 5.70 1.13 3.29 0.49 3.13 0.48 205.30
4 1375.60 44.56 91.18 10.87 36.57 7.72 1.42 6.68 1.04 5.84 1.14 3.25 0.48 3.05 0.46 214.25
5 1420.90 39.70 74.75 9.03 31.05 5.70 1.02 4.71 0.77 4.63 0.95 2.85 0.44 2.87 0.44 178.93
6 1422.75 43.42 80.58 9.37 32.46 5.87 1.02 4.85 0.80 4.77 0.97 2.91 0.45 2.91 0.44 190.82
7 1423.75 42.73 86.04 9.41 34.24 6.54 0.90 5.49 0.93 5.49 1.11 3.23 0.49 3.18 0.49 200.25
8 1426.50 45.92 90.08 9.96 35.45 7.02 1.15 7.13 1.29 8.31 1.75 5.32 0.81 5.27 0.80 220.27
9 1428.21 62.97 122.46 13.81 43.84 8.28 1.08 7.47 1.31 8.45 1.79 5.37 0.79 4.79 0.71 283.11

NIutitang

10 2158.70 31.27 69.06 8.21 30.15 6.61 1.26 5.88 0.94 5.58 1.13 3.32 0.50 3.19 0.49 167.59
11 2168.93 30.01 71.13 7.87 31.30 7.20 1.45 6.60 1.05 6.16 1.24 3.57 0.53 3.34 0.51 171.97
12 2179.25 32.48 71.16 8.00 30.23 6.37 1.29 5.93 0.96 5.69 1.16 3.38 0.50 3.21 0.49 170.82
13 2188.60 33.84 73.22 8.51 30.15 6.37 1.24 5.80 0.94 5.57 1.13 3.32 0.49 3.10 0.48 174.14
14 2198.00 30.70 69.19 7.30 28.34 5.83 1.18 5.31 0.86 5.14 1.05 3.06 0.46 2.92 0.45 161.80
15 2208.00 35.40 71.33 9.12 31.43 5.93 1.11 5.24 0.85 5.11 1.04 3.08 0.46 2.97 0.46 173.54
16 2218.50 32.64 68.22 8.73 28.96 5.97 1.14 5.28 0.86 5.22 1.07 3.16 0.47 3.02 0.46 165.22
17 2228.84 30.01 57.51 7.36 26.21 6.34 1.24 5.95 0.95 5.51 1.09 3.14 0.46 2.93 0.45 149.15
18 2237.38 28.78 61.94 8.19 27.18 5.74 1.10 5.14 0.84 5.09 1.04 3.09 0.46 2.97 0.46 152.02
19 2246.86 34.72 72.77 8.29 31.22 6.43 1.25 5.81 0.95 5.59 1.13 3.29 0.49 3.13 0.48 175.56
20 2254.60 32.90 70.59 8.05 30.39 6.21 1.15 5.30 0.88 5.31 1.09 3.24 0.49 3.17 0.49 169.27
21 2265.80 31.18 58.75 8.11 28.80 6.74 1.30 6.34 1.02 5.94 1.18 3.42 0.50 3.22 0.50 157.00
22 2273.20 29.89 60.36 7.58 28.05 5.83 1.13 5.26 0.84 4.95 1.00 2.91 0.44 2.83 0.44 151.51
23 2355.80 40.19 77.66 9.26 33.38 6.13 1.13 5.26 0.84 4.99 1.01 2.99 0.45 2.91 0.45 186.63
24 2365.66 35.17 68.46 8.60 33.68 7.27 1.40 6.59 1.04 5.95 1.18 3.41 0.50 3.21 0.49 176.94
25 2375.95 36.04 66.93 8.86 29.98 5.80 1.08 5.10 0.84 5.08 1.05 3.10 0.46 3.00 0.47 167.79
26 2384.77 34.87 63.39 8.09 31.57 6.37 1.20 5.70 0.93 5.55 1.13 3.33 0.50 3.17 0.49 166.29

NASC * 32 73 7.9 33 5.7 1.24 5.2 0.85 5.8 1.04 3.4 0.5 3.1 0.48 /

* The North American shale composite (NASC) is from McLennan (1989) [32].

The NASC normalized REE distributions of the Wufeng-Longmaxi samples suggest a
relative enrichment of LREE. Samples 8 and 9 from the Wufeng Formation have a consider-
ably enriched HREE content. The shale samples from the Niutitang Formation do not show
any notable enrichment or depletion of REE compared to NASC (Figure 4).

5. Discussion
5.1. Chemical Weathering and Palaeoclimate

The palaeoclimate during sedimentation can be reflected by the chemical index of alter-
ation (CIA), which indicates the degree of weathering [35]. The CIA is calculated as follows:

CIA(%) = 100 × Al2O3/(Al2O3 + CaO* + Na2O + K2O) (1)

CaO* stands for calcium that is presented as the silicate. In this study, the CaO*
was calibrated and the CIA (%) was estimated using the method proposed by McLennan
(1993) [36]. Chemical weathering is beginning to occur, as indicated by the CIA (%) value
range of 50 to 60. CIA (%) values of 60–80 and >80 indicate moderate chemical weathering
and strong chemical weathering, respectively [35,37]. CIA (%) in the Wufeng-Longmaxi
samples range from 67.27 to 70.37 with an average of 68.62, while the average CIA (%)
in the Niutitang samples is 60.25 (Table 5). Chemical alterations become weaker under
arid conditions [38]. Therefore, the Wufeng-Longmaxi shale was deposited in warmer and
more humid conditions compared to Niutitang shale. However, with decreasing depth,
the CIA (%) for the Niutitang shale rises from about 60 to 65, indicating a change in the
palaeoclimate conditions.

5.2. Terrestrial Influx Intensity, Provenance, and Tectonic Setting

Influx of terrestrial materials can dilute the organic matter and thereby affect its ac-
cumulation. The Mn/Ca ratio serves as a proxy for the terrestrial influx intensity [39,40].
Figure 5a demonstrates a cross-plot of Mn/Ca (ppm/%) and Ca (%), which shows varia-
tions in terrestrial influx intensity among the samples from different formations. Generally,
the Niutitang samples have the lowest terrestrial influx intensity among the shale, while the
highest intensity is observed in the shale from the upper of the Longmaxi Formation. The
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TiO2/Zr ratio can be used to classify the origin of the clastic input to sediment [41], and the
results of plotting TiO2 and Zr suggest a provenance of felsic igneous rock (Figure 5b). Plot-
ting La/Yb versus ΣREE can also be applied to classify the provenance of the sedimentary
rocks as REEs inherit the characteristics of parental rocks [32,42,43]. The results of plotting
La/Yb versus ΣREE are consistent with the interpretation of the TiO2/Zr crossplot and
indicate a mixed provenance of granite, sedimentary rock, and alkalic basalts (Figure 5c).
The shale from various formations reflects distinct tectonic settings. The majority of the
Wufeng-Longmaxi samples are located within the passive margin, whereas the Niutitang
samples are mostly located within the active continental margin (Figure 5d).

Table 5. Geochemical proxies of the Wufeng-Longmaxi and Niutitang samples.

Formations Sample
Number

Depths Palaeclimate Terrestrial Influx Paleoredox Conditions Paleo-Productivity

(m) CIA Mn/Ca (ppm/%) Th/U δU MoEF UEF P/Ti

Wufeng-
Longmaxi

1 1366.90 70.37 2650.03 5.12 0.74 0.23 0.96 0.11
2 1369.90 67.70 1668.85 4.92 0.76 0.29 1.11 0.13
3 1371.86 69.37 1920.55 5.62 0.70 0.39 1.00 0.13
4 1375.60 70.28 2278.78 5.21 0.73 0.51 1.13 0.12
5 1420.90 68.57 1118.61 3.41 0.94 3.82 1.29 0.10
6 1422.75 67.93 716.73 2.42 1.11 6.23 2.04 0.09
7 1423.75 67.85 985.68 2.97 1.01 6.30 1.68 0.11
8 1426.50 67.27 573.60 1.15 1.44 46.58 5.56 0.10
9 1428.21 68.20 465.01 1.68 1.28 16.55 3.43 0.13

Niutitang

10 2158.70 65.07 207.62 1.14 1.45 15.94 3.56 0.19
11 2168.93 65.65 231.71 1.24 1.41 15.49 3.32 0.20
12 2179.25 65.15 191.60 1.27 1.41 12.47 3.16 0.21
13 2188.60 65.79 193.14 1.32 1.39 14.36 3.21 0.23
14 2198.00 65.54 170.65 1.02 1.49 21.75 3.81 0.23
15 2208.00 61.30 169.88 1.01 1.50 30.77 4.88 0.17
16 2218.50 61.59 206.73 1.20 1.43 18.50 3.94 0.19
17 2228.84 57.23 194.78 1.77 1.26 13.86 3.00 0.21
18 2237.38 61.39 256.56 1.51 1.33 16.79 3.02 0.17
19 2246.86 61.07 243.33 1.89 1.23 14.70 2.85 0.18
20 2254.60 60.42 255.42 1.64 1.29 14.73 2.99 0.18
21 2265.80 54.72 189.00 0.92 1.53 34.76 5.72 0.24
22 2273.20 49.06 152.62 4.06 0.85 0.87 1.25 0.47
23 2355.80 56.38 230.11 0.90 1.54 44.14 6.43 0.20
24 2365.66 52.19 217.88 0.82 1.57 30.77 6.84 0.21
25 2375.95 61.04 314.68 0.90 1.54 24.57 4.80 0.19
26 2384.77 60.72 207.92 0.65 1.65 82.62 7.03 0.22
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Zhao (2016) [44]. (d) K2O/Na2O versus SiO2 for samples from different formations. The interpreta-
tion lines are from Roser and Korsch (1986) [45]. ARC: oceanic island arc margin; ACM: active con-
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Figure 5. (a) Mn/Ca (ppm/%) versus Ca (%) for samples from different formations. (b) TiO2 versus
Zr for samples from different formations. The interpretation lines are from Hayashi et al., (1997) [41].
(c) La/Yb versus ΣREE for samples from different formations. The interpretation lines are from Zhao
(2016) [44]. (d) K2O/Na2O versus SiO2 for samples from different formations. The interpretation
lines are from Roser and Korsch (1986) [45]. ARC: oceanic island arc margin; ACM: active continental
margin; PM: passive margin.
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5.3. Paleoredox Conditions and Water Mass Restriction

Specific ratios for redox-sensitive elements, such as V, Cr, Ni, Co, Mo and U, were
employed as redox indicators to evaluate the paleo-redox conditions during sediment
deposition [46–49]. In an oxidizing seawater environment, uranium (U) is presented as
dissolved U (VI); however, it can be reduced to solid U (IV) and accumulate in sediments
under anoxic conditions [14]. In contrast, thorium (Th) is a very stable element that
may remain in sediments as undissolved thorium (IV) [47]. Thus, redox conditions may
be revealed using the Th/U ratio. Th/U ratios of 2–7 typically indicate oxic marine
environments, whereas a ratio of <2 reflects anoxic environments [50,51]. In addition, the
Th/U ratio may exceed 7 in a terrestrial oxic environment [51]. Additionally, the paleo-
redox conditions can be categorized using the δU value (2U/(U + 1/3Th)) [49]. A δU value
of >1 suggests anoxic conditions, whereas a value of <1 denotes an oxic environment.

Table 5 presents the Th/U and δU ratios for the samples. The data for the Niutitang
samples suggest a mainly anoxic environment, as indicated by Th/U ratios that vary from
0.64 to 4.06, with an average of 1.37. Shale from the Wufeng Formation have a Th/U ratio
that varies from 1.15 to 1.68 with an average of 1.42. Samples 5–7 from the Lower Longmaxi
Formation have Th/U ratios that vary from 2.42 to 3.41 with an average of 2.93, while the
Longmaxi samples 1–4 are characterized by high Th/U with an average of 5.21 (Table 5). These
results suggest that the upper Longmaxi samples were deposited in more oxic conditions
than the samples from the lower Longmaxi Formation, while the conditions for the Wufeng
samples were more anoxic, and similar to the Niutitang Formation during the Wufeng and
Longmaxi sedimentary periods. The redox condition interpreted by δU is consistent with
Th/U ratios. Most Niutitang, Wufeng, and Longmaxi samples (Nos. 5–7) display δU values
greater than 1, indicating anoxic water conditions. The samples 1–4 from the Longmaxi
Formation have low δU with an average of 0.73, suggesting oxic water conditions.

Molybdenum (Mo) can exist in sea water as a stable and soluble molybdate oxyanion
(MoO4

2−), while the MoO4
2− can be converted to thiomolybdates in euxinic conditions. It

has been previously shown that thiomolybdates can be adsorbed onto humic substances
and captured by Mn-Fe oxyhydroxides at the sediment surface [14,52,53]. Hence, the Mo-U
covariance can be an indication of the paleo-redox conditions [48,52,54]. The enrichment fac-
tor (EF) for Mo and U were calculated using the equation EF = [(X/Al)sample/(X/Al)PAAS],
where X and Al represent the weight concentrations of elements X and Al, respectively. A
plot of MoEF versus UEF is presented in Table 5 and Figure 6. The plot shows that Niuti-
tang samples were deposited in sulfidic/euxinic waters with higher EFs in Mo (EF > 10)
compared to U, while the MoEF versus UEF plot also indicates that paleo-redox conditions
went from anoxic in the Wufeng Formation to oxic in the upper Longmaxi Formation.

Basinal water mass restriction is correlated to paleo-redox condition [55], and it is
mainly controlled by changes in sea level [56]. In a restricted sea, the Mo (ppm)/TOC (%)
ratio in sediments decreases as the restriction increases, due to the low resupply rate of
Mo in an aqueous medium [14], In contrast, the ratio is higher in open marine sediments.
This makes the Mo (ppm) to TOC ratio a useful tool in classifying paleo-hydrographic
conditions. As shown in Figure 6b, the samples from the Niutitang and Wufeng formations
were deposited in a moderately restricted basin. The ratio in the Longmaxi samples is
lower than the Black Sea (~4.5), suggesting a strongly restricted condition with reducing
sea level during this geological period.
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Figure 6. (a) MoEF versus UEF in samples from the Wufeng-Longmaxi and the Niutitang Formations.
The post-Archean average shale (PAAS) composition data used in this study are from Taylor and
McLennan (1985) [33]. The interpretation lines are from Algeo and Tribovillard (2009) [52] and
Tribovillard et al., (2012) [55]; (b) Mo (ppm) versus TOC (%) in samples from the Wufeng-Longmaxi
and the Niutitang formations. The interpretation lines are from Algeo and Lyons (2006) [57] and
Tribovillard et al. (2012) [55].

5.4. Paleoproductivity

Primary paleo-productivity presents the total amount of organic matter produced per
unit time and area [58], and hence good source rocks were deposited in areas of basins
with elevated primary paleo-productivity [59,60]. Phosphorus (P) is a crucial nutritional
element that is found in the skeleton [14,61]. P can exist as both dissolved and precipitated
phases in seawater [62]. Sources of P can be divided into detrital and organic. Since the
concentration of detrital P is usually very low, total P may serve as a proxy to estimate
paleo-productivity [63]. P2O5 (%) and Ti (ppm) show no positive correlation in the sam-
ples of this study (Figure 7), indicating that P is of organic origin and can be used as
a paleo-productivity proxy. A P/Ti ratio less than 0.34 reveals low paleo-productivity,
and 0.34 < P/Ti < 0.79 and P/Ti > 0.79 indicate medium and high paleo-productivities,
respectively [64]. The P/Ti ratio in Niutitang shale ranges from 0.17 to 0.47 with an aver-
age of 0.22, while the average P/Ti ratio in Wufeng-Longmaxi shale is 0.11. Hence, the
Wufeng-Longmaxi and Niutitang formations are characterized by low paleo-productivity.
In addition, Wufeng-Longmaxi shale possess a lower paleo-productivity compared to the
Niutitang shale in the study area (Table 5).
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5.5. Influence of Deposition Conditions on Organic Matter Enrichment

Total organic carbon (TOC) contents represent the amount of organic carbon, and
it could be utilized to evaluate the richness of organic carbon and reveal hydrocarbon
generation potential for hydrocarbon source rock [65]. The enrichment of organic matter
in sediment is a complex process that is controlled by the input and preservation of
organic matter [49], as well as its dilution by clastic input. Trends of TOC content and
paleodeposition-related inorganic geochemical parameters with depth, in the samples, are
shown in Figure 8. The relationship between different inorganic geochemical indicators
and TOC contents are presented in Figure 9.
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with depth.

A fair negative correlation can be observed in CIA and TOC content in the Wufeng-
Longmaxi shale (R2 = 0.49), whereas it shows a poor correlation in the Niutitang samples
(Figure 9a). Mn/Ca ratios are negatively related to TOC content for the Wufeng-Longmaxi
samples (R2 = 0.72), while no clear relationship can be observed in the Niutitang samples
(Figure 9b), indicating that the high terrestrial influx intensity in the Wufeng-Longmaxi
samples diluted the TOC content and resulted in a negative correlation between Mn/Ca
ratio and TOC content. In contrast, the terrestrial influx intensity for the Niutitang samples
is low and had a minor effect on diluting TOC content. The regression analyses of Th/U,
δU, and MoEF with TOC contents are presented in Figure 9c–e. The results reveal a clear
correlation between the redox parameters with TOC contents, suggesting anoxic conditions
which helped with preservation of the organic matters. The study also found a positive
relationship between P/Al and TOC content in the Wufeng-Longmaxi shale (Figure 9f). In
addition, the correlation of P/Ti and TOC content is less (R2 = 0.24) in the Nititang samples
compared to the Wufeng-Longmaxi samples (R2 = 0.46).
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5.6. Depositional and Organic Enrichment Models

Organic enrichment models mainly include preservation, production, and co-action mod-
els [66]. Cd/Mo and Co (ppm)× Mn (%) proxies have been proposed and applied to determine
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the dominant factor that impacts organic matter enrichment [66]. The results presented in
Figure 10 indicate that the samples in the study well were mainly deposited in a restricted
condition, based on Mo/TOC ratios. The Cd/Mn ratio reveals that organic matter enrichment
of the Niutitang samples is mainly driven by preservation rather than productivity, while the
dominating driving factor is the opposite for the Wufeng-Longmaxi samples.
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Figure 10. Cd/Mo versus Co (ppm) × Mn (%) for samples. The interpretation polygons are from
Sweere et al. (2016) [66].

The Niutitang Formation was deposited in a moderately restricted basin with a eu-
xinic reducing environment. This environment is considered to be the most suitable for
preservation of organic matter (Figure 11a). The Wufeng Formation had similar reduc-
ing conditions and water mass restrictions to the Niutitang Formation (Figure 11b), but
with increasing terrestrial influx intensity. As the water level decreased in the Longmaxi
Formation, the terrestrial Influx steadily increased and diluted the richness of organic
carbon. The hydrographic condition gradually became strongly restricted and the water
environment shifted to dysoxic-oxic conditions due to a decrease in sea level, indicating
that the paleo-productivity may have had a more significant impact on the organic matter
enrichment compared to the paleo-redox condition (Figure 11c).
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6. Conclusions

The main conclusions from this study of the depositional environment and organic
matter enrichment in Lower Paleozoic shale samples from the northeastern margin of the
Yangtze Platform are as follows:

(1) Warm and humid conditions existed for deposition of the Wufeng-Longmaxi samples.
In contrast, palaeoclimatic condition indicators suggest cold andarid conditions in the
Niutitang samples.

(2) The terrestrial influx intensity in the Niutitang samples was relatively low. However,
the terrestrial influx rate increased in the Wufeng and Longmaxi samples.

(3) Parameters that measure palaeoredox conditions indicate an anoxic environment in
the Niutitang, Wufeng and Lower Longmaxi samples. In contrast, the paleo-redox
conditions were more oxic during the sedimentation of the Upper Longmaxi samples.

(4) The P/Ti ratio reveals a low paleo-productivity for the Wufeng-Longmaxi and the
Niutitang samples. Additionally, Wufeng-Longmaxi samples possess a lower paleo-
productivity compared to the Niutitang samples in the well.

(5) An obvious difference exists in the organic matter enrichment of the shale samples from
different formations. The organic matter enrichment for samples in this study can be jointly
influenced by paleo-redox conditions and paleo-productivity. Organic matter enrichment
of the Niutitang shale is mainly driven by preservation rather than productivity. The
dominant driving factor is the opposite for the Wufeng-Longmaxi shale.
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